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Enhanced diffusion with abnormal temperature dependence in underdamped space-periodic
systems subject to time-periodic driving
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We present a study of the diffusion enhancement of underdamped Brownian particles in a one-dimensional
symmetric space-periodic potential due to external symmetric time-periodic driving with zero mean. We show that
the diffusivity can be enhanced by many orders of magnitude at an appropriate choice of the driving amplitude and
frequency. The diffusivity demonstrates abnormal (decreasing) temperature dependence at the driving amplitudes
exceeding a certain value. At any fixed driving frequency � normal temperature dependence of the diffusivity
is restored at low enough temperatures, T < TTAD(�)—in contrast with the problem with constant external
driving. At fixed temperature at small driving frequency the diffusivity either slowly decreases with �, or (at
stronger driving) goes through a maximum near �2, the reciprocal superdiffusion regime termination time. At
high frequencies, between �2 and a fraction of the oscillation frequency at the potential minimum, the diffusivity
is shown to decrease with � according to a power law, with the exponent related to the transient superdiffusion
exponent. This behavior is found similar for the cases of sinusoidal in time and piecewise constant periodic
(“square”) driving.
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I. INTRODUCTION

The phenomena of diffusion and transport over a potential
energy landscape play a key role in a number of processes
in physics, chemistry, and biology [1–5]. Josephson tun-
neling junctions, superionic conductors, phase-locked-loop
frequency control systems, and charge density waves are a
few examples of systems in which these processes in periodic
potential are important [6].

In recent years the interest has been growing to experimental
studies of manipulating the particle diffusion by external fields.
One can effectively control the diffusion processes by varying
the field parameters. For instance, a huge enhancement in
diffusivity (exceeding its value in the same system without
extra driving by a factor of order hundreds) was observed in
studying particle diffusion in colloids with optical traps (optical
vortices) [7]. A large increase in diffusivity was also observed
in studies of paramagnetic particle diffusion on surfaces of
garnet ferrites influenced by external time-periodic magnetic
field [8]. In the same manner diffusivity growth with shaking
strength was noticed in experiments with granular gas [9]. It
became possible to increase the diffusivity of ions in mem-
brane channels by varying the external electromagnetic field
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[10]. One can increase the rates of diffusion-limited physical
processes, and effectively separate micro- and nanoparticles of
different nature by varying diffusion coefficients in different
directions [11].

Despite these remarkable achievements, a quantitative de-
scription of such enhanced diffusion under the influence of
external forces remains fragmentary to date. The present study
contributes to this subject, with a focus on systems under
time-periodic driving.

A. Diffusion of Brownian particles in spatially periodic
potentials under constant external driving

A typical model considered is an ensemble of Brownian
particles in a periodic potential subject to external driving Ft .
Dynamics of the particles can be described by the Langevin
equation

mẍ = −dU (x)/dx − γ ẋ + Ft (t) + ξ (t) (1)

(in one dimension), where t is the time, x is the particle
coordinate, m is its mass, and γ is the friction coefficient.
The overdot stands for the time differentiation. ξ (t) represents
thermal fluctuations, in most studies considered Gaussian
white noise with a certain temperature T . The potential energy
U (x) is periodic in x. In our study

U (x) = −(U0/2) cos(2πx/a), (2)
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where a is the lattice constant and U0 is the potential barrier
height.

The lattice force Flat acting upon the particle is

Flat(x) = −dU/dx = −F0 sin(2πx/a). (3)

The quantity F0 = πU0/a coincides with the minimal external
force needed to drag the particle over the potential barrier
separating potential minima on the one-dimensional (1D)
lattice at large friction.

Special cases of underdamped and overdamped physical
systems are often considered. In overdamped systems inertial
effects may be neglected, significantly simplifying the mathe-
matical treatment of the problem. In underdamped systems on
the other hand the viscous decay of oscillations occurs on times
long compared with the oscillation period in the potential; such
systems are harder to investigate, and the progress in studying
these is more limited compared with overdamped ones.

The first detailed studies of a Brownian particle motion in
a washboard potential (i.e., a periodic potential tilted with an
additional constant force field, dFt/dt = 0) for all values of
the friction were carried out by Risken and co-workers [12,13].
It was shown that at low friction the appearance of “locked”
(in which the particle oscillates around one minimum of the
potential) and “running” (where the particle travels through
many potential periods, not getting trapped at separate minima)
solutions was important for the particle ensemble behavior.
At small temperatures running solutions appear abruptly at
the external force value exceeding certain critical Fcr; at
smaller forces a single class of solutions (locked) is realized.
Systematization of the results of these studies may be found in
Ref. [6].

The problem was studied by solving the Fokker-Planck
equation (FPE) for the velocity and coordinate distribution
function Ñ (V,x; t). One approach [12] involved an approx-
imate solution by the matrix continued fraction method for the
expansion coefficients of stationary Ñ (V,x) over an appropri-
ate (infinite) complete set of functions. Two leading expansion
coefficients could be obtained efficiently by that method, those
sufficed for computing the particle flux (but not diffusion).
Another approach [13] was used at low friction, in which
case energy E was a slow variable [changing on the viscous
dissipation time scales, whereas x oscillated with short period
(9)]. The distribution function was rewritten in (E,x) variables,
FPE was solved in these by perturbation expansion near the
ansatz that depended on E only, valid at γ = 0. Diffusion
properties remained not studied by either method at F �= 0.
This matter was partly addressed in other works, based on
simulations of the stochastic Langevin equation.

Early systematic study of diffusion by means of numerical
simulation of the Langevin equation in periodic potential
with extra constant driving was undertaken in [14]. Costantini
and Marchesoni analyzed both overdamped and underdamped
settings. At low dissipation they observed significant enhance-
ment of the spatial diffusion near the critical force Fcr ([14];
Fig. 1: diffusivity ten times larger than its postmaximum value
at F = 2Fcr, at the temperature equal to 0.6 of the potential
well depth U0), and related that to features of the particle
jump statistics and locked-to-running transition. Similar sim-
ulations were reported in [15] for driving with a time-periodic
component.

Further progress in studies of the diffusion under the action
of constant force was made in [16–18]. Time dependence of the
particle ensemble dispersion was studied in [16]. It was shown
that in underdamped systems a special regime of dispersionless
transport was realized, in which dispersion virtually did not
change with time, on a certain limited interval of time. The
authors explained this phenomenon; they showed that strongly
nonequilibrium distribution of particles in space (with steep
front and exponential tail, formed as the particles first exit
their original potential well) persisted for long times, before
eventually broadening and assuming a normal Gaussian shape.

The temperature dependence of the diffusivity was studied
as well [18]. The authors observed that the maximal diffusivity
Dmax was achieved near the Fcr. At low friction Dmax was
shown to depend abnormally on the temperature—increase
with decreasing temperature T . Fitting, for the three tempera-
tures studied, yielded Dmax ∝ T −3.5 relation.

The presence of such abnormal temperature dependence is
one important aspect in which underdamped systems differ
from overdamped ones. In fact, certain peculiarities in diffu-
sivity at low temperatures are observed (for driven Brownian
particles in space-periodic potentials) in the overdamped situa-
tion as well. Reimann and co-workers [19] showed analytically
that for a sinusoidal in space potential at external constant force
value near F0, the force required for direct particle pull over
the potential barrier, the ratio of Dmax to the diffusivity value
D0 in the viscous medium without the lattice and bias forces
grows at temperature decreasing ∝T −2/3. Yet the diffusivity
itself still vanishes at T → 0, as Dmax ∝ T 1/3 [19], and grows
monotonically with T for all T .

Regions in the parameter space in which ∂D/∂T < 0 were
found in the overdamped problem in [20] (cf. Fig. 6) for
specially crafted exotic potentials, flat apart from narrow peaks.
The authors linked the abnormal D(T ) dependence to the large
ratio of relaxation to escape time in such a system. Similarly,
abnormal D(T ) behavior was found in [21] (cf. Figs. 2– 4) for
piecewise linear potential at extreme asymmetry, essentially
sawtooth. So, while possible at large friction, special atypical
conditions must be met for the existence of parameters {F,T } at
which ∂D/∂T < 0. On the contrary, such parameters exist uni-
versally in the problem with small friction ([22]; more below).

