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We compute two- and three-point functions at criticality for the three-dimensional Ising universality class. To
this end, we simulate the improved Blume-Capel model at the critical temperature on lattices of a linear size up
to L = 1600. As a check, also simulations of the spin- 1

2 Ising model are performed. We find fσσε = 1.051(1) and
fεεε = 1.533(5) for operator product expansion coefficients. These results are consistent with but less precise than
those recently obtained by using the bootstrap method. An important ingredient in our simulations is a variance
reduced estimator of N -point functions. Finite size corrections vanish with L−�ε , where L is the linear size of
the lattice and �ε is the scaling dimension of the leading Z2-even scalar ε.
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I. INTRODUCTION

Recently, we have seen enormous progress in the un-
derstanding of critical phenomena in three dimensions by
using the conformal bootstrap approach [1–5], to give only
a few references. For a recent lecture note on the subject,
see [6]. In particular, precise numbers for scaling dimensions
and operator product expansion (OPE) coefficients for the
universality class of the three-dimensional Ising model were
obtained. For a very detailed account, see Ref. [5].

The functional form of two-point functions of primary
operators is fixed by conformal invariance

〈O1(x1)O2(x2)〉 = C1δ�1,�2

|x1 − x2|2�1
, (1)

where Oi is the operator taken at the site xi and �i is its
scaling dimension. The scaling dimensions of the leading
Z2-odd scalar σ and the leading Z2-even scalar ε for the three-
dimensional Ising universality class are �σ = 0.5181489(10)
and �ε = 1.412625(10), respectively [4,5]. The critical expo-
nents that are usually discussed in critical phenomena can be
deduced from these two scaling dimensions. Let us consider
two examples: The exponent η = d + 2 − 2yh = d + 2 −
2(d − �σ ) = 2�σ − d + 2 = 0.0362978(20) governs the de-
cay of the spin-spin correlation function at the critical point,
where yh is the renormalization group (RG) exponent related
to the external field and d is the dimension of the system.
The critical exponent of the correlation length is given by
ν = 1/yt = 1/(d − �ε) = 0.6299709(40), where yt is the RG
exponent related to the temperature. In Table 2 of [5] one finds
ω = �ε′ − 3 = 0.82968(23) for the exponent of the leading
correction. These results are by far more accurate than previous
ones obtained by other methods. For example, using Monte
Carlo simulations of the improved Blume-Capel model ν =
0.63002(10), η = 0.03627(10), and ω = 0.832(6) had been
obtained [7]. Improved means that leading corrections to
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scaling are substantially reduced (see Sec. II below). Results
obtained from high-temperature series expansions (see, for
example, Refs. [8,9]) are slightly less accurate than those
from Monte Carlo simulations. Field theoretic methods (see,
for example, Ref. [10]) give even less precise estimates. In
our numerical study, corrections caused by the breaking of
the rotational symmetry are an important issue. These are
governed by the correction exponent ωNR . In Table I of
Ref. [8] the authors quote ωNR = 2.0208(12), which is in
reasonable agreement with ωNR = 2.022665(28) that follows
from � = 5.022665(28) for angular momentum l = 4 given
in Table 2 of Ref. [5]. In the case of improved models,
these corrections should be the dominant ones since following
Ref. [5] �ε′′ = 6.8956(43) corresponding to ω2 = 3.8956(43).
Note that this finding contradicts ω2 = 1.67(11) obtained in
[11]. For a discussion of various results for ω2 given in the
literature, see Sec. 4.2 of [1].

There is a very rich literature on critical phenomena, which
we can not recapitulate here. We refer the reader to reviews of
the subject [12–15].

Now, let us turn to the OPE coefficients. Also, the form
of three-point functions is fixed by conformal invariance.
Normalizing the operators such that Ci = 1 [Eq. (1)], one gets
[16]

〈O1(x1)O2(x2)O3(x3)〉
= f123

|x1 − x2|�1+�2−�3 |x2 − x3|�2+�3−�1 |x3 − x1|�3+�1−�2
,

(2)

where the OPE coefficients f123 depend on the universality
class. Using the conformal bootstrap method, highly accurate
results for OPE coefficients of the Ising universality class in
three dimensions were obtained [4,5]:

fσσε = 1.0518537(41) (3)

and

fεεε = 1.532435(19). (4)
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TABLE I. Statistics of our simulations of the Blume-Capel model
at D = 0.655 and β = 0.387721735. For a discussion, see the text.

L ns = 2 ns = 4

400 239510 74270
600 93150 17810
800 39920 15670
1200 10300 1800
1600 4190 1630

Until recently, there had been no results obtained by other
methods that could be compared with Eqs. (3) and (4). In
particular, in Monte Carlo simulations of lattice models, it
is unclear how an infinite volume at the critical point could
be well approximated. Furthermore, one should notice that
the conformal invariance is broken by the lattice. Hence, on
the lattice, Eqs. (1) and (2) are affected by corrections that
decrease with increasing distance between the points.

