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‘We use Monte Carlo simulations to study the finite temperature behavior of vortices in the XY model for tangent
vector order on curved backgrounds. Contrary to naive expectations, we show that the underlying geometry does
not affect the proliferation of vortices with temperature respect to what is observed on a flat surface. Long-range
order in these systems is analyzed by using two-point correlation functions. As expected, in the case of slightly
curved substrates these correlations behave similarly to the plane. However, for high curvatures, the presence
of geometry-induced unbounded vortices at low temperatures produces the rapid decay of correlations and an
apparent lack of long-range order. Our results shed light on the finite-temperature physics of soft-matter systems
and anisotropic magnets deposited on curved substrates.
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I. INTRODUCTION

After more than 30 years of intense research, today it is well-
established that several two-dimensional condensed-matter
systems, which break a continuous symmetry, disorder with
temperature following the Kosterlitz-Thouless (KT) transition
[1,2]. In this transition, topological defects, such as vortices in
superfluids or superconductors, or disclinations in crystals or
liquid-crystals, play a fundamental role. Here, while at low
temperatures vortices and antivortices are tightly bound in
dipoles, at a critical temperature a topological phase transition
occurs, leading to the unbinding of vortices and the disordering
of the phase.

The general features of the KT transition are most clearly
revealed through the XY model, which in its continuum version
is described by the energy [1]

F = g/cﬁr[veﬁ (1)

where 0(r) is an angle-valued field with values varying from
0 to 27, and K is a stiffness associated with the energy cost
of inhomogeneities in 6. This simple model describes equally
well magnetic systems or liquid crystals, where 6 (r) represents
local orientations of spins or molecules, or quantum systems
like superfluids or superconductors where 6(r) represents the
phase of a collective wave function.

The XY model is known to have two kind of excitations,
which at low temperatures are rather independent. From one
side there are smooth variations of 6(r), the spin waves,
which destroy long-range order at low temperatures. The other
excitations are the vortices, which are pointlike singularities.
Here the change of 6 in a closed path surrounding a vortex
satisfies ¢ VO - dl = g, where g is the charge of the vortex.
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The energetic contribution of a configuration with N vor-
tices in a flat surface takes the form [1]

- _Z%QJ ln

i<j

L Zq, )

Here, the singular nature of the excitations requires the in-
troduction of a short distant cutoff a, namely the vortex core
radius, and the core energy E. (in units of K), which takes
into account short-range energetic contribution beyond the
continuum description of Eq. (1). Since vortices interact like
two-dimensional Coulomb charges Eq. (2) is known as the
Coulomb gas model [3].

A renormalization-group analysis of the Coulomb gas
demonstrated the existence of the KT transition. Here while
at low temperatures the phase is characterized by power-
law decaying correlations and bound vortex-antivortex pairs,
above a critical temperature 7, the unbinding of vortices leads
to the disordering of the phase and exponentially decaying
correlations [4,5]. This disordering scenario has been found
to describe a huge variety of two-dimensional systems, such
as anisotropic magnets [6], superfluids, superconductors, and
several soft condensed-matter systems, such as liquids crystals,
polymers, colloids, and others [7].

Much less is known about the disordering mechanism and
the fate of the KT transition in two-dimensional systems, which
are not flat but have some degree of curvature. This line of
research started by considering the properties and KT transition
of Helium in packed powders [8], which derived in the study
of the properties of the XY model in non-Euclidean geometries
[8-12].

Such early works, related to quantum condensed phases like
superfluids and superconductors, showed that the geometry
may modify the KT transition in unexpected ways. In this
sense, while the KT transition was found to remain almost
unmodified on the surface of spheres [8,10], on surfaces
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of constant negative curvature (pseudospheres) the critical
temperature was found to shrink to zero. This means that
underlying constant negative curvature strongly affects the
KT transition, disordering the system at any finite temperature
[11,12].