Another distinction of the diffusion behavior in the over-
damped problem is that the maximum in D(F ) is achieved
close to the F0, whereas at low friction Dmax(F ) is achieved at
(typically much smaller) Fcr.

The theoretical results for the overdamped setup were veri-
fied in a number of experimental studies. Diffusion of colloidal
particles in a tilted periodic potential created with laser traps
[23], Fig. 1, agreed reasonably well with the analytic [19] D(F )
dependence. The potential barrier height and the free diffusion
coefficient were treated as fit parameters. Diffusivity in [24]
varied nonmonotonically with F with a maximum near F0

(Fig. 7), and agreed fairly well with the analytic predictions
from [19]. The potential was inferred from an independent
study of the colloidal particle spatial distribution function. In
that work colloidal particles diffused over the potential created
by the bottom grid of colloidal spheres; extra constant driving
was due to gravity (controlled by the sample inclination angle).
Different limiting cases of analytic predictions [19] for the
mean particle velocity and diffusivity were compared with the
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experimental results at different settings, and showed good
agreement.

In underdamped systems the physical reason behind the
abnormal temperature dependence of the diffusivity is traced
to the jump length of running particles (before getting retrapped
at another potential minimum) increasing with the temperature
decrease [22], this phenomenon being absent in overdamped
systems (as these have no proper running states, at F < F0).
The maximal diffusivity is achieved at driving near Fcr, as
at this value populations of locked and running particles are
about equal, and it is the mutual motion between these two
populations (with temperature-independent running particle
speed) that leads to fast spreading of the particle packet,
manifested as a giant diffusion [18].

Thorough analysis of (the temperature and force depen-
dence of) the diffusion in underdamped systems was carried out
in [25]. Numerical simulations of the Langevin equation were
performed for a wide range of the temperatures and driving F .
The phenomenon of the diffusivity growth with the temperature
decrease, in the current work called TAD, “temperature-
abnormal diffusivity,” was shown to be manifested in a narrow
interval of applied external driving values near Fcr. That
interval is called region II in the present paper. Outside that
interval, at weaker driving (region I) and stronger one (region
III), the dependence of the diffusivity on the temperature was
normal, increasing. It was demonstrated that in region II the
diffusivity grew with the temperature decrease as Dmax ∝
T 2/3 exp [E/(kBT )] for certain E > 0 (kB being the Boltzmann
constant). Such a scaling was checked valid for a set of tem-
peratures in kBT /U0 ∈ [0.05; 0.85]; whereas the power-law
fit Dmax ∝ T −3.5 proposed for TAD in [18] could approximate
the results only in the narrow temperature interval investigated
in [18]. We showed that the main exponential growth factor
resulted from such an exponential growth of the correlation
time τcorl at the temperature decreasing, found by simulations.

Properties of the mobility and diffusion were further elu-
cidated and systematized for a broad range of (constant in
time) forces F , friction coefficients γ , and temperatures T in
[22], in sinusoidal 1D potential in the underdamped setting.
We observed that the distribution function of the particles
in velocity space N (V ) [full distribution function in (x,V )
averaged over oscillations in x] had a clear bimodal structure
for F in region II, and could be approximated as a sum of two
Gaussians,

N (V ) = A exp

(
− mV 2

2kBT

)
+ B exp

(
−m(V − F/γ )2

2kBT

)
.

(4)

Both Gaussians hence had the same width (2kBT /m)1/2 and
were centered around Vr = F/γ (running particles) and zero
velocity (locked ones). One could expect Gaussian distribu-
tions near the maxima of the N (V ) on simple physical grounds,
yet in fact the approximation above was quite accurate every-
where except the vicinity of the minimum between the two
Gaussians, the region influenced by the particles transitioning
between the locked and running populations. We also observed
that in the corresponding deterministic problem the evolution
of a certain slow velocity variable (maximal velocity of the
particle in one oscillation period in the potential; slow in

the limit γ → 0; related to the slow energy variable used by
Risken and co-workers) could be represented as overdamped
dynamics in a certain velocity potential WF (V ). Extension of
the dynamics equation for V (t) to a setup with added white
noise ζ (t),

V̇ = −dWF (V )/dV + ζ (t),

〈ζ (t)ζ (t ′)〉 = 2γ kBT m−2δ(t − t ′), 〈ζ (t)〉 = 0,

produced a distribution NW (V ) with the same behavior near its
two maxima as the bimodal N (V ) above, found by simulations
of the full problem in the (x,V ) phase space. The agreement
with N (V ) was in fact good at most V , except the dubious
area near the minimum of N (V ) separating the two maxima at
V = 0 and F/γ .

The deficiency of our velocity potential model near the
minimum in N (V ) was expectable from the approximate
way we constructed the WF (V ). The construction was based
on the requirement for the deterministic V̇ = −dWF (V )/dV

dynamics to reproduce correct relaxation of an arbitrary tra-
jectory to the proper late-time asymptotic (locked or running,
depending on the trajectory initial conditions). The relaxation
dynamics was not well understood in the region close to
V ≈ Vcr—the boundary value such that trajectories passing
through the minimum of U (x) − Fx at t = 0 with V >

Vcr evolved towards the running states, whereas those with
V < Vcr evolved towards the locked states. Consequently the
potential proposed was by construction only reliable not too
close to Vcr . That deficiency was manifested in several aspects;
in particular we could not fix mutual normalization of the two
Gaussians corresponding to locked and running populations
from self-sufficient considerations. That normalization was
fixed by requiring the agreement of the average 〈V 〉 found
from the theory based on the velocity potential with 〈V 〉 found
from direct Monte Carlo simulation of the full problem (1). The
normalization factor turned elegant, independent of F and γ

in the broad ranges studied. A simple fit, linear, was obtained
for the (found numerically) Vcr dependence on F and γ .

With the fits proposed, WF (V ) could be found in an
explicit form for any {F,γ,T } in the ranges studied. NW (V ) =
exp[−m2WF (V )/(γ kBT )] reproduced well the distribution of
solutions of (1), except at the NW (V ) minimum. The diffusivity
obtained from NW (V ) through the Kubo relation agreed well
with D found numerically by simulations of (1). Divergence
of the correlation time τcorl as an exponential of inverse
temperature at T → 0 found in [25] was explained, related to
the Kramers rate of transitions in the velocity space between the
locked and running populations through the potential barrier in
WF (V ). The fits are instrumental to comprehend the features
of the transport and diffusivity in all the parameter space, and
are useful for experimentalists.

B. Periodic in time external driving

In most practical applications periodic in time external
forces (electromagnetic, acoustic, etc.) are more straightfor-
ward to implement than constant driving. It is natural to study
how the findings for the constant driving problem are modified
for the time-periodic driving setup, both from a theoretical and
practical point of view. By changing the diffusivity with the
aid of periodic external fields it is possible to create surface
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structures with prescribed properties; influence the dynamics
of point defects in crystals, under irradiation in part; alter the
dislocation motion dynamics; increase chemical reaction rates
in selected directions; manipulate the efficiency of processes in
biological systems, to mention just a few applications [26,27].

A large fraction of the works on periodic driving deal
with ratchet-type systems [4] or stochastic resonance. Studies
focusing on diffusion properties in symmetric periodic systems
are scarce. We are not aware of any works that systematically
study the combined dependence of the diffusivity on the
temperature, the driving amplitude, and the frequency in a
representatively broad range of these parameters.

Dependence of the diffusivity on the interplay between the
external periodic [piecewise constant, Eq. (7), below] driving
and the lattice force was studied in [28] in a 2D overdamped
setup. The driving frequency was fixed at one value. It was
shown that in a system with a sum of Yukawa potentials at
square grid nodes the particle diffusivity was significantly
enhanced for certain intricate set of bands (“A-windows”) of
the driving amplitudes and orientations with respect to the grid.
At special driving arrangement TAD was observed for some
diffusivity tensor components, and one of its principal values
increased exponentially with inverse temperature. The other
diffusivity tensor principal value decreased exponentially at
the same time. It is likely that multidimensionality effects
were crucial for TAD. Instead of having two, locked and
running, populations in one dimension accounting for (already
sophisticated in this case) diffusion features, flows in higher
dimensional problems are more complex, known to result in
further peculiarities in transport and diffusion [5,29].