In Ref. [17], the requirement of an infinite volume was
circumvented by studying two-point correlators at the critical
temperature applying a finite external field h. The OPE coef-
ficients are obtained from the h dependence of the two-point
correlators. For details of the method, we refer the reader to
Ref. [17]. Simulating the Ising model on a simple cubic lattice,
the authors find

fσσε = 1.07(3), fεεε = 1.45(30). (5)

These estimates were improved by using a trapping potential
in Ref. [18]:

fσσε = 1.051(3), fεεε = 1.32(15). (6)

Very recently, Herdeiro [19] computed two- and three-point
functions for the Ising model on the simple cubic lattice at the
critical point, using the so called UV-sampler method. The
method had been tested at the example of the Ising model
on the square lattice [20]. Fitting his data for the three-point
function with a one parameter Ansatz, fixing �σ and �ε to
their bootstrap values, Herdeiro gets

fσσε = 1.05037(152)[398], fεεε = 1.5508(62)[176]. (7)

The numbers are taken from Table 1 of Ref. [20]. For the
meaning of the error bars, see Ref. [20].

Here, we shall follow a different strategy. We simulated
the improved Blume-Capel model at the critical point on a
simple cubic lattice with periodic boundary conditions. To keep
finite size effects small, we simulated lattices of a linear size
up to L = 1600. Furthermore, an extrapolation in the lattice
size is performed. It turns out that finite size effects at the
critical point are ∝L−�ε for all quantities that we study here.
We employ variance reduction as proposed in Refs. [21,22].
This is in particular helpful in the case of the εεε function.

The outline of the paper is the following: In the next
section we recall the definition of the Blume-Capel model
and summarize briefly the results of Ref. [7]. Then, we define
the two- and three-point functions that we measure. Then,
in Sec. IV we discuss the finite size scaling behavior of the
quantities that we study. In Sec. V we discuss the application
of the variance reduction method to our problem. Next, we

discuss the simulations that we perform. It follows the analysis
of the data. Finally, we conclude and give an outlook.

II. MODEL

As in previous work, we study the Blume-Capel model on
the simple cubic lattice. For a vanishing external field, it is
defined by the reduced Hamiltonian

H = −β
∑
〈xy〉

sxsy + D
∑

x

s2
x , (8)

where the spin might assume the values sx ∈ {−1,0,1}. x =
(x(0),x(1),x(2)) denotes a site on the simple cubic lattice, where
x(i) ∈ {0,1, . . . ,Li − 1}, and 〈xy〉 denotes a pair of nearest
neighbors on the lattice. In this study, we consider L0 = L1 =
L2 = L throughout. The inverse temperature is denoted byβ =
1/kBT . The partition function is given by Z = ∑

{s} exp(−H ),
where the sum runs over all spin configurations. The parameter
D controls the density of vacancies sx = 0. In the limit
D → −∞, vacancies are completely suppressed and hence
the spin- 1

2 Ising model is recovered.
In d � 2 dimensions, the model undergoes a continuous

phase transition for −∞ � D < Dtri at a βc that depends on
D, while for D > Dtri the model undergoes a first order phase
transition, where Dtri = 2.0313(4) for d = 3 (see Ref. [23]).
Numerically, using Monte Carlo simulations it has been shown
that there is a point (D∗,βc(D∗)) on the line of second order
phase transitions, where the amplitude of leading corrections
to scaling vanishes. We refer to the Blume-Capel model at
values of D that are good numerical approximations of D∗ as
improved Blume-Capel model. For a more general discussion
of improved models, see for example Sec. 3.5 of [24] or
Sec. 2.3.1 of [15]. In [7] we simulated the model at D = 0.655
close to βc on lattices of a linear size up to L = 360. We
obtained βc(0.655) = 0.387721735(25) and D∗ = 0.656(20).
The amplitude of leading corrections to scaling at D = 0.655
is at least by a factor of 30 smaller than for the spin- 1

2 Ising
model.

Here, we simulate the Blume-Capel model at D = 0.655.
Most of our simulations are performed at β = 0.387721735. In
order to check the sensitivity of the results on β, we performed
in addition a few simulations at β = 0.38772 and 0.38772347.
In order to check the effect of leading corrections to scaling,
we also simulated the spin- 1

2 Ising model on the simple cubic
lattice at β = 0.22165462. Note that in Eq. (A2) of Ref. [25]
we quote βc = 0.22165462(2).

III. OBSERVABLES

On the lattice we identify

ε(x) = s2
x − 〈

s2
x

〉 + · · · , (9)

σ (x) = sx + · · · , (10)

where in our numerical study 〈s2
x 〉 is replaced by its estimate

obtained from the given simulation at finite L. Corrections are
caused by fields with the same symmetry properties but higher
dimensions.

In the case of the Ising model, Eq. (9) makes no sense. In
the literature sxsy , where x and y are nearest neighbors, is used
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instead of s2
x . Here, motivated by Eq. (33) below, we used S2

x ,
where Sx = ∑

y.nn.x sy , where y.nn.x means that y is a nearest
neighbor of x.