Similarly, it has been suggested that the underlying geom-
etry could also affect the main features of the KT transition
for systems related to crystals or liquid-crystal phases [13—15]
on non-Euclidean geometries. Also, recent work on first-order
phase transitions on curved geometries have shown that the
dynamics of nucleation and growth can be strongly modified
by the underlying geometry [16,17].

In this work we use a modified XY model and Monte
Carlo simulations to study the temperature behavior and KT
transition of tangent vector order on curved surfaces. Given
the observed opposite effects of positive and negative constant
curvature [8—12], here we focus our study on surfaces shaped
as Gaussian bumps. These surfaces are interesting because they
have both, positively and negatively curved regions, have the
topology of the plane, and can be obtained in the laboratory by
relaxing corrugated substrates [18,19].

This paper is organized as follows: In Sec. II we present
details on the model, the simulations, and the geometry
used. In Sec. III we show the main results of these work,
regarding the temperature behavior of vortices and short- and
long-range correlations in these non-Euclidean systems. In
Sec. IV we discuss and argue on the main reasons which lead
to a proliferation of vortices independent on the underlying
geometry, as presented in the results. Finally, in Sec. V we
present the main conclusions of this study.

II. MODEL AND SIMULATIONS

Condensed systems formed by spins or stiff molecules con-
strained to be tangent to a curved substrate can be specified by
a unit vector field of the form m = cos[6(r)]e; + sin[6(r)]e,,
where eg (8 = 1,2) are the orthonormal tangent-plane basis
vectors [20]. On arbitrary curved geometries, the XY model
related to vector tangent order in the continuum can be written
in the form [21-23]

K
F= f & 3 8" [8560() — Q0] [3, 6(r) — 2, ()]

3)

Here, points on the surface are specified by a system of
curvilinear coordinates r = (x1,x,), such that an infinitesimal
arc length ds is given in Einstein notation by ds? = |dr|* =
gﬁydxﬁde, where gg, is the metric tensor, and g is its
determinant. The field Q4(r) is a connection that compensates
for the rotation of the 2D basis vectors eg with respect to which
0(r) is measured. The connection is intrinsically related to how
curved is the surface, such that its curl is equal to the Gaussian
curvature of the surface G(r) [13].

In this XY model, the connection field is necessary to
represent the frustration imposed by the geometry. Spins or
molecules constrained to be tangent to a curved substrate
cannot be all oriented parallel to their neighbors, such that
orientational order is geometrically frustrated [24]. This is
completely different to Euclidean systems [Eq. (1)] or non-
Euclidean systems related to quantum collective phases, where

there is no frustration and the minimum energy configuration is
always given by an homogeneous configuration of 6 [21-23].

The energy of this non-Euclidean XY model can also
be decomposed into a regular spin-wave contribution and a
Coulomb gas. However, here the energy of vortices not only
includes the vortex-vortex interactions and core energies as in
Eq. (2), but also an interaction with the substrate through a
geometric energy [21-23]:

%:Zqiqu(ri,rj)—i-ECZq,-z—i-ZEi(ri), (4)

i<j i

where V is the interaction between vortices on the curved
surface, obtained by the equation AV (r;,r;) = —8(r;,r;),
where the Laplace-Beltrami operator is given by App =

L9 (gﬁy N -2y and E;(r;) represents the energetic inter-

WArd 5x7
action between a vortex and the substrate’s topography:
q?
Ei(r;) = (qz' - 4—1> Ug(r;). (%)
b4

Here, Ug(r) is the geometric potential which is fixed by
the substrate’s curvature through the Poisson-like equation
ArgUg(r) = G(r). This interaction implies that when a vortex
is placed on a curved surface, it feels a force as if there were
a background topological charge proportional to the Gaussian
curvature of the substrate [21-23]. As a consequence of this
purely geometric interaction, in general, positive (negative)
vortices tend to be attracted to regions of local positive
(negative) Gaussian curvature. It is interesting to note that due
to the asymmetry in the prefactor of Eq. (5), in general, positive
and negative vortices have different energies. For example, for
27 vortices, the prefactor of U (r;) in Eq. (5) gives a prefactor
of & for positive vortices and —37 for negative vortices.