An underdamped 1D system was studied in [30], with a
sinusoidal in x potential (2) and sinusoidal in time driving.
Diffusivity enhancement by orders of magnitude was seen.
TAD was observed for some (low) driving frequencies, at
the driving amplitude 0.15F0 studied. Dependence of the
diffusivity on the driving frequency was studied in more detail
in [31], and was shown to be nonmonotonic at large enough
driving amplitudes (0.15F0 and 0.25F0, at kBT /U0 = 0.258.)
At 0.15F0 the maximum in the frequency dependence of
the diffusivity D(�)|{T ,F }=const persisted for all the tempera-
tures studied, corresponding frequency �max increasing from
∼2 × 10−4 to ∼6 × 10−3 (in units of the frequency of small
oscillations at the potential minimum in the absence of fric-
tion) at temperatures kBT /U0 ∈ [0.129; 0.388]. TAD was also
spotted in [32] at the driving frequency modelled.

The goal of the present work is to investigate in detail the de-
pendence of the diffusivity on the amplitude and the frequency
of uniform time-periodic external driving in a 1D underdamped
space-periodic system, and conditions under which TAD is
realized. We mainly study piecewise constant periodic [PCP;
Eq. (7)] driving as this case is more straightforward to relate
to the results for constant driving. For such a PCP driving one
might expect that in the limit� → 0 theD(F,T ) behavior must
coincide with such in the constant driving problem, D|�=0.
We show that in fact the convergence is not uniform in T ,
and at arbitrarily small � at temperatures below a certain
�-dependent value the diffusivity behavior is qualitatively
different from that in the constant driving problem.

D(F,T ) still behaves in three different ways in regions
I–III of the driving amplitude. As in the constant driving

problem, in region I TAD is not observed, and D grows with
F . Contrary to the situation in the constant driving setup TAD
is observed in region III for a certain interval of frequencies.
Both in regions II and III TAD is only realized in a finite
interval of the temperatures, bounded from below by certain
positive temperature TTAD(�); at lower temperatures normal
(increasing) temperature dependence of D is restored. The
reason for this phenomenon, that at low temperatures the
behavior differs from that in the constant driving problem,
is related to the fact that the relaxation time of the particle
distribution function diverges at T → 0. At small enough T

time π/� between the Ft (t) sign switching is not long enough
for the equilibrium distribution to be established. Particles
are in the anomalous diffusion regime (e.g., superdiffusion)
through the whole period of Ft oscillations, hence the resulting
late time diffusion coefficient differs from D|�=0.

This interplay between the period of the driving and the in-
trinsic anomalous diffusion regime time span leads to relations
between this time span, superdiffusion exponent α, and D(�).
D(�) is shown to scale as a power of � in certain intervals of
the frequency, limited on one side by the reciprocal anomalous
diffusion regime time span; cf. Eqs. (16) and (18) below. The
physics of the maximum [31] in D(�)|{T ,F }=const discussed
above is explained in the same framework forF in region III (cf.
Fig. 9). Presented results thus provide means for experimental
studies of anomalous diffusion properties by probing long-time
diffusivity as a function of the driving frequency.

We describe the methods used in Sec. II. In Sec. III we show
how the diffusivity changes with the PCP driving frequency
�, starting from the understood results at constant driving. We
observe that TAD is realized for some (intermediate) driving
amplitudes, in regions II and III. Section IV is devoted to
studying the D(T ) behavior at fixed �. The results for the
diffusivity in the case of sinusoidal in time driving are shown
in Sec. V. We conclude in Sec. VI.

II. PROBLEM SETUP AND NUMERICAL METHOD

A. Problem setup

In this paper the Brownian motion is described by the
Langevin equation (1), with thermal fluctuations ξ (t) repre-
sented by Gaussian white noise with correlation

〈ξ (t)ξ (t ′)〉 = 2γ kBT δ(t − t ′); 〈ξ (t)〉 = 0. (5)

Here kB is the Boltzmann constant, and T is the temperature.
Angle brackets 〈. . .〉 with no subscripts mean averaging over
the particle ensemble.

For physical values we use the same parameters as in [22],
typical for adatom diffusion on close-packed metal surfaces.
Namely,

U0 = 80 meV, a = 2Å (6)

for the activation barrier and the lattice constant are adopted.
Two possibilities for the external periodic driving are

studied: piecewise constant periodic (PCP) driving,

Ft (t) = Fe sgn[sin(�t)], (7)
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and the sinusoidal one,

Ft (t) = Fe sin(�t). (8)

� is the angular frequency of the external force and Fe is its
amplitude.

It is convenient to use dimensionless time t ′ and space
coordinate x ′, normalizing the physical values to the period
of small oscillations,

T0 = 2π/�0 = a(2m/U0)1/2, (9)

at the potential minimum in the absence of friction, and to the
lattice spatial period a respectively:

t ′ = t

T0
= t

a

√
U0

2m
, x ′ = x

a
. (10)

Dimensionless temperature T ′ and friction coefficient γ ′
are further introduced:

T ′ = 2kBT /U0, γ ′ = γ a(mU0/2)−1/2. (11)

Equations (1) and (5) in these dimensionless units read

d2x ′/dt ′2 = −dV (x ′)/dx ′ − γ ′dx ′/dt ′ + F ′
t (t ′) + ξ ′(t ′),

〈ξ ′(t ′1)ξ ′(t ′2)〉 = 2γ ′T ′δ(t ′1 − t ′2), 〈ξ ′(t ′)〉 = 0,

with dimensionless F ′
t = 2aFt/U0, ξ ′ = 2aξ/U0, V (x ′) =

cos(2πx ′).
Definitions (10) and (11) differ from such in

[16,22,25,30,31,33] by extra factors of 2 appearing in
the definition of t ′, and consequently in T ′ and γ ′ as well. The
current definition makes interpreting the results easier (t ′ = 1
corresponds to one oscillation period at small γ ′). For more
straightforward comparison with our previous works we also
use another dimensionless temperature in the figures,

T † = kBT /U0 = T ′/2.

The parameters of the dimensionless problem are Fe/F0, ω =
�T0, γ ′, T ′.

Below lowercase ω’s (frequencies), and corresponding
periods τ = 2π/ω denote dimensionless quantities. Physical
frequencies and periods are obtained by respectively dividing
and multiplying these by the period T0 of small oscillations in
the lattice potential at γ = 0.

The overdamped problem is characterized by γ /m � �0,
whereas γ /m � �0 (equivalently, γ ′ � 1) corresponds to
underdamped dynamics. We study the underdamped case here.
The friction coefficient γ ′ = 0.2 we use corresponds to the
same physical value as in earlier studies [22,25].

B. Numerical method

We solve the stochastic equation (1) and (5) numerically
using a Verlet-type algorithm [34] with a time step �t

somewhat shorter than 1/100th of the period of oscillation
T0. The statistical averaging is performed over the ensemble
consisting of at least N = 5 × 104 particles. To verify the
modeling consistency some computations were performed
with N = 5 × 106.

The initial conditions are set as follows. Each particle
is placed at x = 0, its velocity chosen at random, with
Maxwellian distribution for a given T . Thermalization over

100 oscillation periods, in the potential U (x) but without the
Ft (t), is then used to get equilibrium particle distribution over
both coordinate and velocity. Tests show that the distribution
function does not change after that time. In the process of such
thermalization the particles can jump to nearby elementary
cells of the lattice. Such relocated particles are returned back
to the initial cell by translation over an integer multiple of the
lattice constant, to get diffusion of all particles starting from
the initial cell of the lattice.

The diffusivity is computed based on the dispersion σ 2 of
the particle distribution in the limit of large times:

D′ = lim
t→∞ D′

eff(t) = lim
t ′→∞

〈(x ′ − 〈x ′〉)2〉(t ′)
2t ′

≡ lim
t ′→∞

σ 2

2t ′
.

(12)

D′ and σ are dimensionless in our notation. The physical
diffusivity is D = D′a2/T0.

For each diffusivity calculation we find time t ′lin, after which
the dispersion grows linearly with time (if averaged over the
driving period). The D′ is calculated as σ 2/(2t ′) at t ′ = 100t ′lin.