In order to keep the study tractable, we have to single out
a few directions for the displacements between the points. In
the case of the two-point functions, we consider displacements
along the axes

x2 − x1 = (j,0,0), x2 − x1 = (0,j,0), x2 − x1 = (0,0,j ),

(11)

the face diagonals

x2 − x1 = (j,j,0), x2 − x1 = (j,0,j ), x2 − x1 = (0,j,j ),

x2 − x1 = (j, − j,0), x2 − x1 = (j,0, − j ),

x2 − x1 = (0,j, − j ), (12)

and space diagonals

x2 − x1 = (j,j,j ), x2 − x1 = (j,j, − j ),

x2 − x1 = (j, − j,j ), x2 − x1 = (j, − j, − j ), (13)

where j is an integer. In the following, we shall indicate
these three directions by axis (a), face diagonal (f ), and
space diagonal (d), respectively. In our simulation program
we summed over all choices that are related by symmetry to
reduce the statistical error. In particular, we summed over all
possible choices of x1. In the following, we shall denote the
two-point function by gr,O1,O2 (x), where r ∈ {a,f,d} gives the
direction and x = |x1 − x2| is the distance between the two
points.

In the discussion of our numerical results, we are a bit
sloppy with the notation and use g also for the numerical

estimates obtained from the simulation. Hence, there might be
also a dependence on the linear lattice size that is not indicated
explicitly. In the case of the three-point functions

Gr,O1,O2,O3 (x) = 〈O1(x1)O2(x2)O3(x3)〉, (14)

we study the two choices O1 = O2 = σ and O3 = ε and
O1 = O2 = O3 = ε. Furthermore, we consider two different
geometries that are indicated by r . For r = f the largest
displacement is along a face diagonal. For example,

x3 − x1 = (j,0,0), x3 − x2 = (0,j,0). (15)

Our second choice is indicated by r = d and the largest
displacement is along a space diagonal. For example,

x3 − x1 = (j,0,0), x3 − x2 = (0,j,j ), (16)

where j is integer and also here we sum in our simulation over
all choices that are related by symmetry to reduce the statistical
error. The argument x of G gives the largest distance between
two points x = |x1 − x2|.

In order to eliminate the constants Ci [Eq. (1)] and the
power law behavior from the three-point functions, we directly
normalized our estimates of the three-point functions by the
corresponding ones of two-point functions. For the direction
r = f we get

fσσε 
 2−�ε/2

〈
sx1sx2s

2
x3

〉 − 〈
sx1sx2

〉〈s2〉〈
sx1sx2

〉[〈
s2
x1

s2
x3

〉 − 〈s2〉2
]1/2 (17)

and

fεεε 

〈
s2
x1

s2
x2

s2
x3

〉 − [〈
s2
x1

s2
x2

〉 + 〈
s2
x1

s2
x3

〉 + 〈
s2
x2

s2
x3

〉]〈s2〉 + 2〈s2〉3

[〈
s2
x1

s2
x3

〉 − 〈s2〉2
] [〈

s2
x1

s2
x2

〉 − 〈s2〉2
]1/2 , (18)

where we used that |x1 − x3| = |x1 − x2|. For the direction r = d we get

fσσε 
 3−�ε/2

〈
sx1sx2s

2
x3

〉 − 〈sx1sx2〉〈s2〉
〈sx1sx2〉

[〈
s2
x2

s2
x3

〉 − 〈s2〉2
]1/2 (19)

and

fεεε 

〈
s2
x1

s2
x2

s2
x3

〉 − [〈
s2
x1

s2
x2

〉 + 〈
s2
x1

s2
x3

〉 + 〈
s2
x2

s2
x3

〉]〈s2〉 + 2〈s2〉3

[〈
s2
x1

s2
x3

〉 − 〈s2〉2]1/2
[〈
s2
x2

s2
x3

〉 − 〈s2〉2
]1/2 [〈

s2
x1

s2
x2

〉 − 〈s2〉2
]1/2 . (20)

IV. FINITE SIZE EFFECTS

Compared with the linear size L of the lattice, the distances
that we consider for our two- and three-point functions are
small. In that respect they can be viewed as local operators in
the even channel such as the energy density. The free energy
density on a finite lattice, for a vanishing external field behaves
as [12–15]

f (β,L) = L−d h(L1/ν t) + fns(t), (21)

where t = (βc − β)/βc is the reduced temperature, h and fns

are analytic functions. Taking the derivative with respect to β

we arrive at

E(β,L) = L−d+1/ν h̃(L1/ν t) + Ens(t), (22)

where h̃ = −h′/βc. Setting β = βc we get

E(βc,L) = L−d+1/ν h̃(0) + Ens(0), (23)

where d − 1/ν = d − yt = �ε .
In the analysis of our data, we assume that the finite size

scaling behavior of the two- and three-point functions is given
by Eq. (23), where, of course, the values of the constants
depend on the quantity that is considered. Given the huge
amount of data, we abstain from sophisticated fitting with

012119-3



MARTIN HASENBUSCH PHYSICAL REVIEW E 97, 012119 (2018)

Ansätze motivated by Eq. (23). Instead, we consider pairs of
linear lattice sizes L1 = L, L2 = 2L and compute

Gex(2L) := G(2L) + G(2L) − G(L)

2�ε − 1
, (24)

where G is the quantity under consideration. Equation (24) is
derived by inserting L1 and L2 into Eq. (23) and solving the
system of two equations with respect to the nonsingular (ns)
part.