To develop the Monte Carlo simulations that allow us to
study the degree of order in these systems as a function of
temperature, we first generated homogeneous curved meshes
by a combined fast marching-node interaction approach. Here,
an initial (inhomogeneous) grid is first obtained by the fast
marching method [25], and it is later relaxed by allowing
the nodes to interact with their neighbors with an harmonic
potential [26]. This approach leads to homogeneous grids in
arbitrary geometries consisting of a triangular tessellation of
the surface (see inset in Fig. 1).

We then numerically study the features of vector tangent or-
der on surfaces by locating unitary vectors on the grids points,
such that these vectors are restricted to the local tangent plane
of the surface (see Fig. 1), and relaxing their configurations at
a fixed temperature by the standard Monte Carlo Metropolis
algorithm. Instead of using the continuum model Eq. (3) we
use a simpler discrete Hamilatonian approach. To reproduce
the geometric frustration of tangent vector order, we need
to compare the orientation of two neighboring vectors at the
surface. Here, it is necessary to perform the parallel transport
of one of the vectors to the position of the other. To do this we
follow the numerical approach proposed by Ramakrishnan,
Kumar, and Ipsen, where the Hamiltonian of the system is
written as [27]

Hyector = — Z J cos eij’ (6)

<i,j>
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FIG. 1. Low temperature configuration (kg7 = 0.1J) of the
modified XY model obtained by Monte Carlo simulations on a
Gaussian bump surface. In this relaxed configuration, a positive vortex
(red circle) locates on the top of the bump, and a negative vortex
(yellow circle) down the surface. The inset shows a detail of the
curved grid used in the simulations and the tangent vector field on
this grid.

where cosf;; =m; -I';;m;. Here, m;, m; are vectors at
neighbor nodes i and j, and the operator I';; brings (parallel
transported) m; into the tangent plane of the vertex j:

Iijm; =[m; - t]t;
+{m; - [N; x t;]H{N; x t;}, (7N

where N; is the normal at vertex i and t; is the projection of
the unit vector connecting vertex i to its neighbor j, to the
tangent plane at the i vertex. Note that at zero temperature
J = K in Eq. (3). However, at finite temperatures one needs
to renormalize K to take into account temperature-dependent
effects of spin-wave excitations, which otherwise would be
neglected in the Coulomb gas model Eq. (4) [28].

For the sake of concreteness, here we focus in studying
the properties of the XY model Eq. (6) on Gaussian bump
surfaces, such as shown in Fig. 1. These surfaces have Monge
parametrization of the form

R(r,¢) = r cos(¢) i+ rsin(p) j + argexp ( — r*/2r5) k.
)

Here, r,¢ are the plane polar coordinates, {i,j,k} is the Eu-
clidean base, and « is a parameter related to the aspect ratio of
the bump (for higher values of « the bump is more pronounced).
As in other surfaces of revolution, meridian and parallel curves
are defined by setting the polar variables to constant values
(along meridians R = R(r), and along parallels R = R(¢))
These surfaces are interesting because they have the
topology of the plane but a variable Gaussian curva-
2 =122 2
ture given by G(r) = %(1 —5), where I(r)=1+
ro r ro
2 exp(—r2 / rg) / rg. The geometric potential associated to
this surface takes the form Ug(r) = — fr > —VZ(;)_] dr’, which

0[2}"

for high-enough values of « tends to attract positive vortices to
the top of the bump, and locate negative defects in the region
of negative curvature for r > ro [13].

For the Monte Carlo simulations we started from a random
configuration and equilibrated the system at the highest tem-
perature studied (kg T = 4J) and then reduced the temperature
in steps of 0.04J. At each temperature we allow the system to
relax by performing 150 000 passes (after one pass all spins
of the system have been updated by Metropolis). We checked
that this protocol allows to reach thermal equilibrium and all
thermodynamic quantities become stable. Quantities of interest
in this study, like correlations and vortex densities, are obtained
by averaging over 100 runs starting from independent random
states.