It is known that in systems with low dissipation transient
regimes of anomalous diffusion can be realized [33], charac-
terized by

σ 2 = 〈(x ′ − 〈x ′〉)2〉 ∝ t ′α. (13)

The process with α > 1 is referred to as superdiffusion,
whereas subdiffusion is characterized by α < 1. Distinct
regimes of anomalous diffusion were observed in our simu-
lations. The choice of initial conditions above aided in having
these regimes in clear form.

We determine the exponents α by the least-square linear
fitting between ln(σ 2) and lnt on the time interval of interest.

III. PIECEWISE CONSTANT PERIODIC DRIVING:
DEPENDENCE OF THE DIFFUSIVITY ON

THE DRIVING FREQUENCY

Qualitatively different functional dependencies D(F,T )
were shown in [25] to be realized at (constant in that study)
Ft (t) = Fe in regions I–III. Plots of the diffusivity as a function
of the external force Fe at several temperatures [based on
numerical simulations of σ 2(t) in [25], recomputed for the
current units] are shown in Fig. 1, top plot. For Fe in region
I diffusion is enhanced as external force Fe value increases,
whereas in region III diffusion is inhibited as Fe increases.
In regions I and III D grows with T increasing. Contrary
to this (normal temperature behavior) in region II D grows
as T decreases. This is the region of “temperature-abnormal
diffusivity” (TAD). The diffusion process at sufficiently late
times is normal, σ 2 ∝ t1, however the diffusion coefficient
D′ = σ 2/(2t ′) (abnormally) increases as the temperature
decreases.

TAD is also possible at time-periodic external driving as it
was seen in [30]. At such driving TAD was only observed in a
finite interval of the driving frequencies. Studies were carried
out at Fe = 0.15F0, that would correspond to region III for the
constant driving of the same amplitude (see Fig. 1), so TAD
would not be observed at such Fe value were the driving Ft (t)
constant.
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FIG. 1. Dependence of the dimensionless diffusivity on the ex-
ternal constant driving at different temperatures (top). The region
of anomalous temperature dependence (II) is hatched. The friction
coefficient γ ′ = 0.2. 1: T † = 0.097 [T = 90 K for the potential
characteristic of the H-adatom diffusion on metal surface (6)]; 2:
T † = 0.129; 3: T † = 0.194; 4: T † = 0.388; 5: T † = 0.582; 6: T † =
0.776; 7: T † = 0.969.Bottom: the effective velocity potential in the
three force regions. Left, middle, and right diagrams correspond to
Fe/F0 = 0.06, 0.095, and 0.25 respectively.

To understand physical reasons of the abnormal temper-
ature dependence of the diffusivity in these two different
(time-periodic, and constant) driving regimes we consider the
periodic driving regime in more detail below. For piecewise
constant periodic driving one can use intuition gained in the
constant driving problem for the time intervals in which Ft

stays constant; the findings are thus easier to interpret. Most
of the results in this work are for the PCP driving setup.

In [22] it was shown that the transport properties of an
ensemble of underdamped particles in a washboard potential
can be found by considering simpler overdamped motion in
effective potential WFe

(V ) in velocity space. The problem
thus showed similarities with the problem of active Brownian
particle motion [35]. Stationary velocity distribution function
NW (V ) = N0 exp(−m2WFe

/γ kBT ) defined 〈V 〉(Fe,T ) and D

that agreed well with the direct numerical simulation results
for all values of F � 0.5F0, temperatures in the range T † ∈
[0.129; 0.776], friction γ ′ ∈ [0.1; 0.4] in the definitions of
dimensionless quantities adopted here; Eqs. (10) and (11). The
agreement was progressively better at smaller γ ′ as expected.

For Fe in region II WFe
(V ) has two minima, running and

locked populations [near corresponding minima of WFe
(V )]

coexist, mutual motion between these populations with veloc-
ity ≈Fe/γ is responsible for the enhanced diffusion. In the
expression for the diffusivity, D = 〈�V 2〉τcorl, the correlation

time τcorl factor was shown to be responsible for the main
features in D(F,T ) dependence, numerically found in [25].
τcorl showed proper nonmonotonic dependence on F , with a
maximum near Fcr, progressively more pronounced at smaller
T . τcorl increased at temperature decreasing ∝ exp[E/(kBT )]
(for certainE > 0); this increase at low T reflected the Kramers
rate for transitions in the double-well velocity potential be-
tween the wells corresponding to the locked and running states.

Schematics of the effective velocity potential in the three
regions of the applied force are shown in the bottom insets in
Fig. 1. These were obtained here as −γ kBT m−2 ln N (V ) from
the distribution function N (V ) found numerically, by binning
the results of Monte Carlo simulations of Eqs. (1), (2), and (5)
in velocities, for the given Ft (t) = Fe = const. The first inset
corresponds to Fe = 0.06F0, at which only locked solutions
exist. In the second inset Fe = 0.095F0, corresponding to the
maximal diffusivity; both types of solutions coexist at this
force value. Finally Fe = 0.25F0 corresponding to region III
is shown in the third inset; at this Fe only running solutions are
realized at late times. The boundaries between regions I and
III depend on γ and m (on γ ′ in the dimensionless problem).
At smaller γ ′ these boundaries move to the left, to the lower
force values, and the width of region II decreases. In the current
study we use the same fixed values of γ and m as in [22].

It may be expected that the same picture for different
temperature behaviors of the diffusivity, with the analogous
three regions I–III of the external force amplitudes, holds for
PCP driving, at least at small frequencies �. The description
with the effective potential is applicable, the potential W (V )
keeping constant form for each of the two half periods of
the external driving [on which Ft stays constant, this F value
defining corresponding W (V |F,γ )].

Below we show that relating the behavior at periodic driving
to such at constant driving is subtle. Similar three regions of the
external force amplitudesFe exist, differing in qualitativeD(T )
dependence. TAD is realized in regions II and III, for certain
finite intervals of the frequencies. At any fixed frequency �

as the temperature gets lower the dependence D(T ) starts
progressively deviating from such at constant driving. This
is due to the fact that the relaxation time in velocities grows
at T decreasing, and on progressively longer parts of the
driving half period π/� actual distribution N (V,t) differs
from stationary (4). At temperatures below a certain critical
TTAD(�) normal temperature dependence of the diffusivity is
restored. We demonstrate these features by analyzing D(T |�)
in sequence for the above values of Fe (Fe/F0 = 0.06, 0.095,
0.25), that correspond to regions I, II, III in the constant external
force problem.

We observe a transient anomalous diffusion phase, and
see how its characteristics relate to the diffusivity in the
asymptotic late time regime, when normal diffusion sets in.
The properties of this anomalous diffusion phase are different
in the three regions of the applied force amplitudes; this trans-
lates into different functional dependence of the diffusivity on
the temperature.

A. Region I: Fe/F0 = 0.06, varying frequency

Here we investigate how the diffusivity changes with
(dimensionless) frequency ω = �T0 of the external driving
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FIG. 2. Time dependence of the dimensionless dispersion for the
force value Fe = 0.06F0 (region I) for different force frequencies. τ2

denotes the time when superdiffusion transitions to normal diffusion
at constant driving (ω = 0). τ = 2π/ω is the period of the external
periodic driving. T † = 0.194. 1: ω = 1; 2: ω = 10−1; 3: ω = 10−2;
4: ω = 0 (constant external force). Straight dashed and dotted lines
show the power-law fitting behavior of the dispersion.

at the driving amplitude Fe = 0.06F0. We show that the
diffusivity stays nearly constant at small frequencies, up to
the reciprocal superdiffusion regime time span. At frequencies
above this the diffusivity drops according to a power law with
an exponent related to the exponent of the superdiffusion. This
power-law dependence holds up to frequencies a few times less
than �0. The diffusivity grows with the temperature (normal
temperature behavior), related to the superdiffusion regime
duration increasing with T .