To simplify the analysis, in the case of Eqs. (17)–(20) we
computed the estimates of fσσε and fεεε using the two- and
three-point functions obtained for given lattice sizes L. These
estimates are then plugged into Eq. (24) to get the results
for L → ∞. The validity of the procedure is checked by
comparing the results obtained for different linear lattice sizes
L. See Fig. 6 below.

V. VARIANCE REDUCTION

Here, we discuss the construction of variance reduced
estimators of N -point functions along the lines of Refs. [21,22]
in a general setting. Let us consider the N -point function

〈O1(x1)O2(x2) . . . ON (xN )〉

=
∫

D[φ] exp (−H [φ]) O1(x1)O2(x2) . . .ON (xN )∫
D[φ] exp (−H [φ])

, (25)

where [φ] denotes the collection of all fields. In the case of
the Blume-Capel model that we simulate here, it is actually
the collection of the spins sx and the integral becomes the sum
over all configurations. Let us consider subsets xi ∈ Bi ⊂ �

of sites for each i, where � is the set of all sites of the lattice.
Typically, one takesxk ∈ Bi if ||xk − xi || � lmax for some norm
|| . . . ||. The crucial requirement is that for any pair i �= j , no
pair of sites xk ∈ Bi and xl ∈ Bj exists such that xk and xl are
nearest neighbors. Note that we consider a nearest neighbor
interaction here. For interactions over a larger distance, the
plane of division has to be thickened correspondingly.

In Fig. 1 we sketch an implementation for a square lattice
and three points. For simplicity, in the sketch as well as in
our simulations, we use the Chebyshev distance ||xi − xj || =
maxα|x(α)

i − x
(α)
j |. Let us denote the collection of fields living

on Bi by [φ]i and the collection of fields that are not associated
with any of the blocks by [φ]R . The reduced Hamiltonian can
be written as a sum, where one summand depends only on
the fields on the remainder and the others on the fields on the
remainder and on one of the blocks:

H [φ] = hR([φ]R) +
∑

i

hi([φ]i ,[φ]R). (26)

This decomposition allows us to rewrite the expectation value
in the following way:

〈O1(x1)O2(x2) . . . ON (xN )〉 =
∫

D[φ]R exp[−hR([φ]R)]
∫

(
∏

i D[φ]i)(
∏

i exp[−hi([φ]i ,[φ]R)]) (
∏

i Oi(xi))∫
D[φ]R exp[−hR([φ]R)]

∫
(
∏

i D[φ]i)(
∏

i exp[−hi([φ]i ,[φ]R)])

=
∫

D[φ]R exp[−hR([φ]R)]
∏

i(
∫

D[φ]i exp[−hi([φ]i ,[φ]R)] Oi(xi))∫
D[φ]R exp[−hR([φ]R)]

∏
i(
∫

D[φ]i exp[−hi([φ]i ,[φ]R)])

=
∫

D[φ]R exp[−hR([φ]R)] (
∏

i zi([φ]R)) (
∏

i〈Oi(xi)〉i([φ]R))∫
D[φ]R exp[−hR([φ]R)]

∏
i zi([φ]R)

, (27)

where we define

zi([φ]R) =
∫

D[φ]i exp[−hi([φ]i ,[φ]R)] (28)

and

〈Oi(xi)〉i([φ]R) =
∫

D[φ]i exp[−hi([φ]i ,[φ]R)]Oi(xi)

zi([φ]R)
.

(29)

Note that the variance of
∏

i〈Oi(xi)〉i is smaller than that
of

∏
i Oi(xi) since degrees of freedom have been integrated

out. In our case, we can perform an exact summation over all
configurations if Bi is small. In particular, if Bi contains only
the site xi we can easily perform the summation over the three
possible values of si .

However, it is also advantageous to perform the integration
over the variables on the blocks Bi approximately by using
a Monte Carlo simulation. Let us denote the simulations
restricted to field variables on the blocks Bi by baby sim-
ulations. These baby simulations are started after the whole
system is equilibrated. After the baby simulations are finished,
updates on the whole system are performed. Then again baby
simulations are started. This process is iterated. During the
baby simulations, we perform nB measurements of Oi(xi) for

all i. Let us define

Oi(xi)γ = 1

nB

nB∑
α=1

Oi,γ,α(xi), (30)

where α labels the measurements that are performed for a
given configuration on the remainder. The configurations on
the remainder are labeled by γ . We generate nR configurations
on the remainder after equilibration. An estimate of theN -point
function is obtained by

O1(x1) O2(x2) . . .ON (xN )

= 1

nR

nR∑
γ=1

O1(x1)γO2(x2)γ . . .ON (xN )γ . (31)