We fix the units of length so that the distance between nodes
is close to @ = 1. The Gaussian bump is defined in a squared
domain of size 128 x 128, and we fix the parameter of the
Gaussian ry = 10. The number of nodes results to be around
20 000. We use open boundary conditions. Lattice points in the
border are treated in the same form as other nodes, but the only
difference is that they typically have less neighbors. Periodic
boundary condition could also be used, but they can distort the
geometry and can affect the number and locating of defect at
low temperatures.

The number and location of positive and negative vortices
at any temperature is obtained by discretizing the integral n =
—1/2n 55 V6 -dl around a closed loop on each elementary
triangle plaquette [29]. In the case the closed path encircles a
vortex, n takes a nonzero integer value (usually 1), and the
sign of n indicates the chirality of the vortex with respect to
the face normal to the surface.

Figure 1 shows a low temperature configuration of this
XY model on a Gaussian bump substrate for ¢« =5 and
ro = 10. Note the presence of the unbounded vortex dipole
as a consequence of the large vortex-curvature interactions
mediated through the geometric potential, which tend to locate
a positive vortex on top of the bump, and a negative vortex in
the region r ~ rq [13].

III. RESULTS

A. Thermal properties of vortices and short-ranged correlations

For surfaces of varying positive and negative curvature,
in principle one may speculate on some possible effects of
the non-Euclidean geometry on the KT transition. First, the
varying geometry could modify the value of critical tempera-
ture T, where the system disorders. Another possibility is that
curvature acts as a correlated potential leading to a broadening
of the transition [30]. Here, to study the role of curvature
on the KT transition, we perform Monte Carlo simulations
at different temperatures, for various aspect ratios « of the
Gaussian surfaces.

Figure 2 shows typical configurations of the XY model on a
Gaussian bump of a medium aspectratioo = 3, forlowkgT =
1.0J (a) and high k3T = 1.75J (b) temperatures. On the left
we show the vector field configurations with the positive (red)
and negative (yellow) vortices. As a first rough diagnostic tool
of inhomogeneities, on the right we show a map of the short-

. _ ; . . .
range correlations defined as S; = Noom > jm; -mj, obtained

012117-3



GOMEZ, GARCIA, VEGA, AND LORENZANA

PHYSICAL REVIEW E 97, 012117 (2018)

FIG. 2. Typical vector field configurations obtained by Monte
Carlo simulations on a substrate of « = 3, forlow k3T = 1.0J (a) and
high kg T = 1.75J (b) temperatures. The left panels show the vector
field and the vortices, and the right panels show the corresponding
short-range order maps and the color code used.

by averaging the orientation of a vector with its first neighbors
defined in such a way that S; = 1 signals perfect local order. At
low temperatures, Fig. 2(a) shows an isolated positive vortex
near the top of the bump, a few thermally excited dipoles, and
small variations in the vector orientations, which corresponds
to the spin waves. Here the local order map fluctuates around
the perfect order (S; ~ 1). As temperature increases, Fig. 2(b)
shows the appearance of more vortices in the form of dipoles,
and an increasing disorder which is clearly seen from the short-
range order map, which now fluctuates around smaller values
of S; (S; ~0.5).

Note that qualitatively, the disordering process seems to
be similar to that observed in two-dimensional flat systems,
and in addition, it seems that the whole process is rather
homogeneous (at a given temperature the degree of disorder is
similar, independent of the underlying local curvature).