Figure 2 shows the growth of the particle dispersion with
time. At constant external driving this growth demonstrates
a clear superdiffusion regime, σ 2 ∝ t ′α , α > 1, that switches
to normal diffusion (same power-law growth but with α = 1)
after a certain time τ2. τ2 as well as the superdiffusion exponent
α depend on Fe/F0 and other problem parameters, γ ′ and
T ′. For the values used τ2 ≈ 100, α ≈ 2.3. Lowercase τ ’s
everywhere are dimensionless, normalized to the period of
small oscillationsT0 at the lattice potential minimum at γ ′ = 0.
σ 2 and D′ are dimensionless dispersion and diffusivity.

Curves 1–3 correspond to three different frequencies. Oscil-
lations in σ 2(t ′) are clearly seen with double driving frequency,
2ω. These are particularly large at ω around ω2 = 2π/τ2 (curve
2). At these values, interestingly, intervals of σ 2(t) decreasing
with time are observed. This effect can be seen in earlier
works [36].

At frequencies below ω2 = 2π/τ2 the curves σ 2(t) closely
follow that at ω = 0 (constant external force, curve 4). At
higher frequencies the superdiffusion phase effectively ends
after one period τ of the external force; normal diffusion
sets in (in the sense that averaged over the driving period
〈d(σ 2)/dt〉t ≈ const). Higher frequencies of the driving cor-
respondingly result in lower diffusivity, as the interval of σ 2

growing with time faster than linearly is shorter than at lower
frequencies.

These results suggest the following approximations for the
average over the driving period dispersion σ 2(t ′), valid not too
close to the transition moments between different diffusion

FIG. 3. Dependence of diffusivity D′ on the driving frequency at
T † = 0.129 (triangles) and 0.194 (circles). The dashed line asymp-
totes show the diffusivity values at constant driving with the same
Fe/F0 = 0.06. The slanting dotted line shows the power-law drop of
D′ at intermediate ω’s.

regimes:

ln
σ 2

σ 2
0

=
⎧⎨
⎩

≈0 at t ′ < τ1

α ln(t ′/τ1) at t ′ ∈ (τ1; τ2,ω)
α ln(τ2,ω/τ1) + ln(t ′/τ2,ω) at t ′ > τ2,ω

.

(14)
Here σ 2

0 = σ 2|t=0 (for the approximately Boltzmannian initial
distribution of the particles in x ′ ∈ (−0.5; 0.5) well of the
potential), τ2,ω = min(τ2,τ ); τ1 is close to the first potential
well exit time. Constants are chosen in such a way that the
spline approximation (14) is continuous. Quantities α, τ1,2

depend on the problem parameters, T ′, Fe/F0, and γ ′. At fixed
values of these parameters, the last approximation yields the
dependence of the diffusivity D′ = limt ′→∞ σ 2/(2t ′) on the
driving period τ ,

D′(τ ) =
{

(1/2)σ 2
0 τ−α

1 τα−1 at τ1 < τ < τ2

(1/2)σ 2
0 τ−α

1 τα−1
2 at τ > τ2

, (15)

or on its frequency ω = 2π/τ ,

D′(ω)

D′(0)
=

{
1 at ω < ω2

(ω/ω2)1−α at ω2 < ω < 2π/τ1
. (16)

The diffusivity thus should stay about constant at ω < ω2, and
at the larger driving frequencies drop with ω according to the
power law, with exponent equal to 1 − α, determined by the
superdiffusion exponent.

Figure 3 shows simulation results for D′(ω). Dotted lines
show approximations Eq. (16). Dashed lines show the dif-
fusivity at constant driving with the same Fe value. These
results confirm the features suggested by Eq. (16), away
from transition frequency ω2 = 2π/τ2 and up to ω/2π ≈ 0.1.
D(ω) < D(0) at any ω, and decreases with ω, up to the
dimensionless frequency values ω/2π ≈ 0.3.

Further ramification might have been added in Eqs. (14)–
(16) for the case τ < τ1, changing τ1 to τ1,ω = min(τ1,τ );
that would indeed lead to D(ω) increasing at ω > 2π/τ1.
With our parameters, however, resulting approximations are
an overstretch; the diffusion gets markedly nonequilibrium at
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FIG. 4. Dispersion variation with the temperature, at constant
driving (ω = 0). 1: T † = 0.097; 2: T † = 0.129; 3: T † = 0.194; 4:
T † = 0.388. The short-dashed straight lines show power-law fits
for the transient superdiffusion regime, and the late-time normal
diffusion.

such high ω’s, resulting in the complex D(ω) behavior at ω

approaching 2π . More on this in Sec. III D.
Finally, Fig. 4 shows σ 2(t) for a range of temperatures

at constant driving. Despite the superdiffusion exponent α

is seen to decrease with the temperature; the time span of
the superdiffusion regime τspd = τ2 − τ1 grows fast with the
temperature. As a result the dispersion is larger for larger
temperatures at any given time. At late times this translates
into diffusivity being larger at higher temperatures, so normal
(increasing) D(T ) dependence is realized at force amplitudes
in region I.

B. Region II: Fe/F0 = 0.095

Here we repeat analysis of the previous section for periodic
driving with amplitude Fe = 0.095F0 (the value at which the
maximal diffusivity is achieved at constant driving). In the
same manner as for the driving amplitude in region I, transition
from initial superdiffusion phase to normal diffusion at late
times is observed, around time τ2. At driving frequency ω

growing, the diffusivity again decreases only slightly from
D(ω = 0) till ω reaches ω2 = 2π/τ2. It decreases fast, ac-
cording to the same power law D(ω)/D(0) = (ω/ω2)1−α , at
larger ω’s, up to 1/τ ≈ 0.1. Contrary to the case of weaker
driving considered in the previous section, superdiffusion
duration τspd = τ2 − τ1 now decreases with the temperature.
This leads to diffusivity growing at temperature decrease
(TAD), at moderately low frequencies. This is the main effect
we intended to find in the periodic driving setup, extending our
previous findings at constant driving [22].

Figure 5 shows the growth of the particle dispersion with
time. Again the interval of superdiffusion is observed, and it
ends after one period of PCP driving or after τ2 (the end time of
superdiffusion at constant driving), whichever is smaller. Thus
the same approximations, Eqs. (14)–(16), are applicable for
the (averaged over τ ) dispersion growth σ 2(t ′) and dependence
of the diffusivity on the driving frequency D′(ω). Simulation
results for D′(ω), Fig. 6, again agree with prediction, Eq. (16).

FIG. 5. Time dependence of the dimensionless dispersion for the
force value Fe = 0.095F0 (region II) for different force frequencies.
Curves 1–5, bottom to top: (dimensionless) ω = 10−1, 10−2, 10−3,
10−4, 0 (constant driving). T † = 0.194.

As D(ω) does not vary much at ω < ω2, TAD must be
observed at small frequencies, at it is observed at constant
driving [[22]: D(Fe,ω = 0) decreases with the temperature
when Fe is in region II]. Such an abnormal dependence on the
temperature is due to longer jumps the particles perform on
average at lower temperatures. This in turn follows from lower
probability at lower temperatures to turn the running particle
into a locked state: such a transition requires certain threshold
energy transfer to such a particle, and at lower temperatures
the probability of such a transfer decreases as an exponential
of inverse temperature. Hence the running particle travels at
about the stationary speed Fe/γ (the speed fluctuating around
this average due to the lattice potential) for increasingly longer
distances before getting trapped again in some next well of the
potential, resulting in larger diffusivity at smaller temperatures.
This mechanism is not applicable in region I, where only locked
solutions are realized.

FIG. 6. Dependence of diffusivity D′ on the external force fre-
quency ω, at T † = 0.129 (triangles) and 0.194 (circles). The dashed
line asymptotes show the diffusivity values for constant driving with
the same Fe/F0 = 0.095. Dotted line shows the power-law drop of
D′ at higher ω’s. The dot-dashed horizontal line asymptote (for high
ω) is at the diffusivity value in the lattice periodic potential in the
absence of extra driving, Ft (t) = 0, for T † = 0.194.
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FIG. 7. The dispersion variation with the temperature, at constant
driving (ω = 0). 1: T † = 0.097; 2: T † = 0.129; 3: T † = 0.194; 4:
T † = 0.388. Fe/F0 = 0.095.