Let us discuss the variance of
∏

i Oi(xi). The baby Monte Carlo
simulations are independent of each other. Therefore, actually
nN

B configurations are generated for the N -point function.
Hence, at least for small nb, we expect that the variance
of

∏
i Oi(xi) behaves as n−N

B . As nB further increases, the
variance of

∏
i〈Oi(xi)〉i is approached. Hence, the maximal

efficiency is reached at some finite nB that in general has to be
determined numerically.
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FIG. 1. Two-dimensional sketch of the decomposition of the
lattice into blocks and the remainder. The three points x1, x2, and x3

are represented by red squares. The blocks around these three points
are bordered by solid black lines. Lattice sites different from x1, x2,
or x3 are given by solid black circles.

VI. THE ALGORITHM AND OUR IMPLEMENTATION

As in our previous studies of the Blume-Capel model, for
example [26], we simulated the model by using a hybrid of
the local heat bath algorithm, the local Todo-Suwa algorithm
[27,28], and the single cluster algorithm [29]. The Todo-Suwa
algorithm is a local algorithm that does not fulfill detailed
balance but only balance. Since ergodicity can not be proved for
the Todo-Suwa algorithm, additional local heat bath updates
are needed to ensure ergodicity for the update scheme as a
whole. The advantage of the Todo-Suwa algorithm is that it
reduces autocorrelation times compared with the heat bath
algorithm.

A. Implementation

We used the SIMD-oriented Fast Mersenne Twister al-
gorithm [30] as random number generator. Our code is a
straightforward implementation of the algorithms in standard
C. We abstained from a parallelization of the algorithms since
in the case of the single cluster update, a good scaling of the
performance with the number of processes is hard to achieve
(see, for example, Ref. [31]). We stored the value of the spins
as character variable. For simplicity, we abstain from using a
more compact storage scheme, using for example two bits for
a spin only. With this setup, on the hardware that is available
to us, L = 1600 is about the largest linear lattice size that can
be simulated efficiently. In order to extrapolate in L and also
monitor the dependence of our results on the lattice size, we
performed simulations for the linear lattice sizes L = 400, 600,
800, 1200, and 1600.

A cycle of the update consists of one heat bath sweep
followed by ncl single cluster updates. Then, follow nts sweeps
using the Todo-Suwa algorithm. For each of these sweeps, ncl

single cluster updates are performed. Mostly, ncl is chosen such
that, very roughly, ncl times the average cluster size equals the

number of sites L3. For the range of lattice sizes studied here,
ncl = L is a reasonable choice. As we learned from previous
work, for example [7,25,26], the performance of the algorithm
does not depend sharply on the values of the parameters nts and
ncl . Also skipping the single cluster updates that follow the heat
bath sweep likely changes the performance by little. Therefore,
we abstained from a fine tuning of the update scheme.

Let us summarize an update cycle with the following
pseudo-C code:

heat bath sweep
for(icl=0;icl<ncl;icl++) single cluster
for(its=0;its<nts;its++)

{
Todo-Suwa sweep
for(icl=0;icl<ncl;icl++) single cluster
}

baby simulations for all blocks
measure N-point functions

We parallelized trivially by performing several independent
runs. The equilibration takes a significant amount of CPU time
for the larger lattices. Therefore, in the case of the linear lattice
sizes L = 800, 1200, and 1600, we first equilibrated a single
Markov chain. We started from a disordered configuration.
Since in the initial phase the simulation clusters are small, we
adapted the number of cluster updates for the first few update
cycles, such that the aggregate cluster size per local update
sweep is equal to the lattice volume or larger. After this initial
phase, we continued with a fixed number of single cluster up-
dates per local update sweep as discussed above. We performed
1000 complete update cycles to equilibrate the system. These
update cycles are characterized by nts = 3. Here, we only
measured a few quantities like the energy density and the
magnetization to monitor the equilibration. We stored the
final configuration to disk. Then, we started several runs
using this configuration as initial one and different seeds
for the random number generator. In these runs we used
nts = 9. Since the baby simulations discussed below take a
considerable amount of CPU time, we intend to essentially
eliminate the correlation between subsequent measurements
by using such a large number for nts . In the case of L = 800,
1200, and 1600, starting from the configuration written to
disk, we performed four update cycles to achieve a sufficient
decorrelation between the branches of our simulation before
measuring the N -point functions.

B. The baby Monte Carlos and the measurements

In our simulations we did not attempt to adjust the size of
the blocks to the distances between the points in the N -point
functions. Instead, we determined the N -point functions for
a certain range of distances for a given decomposition into
blocks.