To address this more quantitatively, in Fig. 3(a) we show
the temperature behavior of the local density of positive and
negative 2m-vortices, averaged in the azimuthal direction, as
a function to the distance to the center of the surface r (we
average on vortices located at a distance between r and r +
dr from the top of the bump), at different temperatures. The
homogeneity in the disordering process is evident from this
plot. For any temperature the density of defects is the same,
independently of the region of location on the curved substrate.
Note also that the densities of positive and negative defects
are the same, as energetically expected for a substrate with
the topology of the plane and free boundary conditions [13].
An analogous behavior is observed for the azimuthal-averaged
short-range order correlator S;, as a function of r.
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FIG. 3. (a) Local vortex density as a function to the distance r
to the center of the surface, for a substrate of & = 3 and different
temperatures (error bars are of the order of symbol size and omitted
for clarity). (b) Local vortex density as a function of r at a low tem-
perature, for a substrate of higher curvature with o = 5. In this case,
there is a geometrically unbounded dipole at low temperatures, such
that the density of positive and negative vortices is inhomogeneous.
These local density curves show that the positive and negative vortices
locate at r ~ 0 and r ~ 2ry (see arrow), as expected. As temperature
increases, more dipoles are excited, and the density of positive and
negative vortices become homogeneous as in panel (a).

It is interesting to note here that for substrates of high
curvature the low-temperature vortex densities are not ho-
mogeneous. In such cases a geometrically unbounded dipole,
such as shown in Fig. 1, is found at low temperatures. This
produces inhomogeneous local vortex densities, as shown in
Fig. 3(b), with a peak at r ~ 0 for positive vortices, and a
peak at r ~ ry for negative vortices. Note that the peak for
the negative vortex is much less pronounced as compared with
the positive vortex. This is because negative vortices are less
confined in the Gaussian bumps (positive vortices are highly
confined to a small region of positive curvature for r ~ 0).
However, as temperature is increased, more dipoles are excited
and the vortex densities became more homogeneous, such as
shown in Fig. 3(a).

Having shown that on a surface the disordering is ho-
mogeneous, we now compare the thermodynamic behavior
for substrates of different curvature. In Fig. 4 we show the
temperature behavior of total density of vortices p and mean
short-range correlator S =< S; > as a function of tempera-
ture. In this plot p and S are obtained by averaging on the
whole surface, over 100 independent configurations. Here the
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FIG. 4. Mean local order correlator S and vortex density p
(obtained by averaging over the whole substrate) as a function of
temperature 7 and for surfaces of different aspect ratios «. Note that
all the curves superimpose showing that the systems disorder in an
equal form, irrespective of the underlying curvature.

different symbols correspond to substrates of different aspect
ratios «. Remarkably, as evident from the figure, the thermo-
dynamic behavior is identical for all the geometries within the
numerical error. Notice that no rescaling is needed to achieve
this result. From this numerical result we conclude that the
disorder proceeds independently of the underlying curvature
and we speculate that the critical temperature remains identical
to the one of a planar hexagonal lattice, namely kg T, ~ 1.5J.

B. Long-ranged correlations in curved geometries

In an Euclidian system the long-range two-point correlation
function is defined as C(r) = (m(0) - m(r)) [1]. As discussed
in the introduction, long-range correlations are key to describe
the KT transition in planar geometry.

On a curved geometry, to correctly take the inner product
between two distant spins, one of the spins has to be parallel
transported to the location (lattice point) of the other, and in
principle the correlation function depends on the path chosen to
make the parallel transport [31]. For the sake of simplicity, here
we only calculate correlations between spins which are located
in the same meridians (¢ = 0 in the Monge parametrization
Eq. 8). In such cases the calculation of correlations are simpler
because, due to the azimuthal symmetry, vectors do not rotate
as parallel transported along meridians. As will be clear below,
the behavior of correlation functions changes dramatically as
a function of curvature. The reason for this change is more
easily visualized if correlations are displayed for a single
snapshot of the Monte Carlo simulation. Therefore, below we
present single snapshot results computed after thermalization,
but without averaging over the initial realizations.