In terms of the dispersion evolution features, this phe-
nomenon of the diffusivity growing at the temperature decreas-
ing results from the superdiffusion duration τspd = τ2 − τ1

growing at temperature decreasing, as Fig. 7 demonstrates.
This qualitatively differs from the situation at driving ampli-
tude in region I (end of the previous section). We note that
α increases with the temperature decreasing, the same as in
region I.

At higher frequencies, on the other hand, the diffusivity
starts increasing with the temperature (normal behavior). This
results from τ2 decreasing with the temperature, as can be
seen in Fig. 7. Despite that D(ω = 0) is larger at smaller
temperature T1, as ω grows the D(ω |T1) starts decreasing
according to the power law earlier [at ω’s near the smaller
ω2 = 2π/τ2(T1)] than D(ω |T2) for T2 > T1 does. And the
exponent of this power law decreases with T decreasing,
1 − α(T1) < 1 − α(T2) < 0—therefore at larger frequencies,
commensurate with ω2, the diffusivity starts increasing with
the temperature, and TAD disappears.

As is the case for the driving amplitude in region I, D(ω)
decreases monotonically with ω from D(0), up to the frequency
values ω ≈ 0.3 × 2π . At frequencies that high the particle
transport becomes substantially nonequilibrium, affecting the
functional dependence D(ω), as discussed in Sec. III D below.

C. Region III: Fe/F0 = 0.25

For strong driving (region III, in which the diffusivity
decreases with Fe in the constant driving setup, and increases
with the temperature) we demonstrate in this subsection that
the dependence of the dispersion on time shows extra features.
After the initial phase of superdiffusion at times t ′ < τ2,
long-lasting dispersionless regime sets in, till τ3 ∼ 103τ2. In
this phase the dispersion stays nearly constant. As at the
weaker external driving (regions I and II), both of these
anomalous diffusion regimes may be interrupted earlier in
the case of high driving frequency, after about a period of
the driving. At late times normal diffusion sets in. Dependence
D(ω) is nonmonotonic here, agreeing with findings in [30].
D reaches a maximum near ω = ω2 ≡ 2π/τ2. TAD is observed
at intermediate frequencies.

FIG. 8. Time dependence of the dimensionless dispersion at
Fe = 0.25F0 (region III) for different force frequencies. Curves 1–5:
(dimensionless) ω = 1, 10−1, 10−2, 10−3, 10−4. T † = 0.194. Dotted
lines show power-law fitting behavior of the dispersion.

Figure 8 shows the particle dispersion as a function of time.
At low frequencies of the driving, superdiffusion is observed
till τ2 ≈ 200. A dispersionless regime is realized later, at
t ′ ∈ (τ2; τ3). Physically τ2 is the time at which the particle
distribution function in velocities assumes its stationary form.
The distribution in space is still strongly nonequilibrium at τ2;
it has exponential tail and sharp front [16] (in the direction of
F ). It takes till τ3 for the distribution function to assume an
approximately Gaussian shape in space (if averaged over the
potential spatial period). On the interval (τ2; τ3) the dispersion
does not increase substantially. After τ3 normal diffusion sets
in, σ 2 = 2D′t ′ + o(t ′) at τ3 � t ′ → ∞.

The whole curve σ 2(t ′) differs insignificantly from σ 2(t ′)
in constant driving setup if the driving frequency ω < ω3 ≡
2π/τ3. This σ 2(t ′) dependence is modified at higher frequen-
cies of the external driving (in a similar way to the behavior
discussed in Secs. III A and III B at weaker driving). For ω ∈
(ω3; ω2) the dispersionless regime is interrupted after about
one period of external force, after which time approximately
linear dependence (if averaged over times ∼2π/ω) sets in,
〈dσ 2/dt ′〉t ′ = 2D′, D′ equal to its asymptotic (at t ′ → ∞)
value. At yet higher driving frequencies, ω > ω2, the dis-
persionless regime is not realized at all; normal diffusion
sets in right after the prematurely interrupted interval of
superdiffusion.

Similarly to the previous sections, the described above de-
pendence of ln σ 2 on ln t ′ can be schematized by the following
continuous piecewise linear approximation (meaningful not
too close to switching time points τ1–3):

ln
σ 2

σ 2
0

=

⎧⎪⎨
⎪⎩

≈ 0 at t ′ < τ1

α ln(t ′/τ1) at t ′ ∈ (τ1; τ2,ω)
α ln(τ2,ω/τ1) at t ′ ∈ (τ2,ω; τ3,ω)
α ln(τ2,ω/τ1) + ln(t ′/τ3,ω) at t ′ > τ3,ω

.

(17)
Here τ3,ω = min(τ3,τ ), τ2,ω = min(τ2,τ ); τ > τ1 is assumed.
As before, D(ω) can be found from this, showing the same
power-law decay as in Eq. (16) at ω > ω2, and an additional,
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FIG. 9. Dependence of the dimensionless diffusivity D′ on the
driving frequency, at T † = 0.129 (triangles) and 0.258 (circles). The
dashed lines show approximately linear growth at ω ∈ (ω2; ω3).

linearly growing with ω feature at intermediate frequencies:

D(ω)

D(0)
=

⎧⎨
⎩

1 at ω < ω3

ω/ω3 at ω ∈ (ω3; ω2)
(ω/ω2)1−αω2/ω3 at ω > ω2

. (18)

Simulation results for D(ω) are shown in Fig. 9 for two
temperatures. They indeed show the features suggested in
Eq. (18). At high frequencies, ω > ω2, the superdiffusion
phase switches to normal diffusion earlier than at τ2, at time
∼τ = 2π/ω. This behavior is the same as for the driving
amplitude in regions I and II. Thus in the same manner the
diffusivity grows as ω decreases, as the longer interval (till t ′ ≈
τ ) of superdiffusive dispersion growth is used at the driving
period τ getting longer. However at smaller frequencies, ω3 <

ω < ω2, it is the dispersionless phase that gets interrupted
prematurely (i.e., it is not realized in full, till τ3, as it would have
at ω = 0), so the earlier such a switch occurs (i.e., the shorter
the τ ), the larger the diffusivity obtained in the late-time normal
diffusion regime. This explains the growth of D(ω) with ω

at ω ∈ (ω3; ω2). The maximum in D(ω) is thus observed, at
ωmax ≈ ω2.

This differs from monotonically decreasing D(ω) in regions
I and II. Such a nonmonotonic dependence D(ω) was observed
in [30,31]; the driving studied was sinusoidal in time, its am-
plitude (indeed) corresponded to region III in the terminology
of this work.

ωmax together with 2π/τ2 increase with the temperature.
The maximal value of the diffusivity (achieved at ωmax) in-
creases as the temperature decreases, due to the dispersionless
phase duration τ3 − τ2 growing fast at temperature decreasing.
And so does D(ω) at a given ω near ω2 in a limited range
of temperatures. So abnormal temperature dependence of the
diffusivity (TAD) is realized in the intermediate region of
the driving frequencies around ω2. The temperature depen-
dence of the diffusivity is studied in more detail in Sec. IV
below.

D. Diffusivity at high driving frequency ω

As the simulation results suggest, the power-law decay
of D(ω) at large ω’s (Figs. 3, 6, and 9) does not hold at

FIG. 10. Evolution of the diffusivity and the kinetic temperature
for high and small frequencies of the driving, ω = 2 and 10−2.
Fe/F0 = 0.06. Note that time normalized to one driving period τ

(rather than to T0 as in the previous t-dependence graphs) is shown
along the abscissa axis.

frequencies that are too high, above ∼1/10th of the frequency
of small oscillations at the lattice potential minima. This is due
to the diffusion process becoming markedly nonequilibrium.
The interval π/ω between Ft (t) sign switching is too short
for N (V ; t) to relax to its equilibrium form (4) by the end of
each driving half period. The distribution function in velocities
differs significantly from such at constant driving at all times; a
description in terms of the velocity potential W (V ) is no longer
useful.

To analyze this we introduce kinetic temperature T ∗ =
m〈�v2〉/U0 (i.e., made dimensionless with the same multiplier
kB/U0 as T †), and study its evolution at different ω’s; Fig. 10,
bottom. At low frequency, T ∗ does not change (only shows
random noise) after one period τ = 2π/ω of the driving. At
larger ω = 2 regular oscillations in T ∗ are observed at all times,
with amplitude of order 5% of the average T ∗ value. That
average is about 10% higher than the average T ∗ at ω = 10−2.
T ∗ averaged over the driving oscillation period grows for about
t ′st ≈ 7τ until it reaches its stationary value.