In order to save CPU time, we determined sx and s2
x for a

subset of the lattice sites only. This subset is characterized
by x(i) = 0,ns,2ns, . . . ,L − ns . In our study we performed
simulations for the strides ns = 2 and 4. We used blocks around
these sites that are defined by y ∈ Bi if |y(α) − x

(α)
i | < ns

for α = 0, 1, and 2. This means that the linear size of these
blocks is lb = 3 and 7 for ns = 2 and 4, respectively. Before
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starting the baby simulations we copied the spins of the block
and its outer boundary to an auxiliary array. Since for our
choice nearest neighbor blocks overlap, we can not write all
the final configurations of the baby simulations back to the
main Markov chain. Only a subset with the larger stride 2ns

could be used to this end. However, for simplicity we refrain
to do so. At the end of the baby simulations, we only stored
the results sx and s2

x to compute the estimates of the N -point
functions. We computed the two- and three-point functions for
the distances j = 2ns , 3ns , . . . ,9ns . Note that for j = ns the
blocks overlap, and no valid result is obtained.

In the case of ns = 2, we performed nb sweeps over the
block using the Todo-Suwa algorithm. Note that in the case of
the baby simulations, ergodicity is not needed. In preliminary
simulations we varied nb. It turns out that the performance
maximum is not very sharp and depends on the type of
the N -point function and on the distance j . Based on these
experiments, we decided to use nb = 10 in our production runs.

We performed a measurement for the starting configuration
and after each Todo-Suwa sweep. We reduced the variance by
performing the sum over sx for fixed neighbors exactly:

s̃x =
∑

sx
exp

(
βsxSx − Ds2

x

)
sx∑

sx
exp

(
βsxSx − Ds2

x

) (32)

and

s̃2
x =

∑
sx

exp
(
βsxSx − Ds2

x

)
s2
x∑

sx
exp

(
βsxSx − Ds2

x

) , (33)

where

Sx =
∑

y.nn.x

sy, (34)

where y.nn.x means that y is a nearest neighbor of x.
In the case of ns = 4 we used two different updating

schemes. Since the measurement is performed at the central site
only, it might be useful to update the spins at central sites more
often than those at the boundary. To this end, we performed
one sweep using the Todo-Suwa algorithm over the full 73

block, then follows a sweep over the central 53, and finally a
sweep over the central 33 block. This sequence is repeated nb

times. A measurement using Eqs. (32) and (33) is performed
for the initial configuration and after each (partial) sweep. This
means that 3nb + 1 measurements are performed for each baby
simulation. After a few preliminary simulations, we decided
to take nb = 30. We used this scheme for our simulations of
lattices of the linear sizes L = 400 and 800.

For L = 600, 1200, and 1600, we performed cluster up-
dates in addition to the sweeps with the Todo-Suwa update.
The cluster construction is started from the fixed boundary
of the block using the standard delete probability pd =
min[1, exp(−2βsxsy)], where x and y are nearest neighbors.
All spins that are not frozen to the boundary are flipped. Here,
we used nb = 20. It turned out that the cluster update gives little
advantage. However, it is likely that going to larger ns this will
change. We made no attempt to construct cluster improved
estimators of sx and s2

x .
We performed simulations of the Ising model for L = 400

and 800 and ns = 2. In the baby Monte Carlos, we replaced the
Todo-Suwa update by the Metropolis one. In the main Markov

5 10 15x

0.5

0.51

0.52

0.53

Δ
σ

L =   400
L =   600
L =   800
L = 1200
L = 1600
extr   800
extr 1200
extr 1600

FIG. 2. We plot the effective dimension �σ,eff (x,s) of the field as
defined by Eq. (35) for various linear lattice sizes L and extrapolated
estimates. The displacement between the points is in direction r = a.
The dashed lines should only guide the eye. We give only results
obtained from our simulations with stride ns = 2 to keep the figure
readable. The horizontal solid line gives �σ = 0.5181489 obtained
by the bootstrap method.

chain, we replaced the Todo-Suwa sweeps by heat bath sweeps.
Note that in the case of the Ising model, the single cluster
algorithm is ergodic and it is not necessary to add heat bath
sweeps.

C. Statistics of our simulations

For a given set of parameters ns and L, we performed 8 up
to 20 independent runs. Each running for a month on a single
core of the CPU. In Table I we summarize the total number of
update and measurement cycles performed for each stride ns

and linear lattice size L. We performed preliminary simulations
without using the variance reduction method. We abstain from
discussing these simulations in detail. In total, our study took
about 10 years on a single core of a recent CPU.

VII. NUMERICAL RESULTS

Throughout we used the jackknife method to compute
statistical errors.

A. Two-point functions

First, we extracted the dimension of the operators from the
two-point functions g(x). To this end, we define an effective
exponent by

�eff (x,�x) = −1

2

ln(g(x + �x)/g(x))
ln((x + �x)/x)

, (35)

where �x = ns , �x = √
2ns , and �x = √

3ns for r = a, f ,
and d, respectively. Let us first discuss our results obtained
for gr,σσ . In Fig. 2, we plot results obtained for displacements
along the axis and the stride ns = 2. We give results for all
linear lattice sizes that we have simulated. Up to our largest
linear lattice size L = 1600 we see a dependence on the
lattice size. In addition, we give extrapolated results using the
pairs of lattice sizes (400,800), (600,1200), and (800,1600).
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10 20 30x
0.515

0.52

0.525

Δ σ

dir a
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FIG. 3. We plot the effective dimension �σ,eff (x,s) of the field as
defined by Eq. (35) for the extrapolation obtained for L = 800 and
1600. All results are obtained for the stride ns = 2. We give results
for all three directions of the displacement that we have studied. The
dashed lines should only guide the eye. The horizontal solid line gives
�σ = 0.5181489 obtained by the bootstrap method.