Figure 5(a) shows a low temperature (kg7 = 0.13J) con-
figuration of the XY model on a slightly curved Gaussian with
o = 0.5. In this low-curvature substrate, at low temperatures
the spins are well aligned along an arbitrary direction, and
the structures do not show unbounded vortices. Figure 5(b)
shows the behavior of the the long-range correlation C(s) as a
function of the geodesic distance s between spins, calculated
along different meridians (black lines), and an average on

1.0 T T T T
0
@)
0.8 2|
a=0.5
06 ksT=0.13) ]
04 v T T T T T T
0 1 2 4

s/r0

FIG. 5. Behavior of long-range correlation functions at a low
temperature kg7 = 0.13J, for a system of low curvature o = 0.5.
(a) Relaxed spin configuration at this temperature. Note that spins
align along a particular direction and there are no vortices in the
pattern. (b) Two-point correlation function C(s) as a function of
geodesic distance, calculated along different meridians (black lines),
and the average (red line). Here the correlation C(r) accurately
captures the long-range order of the system as observed in panel (a),
where C(s) ~ 0.9 even at long distances. The inset is an scheme
showing the different meridians and the characteristic circle r = ry
of the Gaussian surface.

the different meridians (red line). In this case the two-point
correlation function behaves very similar to what is obtained
in the plane, showing that the system is well ordered, with C(s)
almost constant (C ~ 0.95) or decaying very slowly. Note also
the small dispersion of the correlation calculated along the
different meridians.

On the contrary, Fig. 6(a) shows a completely different
behavior of two-point correlation for a spin configuration
on a highly curved substrate with o =7, at the same low
temperature kp7 = 0.13J. Here along some meridians the
correlation function decay slowly (pink line in Fig. 6(a),
but along other meridians the correlation decay abruptly for
distances of the order r ~ 2r, [blue line in Fig. 6(a)].

The huge dispersion in the correlation functions obtained
along different meridians shown in Fig. 6(a) is mainly due to the
presence of a geometry-induced unbonded dipole. Here, due to
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FIG. 6. Behavior of long-range correlations at a low temperature
kgT = 0.13J,forahighly curved system witho = 7.0. (a) Two-point
correlation function C(s) as a function of geodesic distance s, calcu-
lated along different meridians (black lines) of the Gaussian bump.
Color lines corresponds to correlations calculated along specific
meridians, which are indicated with a dashed line in panels (b) and (c).
The inset is an scheme illustrating the different meridian paths used
to get the correlations and the location of the vortices. Notice the huge
dispersion of correlations calculated along different meridians. (b, c)
Views of the configuration of spins at this temperature. The dashed
pink line of panel (b) indicates a meridian where the spin orientation
slightly changes and two-point correlations depicts long-range order
[the correlation calculated along this path is shown in panel (a) with
the pink line]. In panel (c) we show a meridian in dashed blue
where the orientations of spins changes due to the negative vortex
(shown as the yellow sphere). Along this path the two-point corre-
lation decays abruptly [shown in panel (a) as a blue line]. Thus, in
non-Euclidean systems the two-point correlation function may not
correctly capture long-range ordered configurations.

the high curvature of the substrate, a positive vortex locates on
the top of the Gaussian and a negative vortex locates around the
optimum radial distance, » ~ 2ry. As pointed out before, this
dipole exists even at T = 0. Furthermore, the ground state has,
in addition to the SU(2) degeneracy of the spins, an additional
SU(2) degeneracy related to the position of the negative vortex
in the circle defined by its optimum radial distance. At finite
temperatures the negative vortex will diffuse along this circle
implying that the whole ground state texture will rotate. The
thermal average of the two point correlation function over
these fluctuations is equivalent to the average over all possible
paths in which the azimuthal distance to the negative vortex is
allowed to vary. Figures 6(b) and 6(c) show two snapshots of
the spin configuration at finite temperature, with the positive
(negative) vortex indicated with a red (yellow) sphere and two

possible paths (dashed liens) at different azimuthal distances
from the negative vortex. One sees that the presence of the
unbounded dipole completely distorts the behavior of the two-
point correlation function. There are some paths [Fig. 6(b)],
where the orientations of spins change slightly, leading to a
slowly decaying C(s) [the correlation function along this path
is plotted in Fig. 6(a) with the pink line]. But for correlations
calculated along meridians which are in the neighborhood of
the negative vortex, such as the path indicated with a dashed
blue line in Fig. 6(c), the orientations of spin change as a
consequence of the unbounded vortex, producing an abrupt
decay in the correlation function [the correlation along this
path is plotted in Fig. 6(a) with the blue line]. Note that if one
averages over initial realizations the azimuthal symmetry is
recovered as the azimuthal position of the negative vortex is
arbitrary.