Together with T ∗, σ 2(t ′) also shows transient behavior at
t ′ < 7τ . We illustrate this in the top graphs in Fig. 10, by
plotting

D∗(t ′) = [σ 2(t ′ + τ ) − σ 2(t ′)]/(2τ ). (19)

In settled “normal diffusion” regime this quantity must coin-
cide (in average over the driving period of duration τ ) with
the diffusivity, as in such a regime theoretically σ 2(t + nτ ) =
σ 2(t) + nσ 2(τ ) for n ∈ N.

These results in part mean that the rule of superdiffusion
or dispersionless phase (however these are modified in the
high-frequency regime) terminating and turning into normal
diffusion after one period of the driving no longer applies at
high driving frequencies. This leads to the D(ω) derivation
based on approximations Eqs. (14) and (17) progressively
less accurate at higher ω’s, the power-law decay first slowing
down, and then going into a completely different regime at ω

approaching 2π .
At ω > 2π the diffusivity tends to the diffusivity of particles

in the lattice periodic potential in the absence of extra driving
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Ft (t). Such an asymptote is shown by the horizontal dot-dashed
line in Fig. 6.

IV. DEPENDENCE OF DIFFUSIVITY ON TEMPERATURE
AT FIXED DRIVING FREQUENCY

Having studied how the temperature behavior of diffusion
changes at gradual driving frequency increase, here we in-
vestigate in more detail how the diffusivity changes with the
temperature at fixed frequency. Besides theoretical importance,
the results are of interest to experimentalists. Oftentimes
changing the frequency in the system is problematic, while
changing the temperatures is simpler; so the findings in this
section are more straightforward to test.

The left part of Fig. 11 shows how the diffusivity changes
with T † at fixed ω = 10−2. For the driving amplitude in
region I (filled circles in Fig. 11) the diffusivity monotonically
grows with the temperature, this (normal) behavior agreeing
with such at constant driving [22]. For Fe in regions II and
III TAD is observed, as already noted in Secs. III B and
III C. TAD is confined to limited (from below) temperature
intervals, contrary to the TAD behavior observed in [22]
for constant driving. In [22] the diffusivity was numerically
checked growing (only in region II at ω = 0) at temperature de-
creasing down to T † = 0.097. Such a behavior was understood
theoretically, dependence D ∝ exp[E/(kBT )] was predicted at
low temperatures going all the way down to 0, and agreed well
with simulation results.

In the current setup with periodic driving, similar tempera-
ture dependence is observed too,

D ∝ exp(ε1/T †), ε1 > 0, (20)

but only above certain temperature. The growth slows down
as the temperature keeps decreasing. D reaches maximum
Dmax(Tmax) at certain Tmax, and starts decreasing with further
decrease in T . The behavior at lower temperatures is well

FIG. 11. Dimensionless diffusivity vs 1/T at left: ω = 10−2,
force amplitudes Fe/F0 = 0 (squares, and linear fit), 0.06 (circles),
0.095 (diamonds), 0.25 (triangles); right: Fe/F0 = 0.095, top to
bottom, ω = 0 (squares), 10−3 (triangles), 10−2 (diamonds), 3 × 10−2

(circles), 10−1 (pluses).

approximated by

D ∝ exp(−ε2/T †), ε2 > 0. (21)

In the absence of driving we observe ε2 = 1 (corresponding
dimensionful quantity E2 = U0)—classical Arrhenius temper-
ature behavior of the diffusivity. ε2 decreases with Fe, whereas
ε1 increases. Tmax and Dmax increase with Fe as well.

The temperature behavior of the diffusivity can be under-
stood from its relation, Eqs. (15)–(17), with times τ1–3 charac-
terizing transient diffusion regimes of the system. Considered
at fixed ω this connects the temperature dependence of the
diffusivity to the τ1−3(T ) dependence in a graphic way, Fig. 12.
τ1–3(T ) may be found by studying the particle dispersion
evolution with time at different T and constant in time driving
Fe. The temperature dependence is different for Fe in regions
I–III.

For driving Fe in region I, τ1 (the time at which superdif-
fusion starts, about the potential well escape time) increases
with the temperature decreasing. τspd = τ2 − τ1 at the same
time decreases. This is seen to result in the diffusivity growing
with the temperature, agreeing with the results shown in the
left (ω = 10−2) part of Fig. 11.

In region II τ1 increases with the temperature decreasing
as well. τspd however also increases with the temperature
decreasing (middle graph in Fig. 12, curves 3–5)—contrary
to the behavior at Fe in region I. As a result TAD is realized
at these temperatures. Graphically, in Fig. 12 (the middle
plot) curves corresponding to the higher temperatures are
above those for the lower temperatures at early times, in the
superdiffusion regime, the same situation as for Fe in region I.
However due to the shorter τspd they transition into the normal
(growing with time slower) diffusion regime earlier than the
curves for lower T . Consequently σ 2 becomes smaller at late
enough times for the higher temperature system, translating to
the smaller diffusivity.

At temperature Tmax(F,ω) (T † ≈ 0.194 in this graph) τ2

becomes equal to τ = 2π/ω, the period of the driving. At
this temperature the maximal diffusivity is achieved, corre-
sponding to the longest actual superdiffusion regime time
span at the given driving frequency. TAD is only realized
at the temperatures above Tmax(Fe,ω). Indeed, even though
τspd (superdiffusion duration at constant driving) still grows at
further temperature decrease together with τ2, in the periodic
driving setup superdiffusion effectively ends earlier, at t ′ ≈ τ .
It is this superdiffusion interruption at t ′ ≈ τ that makes D(T )
behavior at lower temperatures diverge in the periodic driving
setup from that at constant driving. In the constant driving
problem, based on the same logic, TAD must be realized all
the way down to T = 0; in agreement with conclusions in [22].

It is clear from this argument that there is no uniform
convergence with ω of D(T )|ω curves to D(T )|F=const. As
ω gets smaller D(T )|ω does get close to the limit D(T )|ω=0

curve on a longer T interval, down to progressively lower
temperatures. However at any ω there exists TTAD(ω) such
that the normal temperature dependence of the diffusivity is
restored at T < TTAD(ω). This nonuniform convergence is
shown in the right plot in Fig. 11.

The same behavior is observed in region III. The maximal
diffusivity is achieved at Tmax(Fe,ω) corresponding to the
longest superdiffusion regime duration at the given ω. The
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FIG. 12. Dispersion of the particles as a function of time at different temperatures. Force amplitudes in regions I–III. ω = 10−2.

lowest temperature at which TAD is realized is the one at
which τ2 reaches the period of external force τ (more precisely,
the time of superdiffusion interruption at a given ω). At
this temperature ∂D/∂T |{Fe,ω}=const crosses zero value. The
interval of temperatures, in which TAD is observed, is wider
than that at the driving in region II, due to the presence of
dispersionless phase (curve 4 in the right plot in Fig. 12).
Experimentally it is simpler to observe TAD at larger Fe, at
which within the period of Ft (t) the superdiffusion regime
duration is used to a larger extent, and the temperature interval
of TAD is thus wider.

Presented results on the diffusion under external driving
can be summarized by the following schematics, Fig. 13.
Force amplitudes fall into three regions, I–III. In region I the
diffusivity grows with the temperature increasing. In regions
II and III the dependence D(T ) is nonmonotonic; it shows
a maximum at certain Tmax. Below Tmax the temperature
dependence of the diffusivity is normal, ∂D/∂T > 0. The
temperature interval of TAD exists above Tmax, ∂D/∂T < 0.

In the driving frequency dependence of the diffusivity, on
the other hand, it is regions I and II that look alike: at the
frequency decreasing from about 0.3 × 2π (in dimensionless
units) the diffusivity grows monotonically, getting to a flat
region at ω < ω2, in which it virtually reaches its limiting
D(ω = 0) value. In region III the D(ω) curve passes through
a maximum, near ω = ω2 ≡ 2π/τ2, corresponding to the
termination time τ2 of the superdiffusion regime at constant
driving. At the frequencies getting smaller, the driving period
contains a progressively longer interval of the “would-be”
(in the constant driving problem) dispersionless and (at yet
smaller frequencies) normal-diffusion time interval, resulting
in D decreasing at such further ω decrease.