The extrapolated results are essentially consistent among each
other, confirming the validity of the extrapolation. It seems
plausible that the extrapolated result approaches the bootstrap
value as x increases.

In Fig. 3, we give results for the extrapolation of the pair
(L,2L) = (800,1600) for all three directions that we have
studied. The small x deviations are the largest for r = a.
For r = f and d they have the opposite sign as for r = a.
The amplitude of corrections is the smallest for r = f . Since
the corrections depend strongly on r , it is likely that they are
dominantly caused by the breaking of the rotational symmetry
and fall off like x−ωNR .

Here, we make no effort to extract an optimal estimate for
�σ from our data. Just looking at the figure, one might take the
result for direction f at distance x = 10

√
2 as final estimate:

�σ = 0.5177(3). Using η = 0.03627(10) [7], we get �σ =
(1 + η)/2 = 0.51814(5), which is consistent, but clearly more
accurate. In the following analysis, we shall use the bootstrap
value �σ = 0.5181489(10), which outpaces the Monte Carlo
results by far.

Let us look in more detail at the corrections at small
distances. Since we study an improved model, we expect that
the numerically dominant corrections are due to the breaking
of the Galilean invariance by the lattice. In Fig. 4, we plot our
extrapolated results for gσσ x2�σ with �σ = 0.5181489 for the
three directions studied. We have fitted these data with

x2�σ gr,σσ (x) = c + arx
−ωNR (36)

with ωNR = 2.022665. For simplicity, we performed a naive
fit of the data, not taking into account the statistical correlation
of the data for different distances and directions. We fitted
jointly the data for the three different directions, requiring that
the constant c is the same for all three directions. The result is
represented by the solid lines in Fig. 4. Given the shortcomings
of the fit, we do not give final results for the constants c and ar .
Our aim is to demonstrate that the Ansatz (36) indeed describes
the data well as can be seen in the plot.

4 6 8 10 12 14
x

0.182

0.184

0.186

0.188

0.19

0.192

0.194

g σσ
x2

 Δ
σ

dir a
dir f
dir d

FIG. 4. We plot gσσ x2�σ with �σ = 0.5181489 for the three
directions studied. Most of the data are taken from the simulations
with the stride ns = 2. A few data at small distances are taken from
our preliminary simulations without variance reduction. The solid
lines give the result of the fit with the Ansatz (36).

Next, we analyzed the εε function. The findings are analo-
gous to those of the σσ function. Therefore, we refrain from
a detailed discussion. A main difference is that the relative
statistical error increases faster with increasing distance as for
the σσ function. In Fig. 5, we have plotted the analog of Fig. 4.

B. Three-point functions

Let us first check that the extrapolation in the lattice size
works. To this end, we plot in Fig. 6 our estimates of fσσε for
r = f [Eq. (17)] as a function of the distance x for different
linear lattice sizes L. In addition, we give the results obtained
from the extrapolation (24). Note that we applied Eq. (24) to our
estimates of fσσε obtained for given L. For the results obtained
for a given lattice size, we see a clear dependence on the lattice
size. In contrast, the extrapolated results are consistent among
each other.

In Fig. 7, we plot our results for fσσε obtained from the
extrapolation using the lattice sizes (L,2L) = (800,1600). We

4 6 8 10 12 14
x

0.006

0.0065

0.007

0.0075

g ε
εx

2 
Δ

ε

dir a
dir f
dir d

FIG. 5. We plot gεεx
2�ε with �ε = 1.412625 for the three direc-

tions studied. Analogous to Fig. 4.
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FIG. 6. We plot our estimates of fσσε for the direction r = f .
We give results obtained for the linear lattice sizes L = 400, 600,
800, 1200, and 1600 and the extrapolations for the pairs (L,2L) =
(400,800), (600,1200), and (800,1600). All data shown are based
on our simulations with ns = 2. The straight line gives the bootstrap
result.

give results for both geometries that we have implemented.
Here, we use both the simulations with stride ns = 2 and 4.
For distances, where data from both strides are available, we
give the weighted average. Throughout, the estimates from
ns = 2 are more accurate than those obtained from ns = 4. For
example, for r = f we get for the distance j = 16 the estimates
1.05322(59) and 1.05242(88) from the simulations with stride
ns = 2 and 4, respectively. Also here, we see corrections at
short distances. We fitted with the Ansatz (36). For simplicity,
we did not take into account the cross correlations for different
distances. We performed independent fits for both directions.
Good fits are obtained starting from jmin = 6, where all j �
jmin are included. For example, for jmin = 8 we find c =
1.0513(3) and 1.0506(5) for r = f and d, respectively. The
errors give only an indication since cross correlations of the

10 20 30 40 50
x

1.04

1.05

1.06

1.07

f σ
σε

dir f
dir d

FIG. 7. We plot our estimates of fσσε as a function of the distance
x. These estimates are obtained by the extrapolation of the pair
of lattice sizes (L,2L) = (800,1600). The solid lines represent the
results of fits with the Ansatz (36).
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dir f
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FIG. 8. We plot our estimates of fεεε as a function of the distance
x. The solid lines give the results of fits with the Ansatz (36).

data are not taken into account in the fit. In Fig. 7, results of
these fits are given as solid lines.