It is clear that the system is still strongly correlated in
this high curvature case, but the simple two-point correlation
function does not reflect such degree of order. Detecting the
order in these cases may require the computation of three-point
correlations functions, so that paths are restricted to specific
azimuthal distances to the unbound negative vortex. Thus,
in these and other non-Euclidean systems, long-range order
may be much harder to characterize, making difficult the
comparison with the results obtained in the plane.

IV. DISCUSSION

The fact that the geometric potential introduces a highly
inhomogeneous energetic landscape for a single vortex
[13,21,21,23] [Egs. (4) and (5)] appears in strong contradiction
with the completely homogeneous and independent on the
underlying geometry disordering process. Notice that we
have considered a geometry of varying positive and negative
curvature, where vortices are attracted (repelled) to regions
of same (different) curvature sign, and even further, positive
and negative vortices have different energies. We find that
these variations are by no means negligibly respect to the
temperature. For example, for « = 5 the modulus of the geo-
metric potential has a bump form with a width of the
same order of the underling surface and a height given
by Ug(0) — Ug(co) = —3.55 (in units of K ~ J). Thus,
the energetic scale of the geometric potential is larger than
the thermal energy considered [taking into account also the
charge prefactors in Eq. (5)], and a naive Boltzman factor for
particle activation ~exp{—[E. + E;(r)]/kgT} would yield a
strongly inhomogeneous vortex density.

To understand this it should be first noted that topological
defects are nucleated as vortex (¢ = 27) and antivortex (¢ =
—2m) pairs. We can estimate the activation energy as the energy
difference between a configuration with a pair separated by
the microscopic distance a and configuration without pairs.
According to Eq. (4), this is

E, 2

—— =-V(@,r+a)+2E. — —Ug(r), 9
x ( ) H2E — —U). ()
where |a| = a is a microscopic distance of the order of the
lattice node separation. The last term is the contribution of
the geometric potential of each vortex and we have neglected
differences in Ug at the microscopic distance. The first
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FIG. 7. Energy landscapes for a dipole and pair of dipoles on a Gaussian bump of « = 7 (left panels), and the energy level curves (right
panels), where we use the same color code as in the left panel to identify the intensities. (a) Energy landscape for a first dipole, where the r
and r_ coordinates corresponds to the position of positive and negative vortex, respectively, in opposite directions to the Gaussian bump (see
schematic inset). The energy minima corresponds to . ~ 0 and r_ ~ 2r, such that the dipole unbinds due to the geometric force given by the
geometric potential. (b) Energy landscape for a first dipole, but now the vortex and antivortex are in the same meridian (see schematic inset).
The energy minima still corresponds to », ~ 0 and r_ ~ 2r. Note also that the dipole configurations having r,. ~ r_ have always roughly the
same energy, irrespective of the location of the dipole in the surface. (c) Energy landscape for a second dipole, in the same substrate, but when
the first dipole is already unbounded (see inset). Now the energy minima corresponds to the second dipole bound, because the geometry has

been already largely screened through the unbinding of the first dipole.

contribution due to the vortex-antivortex attraction is computed
in Ref. [13], V(r,r+a)= —In(a?)/(@4n) — Us(r)/Q2n).
Therefore, the contribution of the geometric potential cancels
and one recovers the result that would be obtained for a
flat surface, E,/K — 2E. = —m In(a?). Our numerical result
shows that this estimate of the activation energy is rather robust
and the proliferation of vortices results to be independent of the
geometric potential. We speculate that this result could change
if the core energy would be very large, so that the disordered
phase were made of dilute unbound vortices, very far from the
configurations considered to derive Eq. (9).