V. SINUSOIDAL IN TIME EXTERNAL DRIVING

Here we show the frequency dependence of the diffusivity
for sinusoidal in time external driving. We observe the same
features in D(ω) as we saw for PCP driving. The main

FIG. 13. Features of the dependence of the diffusivity on the driving frequency at fixed temperature (top) and on the inverse temperature at
fixed frequency (bottom), for Fe in regions I–III.
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FIG. 14. D′(ω) for force amplitude in regions I–III. T † = 0.258. Sinusoidal in time (circles) and PCP (squares) driving.

conclusions of the sections above thus appear not to depend
critically on the specific form of time dependence of the
(smooth enough, symmetric) driving.

Figure 14 presents a comparison between diffusivities at
sinusoidal in time and PCP driving. At small frequencies the
diffusivity stays close to its value at ω = 0. In regions I and II of
the external driving amplitude D(ω) starts decaying according
to a power law at ω > 2π/τ2, τ2 being the superdiffusion
regime termination time at constant external driving with the
same amplitude Fe. In region III D(ω) grows linearly with
ω at intermediate ω’s, reaches a maximum, then shows a
power-law decay at larger frequencies. For all force amplitudes
the power-law decay switches to more complex behavior at ω

reaching a value of about 2π/10.
The presence of periodic driving of any form of time

dependence leads to significant enhancement in the diffusivity.
This enhancement is somewhat smaller for sinusoidal driving
in regions I and II (which can be understood, as at the
same Fe the average over period driving 〈|Ft |〉t is smaller for
sinusoidal than for PCP driving). In region III the maximum
in diffusivity is achieved at smaller ωmax; the value of Dmax

is larger than such a maximal diffusivity at corresponding
ωmax,PCP under PCP driving with the same amplitude Fe. This
can be understood from the same argument, as in region III
the diffusivity decreases with the driving increasing, all other
parameters kept constant.

VI. CONCLUSIONS AND DISCUSSION

We investigated enhancement of diffusion in 1D space-
periodic underdamped systems by external time-periodic
fields. We showed that the diffusion can be enhanced by orders
of magnitude at a certain choice of temperatures T , driving
amplitudes Fe, and frequencies ω. Three regions of Fe exist,
I–III, in which dependencies of diffusivity D on T and ω differ
qualitatively.

At all Fe there is an interval of small frequencies, in
which D depends only weakly on the frequency, approaching
the limiting value D(ω = 0). This value coincides with D

at constant bias force with the same value Fe in the case
of piecewise constant in time-periodic (PCP) driving, the
form Ft (t) of the driving we focused on in this study. At
larger frequencies, from ω2 = 2π/τ2 corresponding to the
superdiffusion regime termination time τ2 to about 2π/10,
D(�) decays with � according to a power law. The exponent
of this decay is related to the superdiffusion regime exponent

α. At yet larger frequencies nonequilibrium effects slow down
the power-law decay of D(�). After a local maximum in D(�)
near � ≈ 0.8�0, D tends to its asymptotic value coinciding
with the diffusivity in the absence of external driving.

At small driving amplitudes, in regions I and II, D(�)
decreases monotonically with frequency � from its value at
constant driving, all the way till the nonequilibrium effects
become critical, at � ≈ 0.3�0. At stronger driving, region III,
D(ω) is nonmonotonic, a maximum is reached at ωmax ≈ ω2.
D(ω) grows monotonically on ω ∈ (0; ωmax), this growth is
approximately linear on a certain interval to the left of ω2.

We studied the temperature dependence of the diffusivity
at fixed ω. Contrary to the constant driving problem [22] the
diffusivity increases with the temperature for all Fe when the
temperature is below a certain frequency-dependent thresh-
old value. Limited temperature intervals exist for the force
amplitudes in regions II and III, in which the diffusivity
decreases with the temperature [temperature-abnormal diffu-
sivity (TAD)].

The physical reason behind the strong diffusivity enhance-
ment is emergence of two populations of particles under the
action of external force, locked and running ones. At optimal
Fe and T the number of particles in the two populations is
comparable, long flights of the running particles relative to
the locked population take place with significant probability,
resulting in giant enhancement of diffusion.

For comparison we studied diffusivity under sinusoidal
in time driving. We saw that the same features in D(ω) are
observed in the three regions of force amplitudes as in the PCP
driving case. We thus conjecture that the qualitative features
of D(ω,T ,Fe) behavior are insensitive to specific functional
dependence of the (symmetric, smooth enough in t) external
force on time.

Periodic driving may be applied in many ways in a
number of spatially periodic underdamped physical systems.
The region of TAD, enhanced diffusion with abnormal tem-
perature dependence, must exist for such systems. Diffu-
sion of atoms and clusters on solid body surface under
the action of microwave radiation is one natural arena for
experimental verification and application of the results of
the present study. Characteristic oscillation decay time of
adatoms varies typically between 101 and 103 oscillation
periods [37]. With the parameters used as an example in the
present paper, U0 = 80 meV, a = 2 Å (Sec. II A; typical for
hydrogen adatoms migrating on a platinum surface), relevant
temperatures are T = T †U0/kB ∼ 280 K (for T † chosen at 0.3
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value), readily accessible experimentally. �0/(2π ) = 1/T0 =
(2mH/U0)−1/2a−1 ≈ 1013 s−1 [cf. Eq. (10)]. For the value
of γ ′ = 0.2 adopted in this paper, region III corresponds to
Fe/F0 � 0.12, while region II starts at Fe ≈ 0.08F0. Such
driving amplitudes can be safely realized and explored, without
causing noticeable desorption.

TAD must be observed for the driving frequencies ranging
from zero up to approximately �2 = ω2/T0, of order 1/100th
of the oscillation frequency of the adsorbate on the substrate at
chosen γ ′ = 0.2, i.e., ∼1011 s−1. The upper temperature bound
of TAD depends on the potential well depth, and varies for typi-
cal adsorbates and substrates in the (100 K; 2000 K) range [38].

One setup to study TAD is in propagation of magnetic
particles on nonmagnetic substrate, acted upon with electro-
magnetic fields. Abnormal diffusion enhancement could be
manifested in, e.g., enhanced growth of islands of a new phase
at decreasing temperatures.

By drastically enhancing diffusivity in specific direction
(along the applied periodic driving) one can manufacture struc-
tures of desired geometry on the surface of semiconductors,
and on graphene [39,40]. Similarly, periodic driving can be ap-
plied in buffer-layer-assisted growth (BLAG) technique [41],
in which atoms are initially deposited onto a buffer layer of
inert gas on the designated substrate, providing means to create
metallic nanowires of designed length and cross section. The
same approach may be exercised to affect diffusive mobility
of atoms on nanotubes [42] and graphene nanoribbons [43].

Volume diffusion of interstitial atoms and molecules [1,44]
is another stage for observing TAD. Ultrasound may be em-
ployed for the driving [27], as TAD is manifested at arbitrarily

low frequency (at the driving amplitude in region II). This
way one can, for instance, stimulate hydrogen desorption in
hydrogen energetics applications [45].

Systems that have become traditional for experimental
testing of results of theoretical investigations into variations of
Eq. (1), such as Josephson tunnel junctions or diffusion of cold
atoms in optical lattices [46], also provide a good playground
for verifying the findings of the present work experimentally.
On the other hand, findings of the present work can provide
useful additional diagnostics for more controversial spatially
periodic systems. For instance, complex electron dynamics in
arrays of quantum dots [47] results in a yet poorly understood
hysteresis loop in current-voltage diagrams, associated with
the transition between the insulating and conducting states.
Studying the response of the system with the time-periodic
source drain bias used might shed light on underlying physics
and its characteristic time scales.

Once verified experimentally, the effect of abnormal diffu-
sion enhancement can find applications in a number of new
technologies: in sorting of particles, manufacturing surface
structures with required properties, controlling penetration
of particles through biological and artificial membranes, in
memristors, devices with charge density waves, etc.
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