It is hard to quote a final value that is not biased by the
knowledge of the bootstrap result. But, it is quite clear that
our numerical data are consistent with the bootstrap result.
Looking at Fig. 7 we might read off

fσσε = 1.051(1) (37)

from the estimate of fσσε at distances x ≈ 30, without relying
on the fits discussed above.

Next, we discuss our results obtained for fεεε . Here, the
statistical error increases faster with the distance than for
fσσε . Furthermore, we find that our results obtained for the
simulations with the stride ns = 4 are more accurate than
those with ns = 2. For example, for r = f and j = 16 we
get fεεε = 1.53089(85) and 1.53363(27) from our simulations
with ns = 2 and 4, respectively. Performing fits with the
Ansatz (36) we get for jmin = 8 the results c = 1.5312(14)
and 1.5333(22) for r = f and d, respectively.

In Fig. 8, the results of these fits are given as solid lines. As
final result we read off from distances x ≈ 25

fεεε = 1.533(5) (38)

not relying on the fits with Ansatz (36).

C. Statistical errors

We find that the relative statistical error of the two- and
three-point functions increases with the distance x following
a power law. The exponent is the same for ns = 2 and 4 and
for the simulations without variance reduction. The smallest
exponent ≈1.36 is found for the σσ function and the largest
≈4 for the estimate of fεεε . This corresponds to the fact that
we see the largest gain by using the variance reduction method
in the case of fεεε .

D. Sensitivity on the value taken as estimate of βc

We performed simulations for L = 800 with stride ns =
2 at β = 0.38772 and 0.38772347 in order to estimate the
dependence of the N -point functions on β. For fσσε and fεεε ,
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we find that the slope �f (x,β)
�β

increases with increasing distance
x of the points, following a power law. Here, f (x,β) is the
numerical estimate of fσσε or fεεε as a function of x and β.
In the case of fσσε we find an exponent ≈1.25, while for fεεε

we get an exponent ≈1.38. From the data it is not completely
clear whether the exponents are different. We estimate that the
uncertainty of the estimate βc = 0.387721735(25) used here
results in an uncertainty in the fourth digit of our final results
for fσσε and fεεε which is negligible compared with the errors
quoted above.

E. Sensitivity on leading corrections

Since we do not know the value of D∗ exactly, our results
might be affected by residual leading corrections to scaling. In
Ref. [7] we have demonstrated that the amplitude of leading
corrections to scaling should be at least reduced by a factor
of 30 in the Blume-Capel model at D = 0.655 compared with
the Ising model. Therefore, we performed simulations of the
Ising model at βc, the pair of lattice sizes L = 400 and 800,
and the stride ns = 2. A bit to our surprise, it is hard to see a
difference between the results obtained from the Ising model
and the improved Blume-Capel model. We conclude that the
effects of leading corrections to scaling can be ignored at the
level of our accuracy of our final results for fσσε and fεεε .

VIII. SUMMARY AND CONCLUSIONS

We computed the operator product expansion coefficients
fσσε and fεεε by using Monte Carlo simulations of the im-
proved Blume-Capel model at the critical point. We simulated
lattices with periodic boundary conditions up to a linear size
L = 1600. We extrapolated our results assuming that finite

size corrections vanish ∝L−�ε , where L is the linear size of
the lattice. An important ingredient of our study is the variance
reduced estimator based on [21,22]. In particular, fεεε could
be determined accurately due to the variance reduction. The
error of our results is smaller than that of previous estimates
obtained by Monte Carlo simulations of the three-dimensional
Ising model.

Our results are fully consistent with the predictions obtained
by the conformal bootstrap method. These results are, however,
by far more accurate than ours. Our study still can be under-
stood as preliminary. Easily more CPU time could be used
and the parameters of the algorithm could be better tuned.
However, one would hardly reach the accuracy obtained by
using the conformal bootstrap method. The fact that our results
agree with those of the conformal bootstrap method confirm the
theoretical expectation that the RG fixed point that governs the
three-dimensional Ising universality class is indeed invariant
under conformal transformations.

The strategy used here seems to be applicable to other
universality classes. However, in the case of O(N )-symmetric
model with N � 2, more memory per site is needed and
therefore the linear lattice sizes that can be reached are smaller.
It is unclear whether these lattice sizes allow for a reliable
extrapolation to the infinitely large system.

An interesting idea would be to combine the UV sampler
[19,20] or some similar method with the variance reduced
estimator of N -point functions discussed here.
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