The above argument does not take into account the physics
of tangent vector order, where the connection €2 arises in the
continuous description [Eq. (3)], and vortex-antivortex pairs
can spontaneously unbind even at zero temperature due to the
coupling with the curvature. Why this effect does not produce a
gas of dilute unbound vortices at low temperatures? While the
unbinding due to the geometry is very effective of the first
pair, this process is inhibited for subsequent pairs due the
screening of the preexisting vortices. To see this more clearly
we have used Eq. (4) to compute the energy at zero temper-
ature for vortices configurations in a Gaussian bump of large
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curvature. For the vortex-vortex interaction energy V (r,r’) on
the Gaussian bump we have used the expression derived in
Ref. [13].

Figure 7(a) shows the energy for a single vortex-antivortex
pair where the vortices are located in opposite meridians of
the Gaussian bump (see schematic inset where the positive
vortex has ¢ = 0 and the negative vortex ¢ = 7). Here r_, ry.
represent the distances of the positive and negative vortex to the
bump maximum. In the right panel we show the level curves
of the energy landscape. As clear from this figure, for a single
vortex-antivortex pair the energy is minimized at (ry,r_) ~
(0,2rp), i.e., the positive vortex close to the top of the bump,
and the negative vortex in the region of negative curvature
with r ~ 2ry. Thus, in this case the energy is minimized by the
unbinding of the vortex dipole, in a configuration similar to the
observed in Figs. 1 and 6. From Fig. 7(a) it is also clear that
the worst energetic configuration is obtained by locating the
negative vortex at the top of the bump, and the positive vortex
at the negatively curved region, i.e., (r;,7_) ~ (2ro,0).

Figure 7(b) shows the energy landscape obtained for a
dipole, when the vortex and antivortex are oriented in the
same meridian (see schematic inset). Also here the energy
minimum is the unbound dipole (r,7_) ~ (0,2rp). This panel
also highlights the result of Eq. (9) that the formation energy
of a bound dipole is independent of position. Indeed, for the
bounded dipole obtained for r, ~ r_ the energy is nearly
constant irrespective of the location on the substrate. Notice,
however, that this is a metastable state because of the short
distance cutoff in the interaction which makes this local
minimum to have higher energy than the unbound dipole.

Now consider what happens with a second dipole, which can
be thought to be excited by temperature when the first dipole
has been already unbounded by the geometry. Figure 7(c)
shows the energy landscape for the second dipole, where we
consider the first vortex-antivortex pair as fixed. Here r_, r
represent the distances of the positive and negative vortex of
the second pair to the bump maximum (see schematic inset
for the vortex configuration), and the right panel shows the
level curves. Note that the energy landscape is much flatter
for this second dipole, as compared to the first pair, such that
the second vortex dipole sees a much more homogeneous
geometric field than the first dipole. This is because the
unbinding of the first dipole has largely screened the substrate
geometry and frustration [13]. Thus, new thermally excited
dipoles do not feel especial curvature-related forces that tend
to unbind them which would manifest in a reduction of T,
which is not the case. This fact, together with the insensibility
to geometric effects when vortex and antivortex are close to
each other, explains the independence of the density of vortices
to curvature as shown in Figs. 3 and 4.

V. CONCLUSIONS

Here we have used Monte Carlo simulations on a modified
XY model to unveil the role of a non-Euclidean geometry on
the Kosterlitz-Thouless transition. Previous studies at 7 = 0
had shown that the energy of vortices is very sensitive to
the geometry through a position dependent potential (the
geometric potential). Surprisingly, our simulations show that
the underlying geometry does not play a role in the disorder-
ing of the system, and the thermal properties of vortex are
practically indistinguishable from those in 2D flat systems.
This is a direct consequence of two effects. First, a dipole
nucleation rate independent of the geometry due to the fact
that geometric effects tend to cancel when considering neutral
pairs at close distances. This conclusion is in agreement with
Vitelli et al. [13] who showed that the self-energy of a dipole
is independent of position in strong contrast with the self-
energy of a vortex. Second, the low temperature screening of
curvature by unbounded vortices, which produce rather homo-
geneous energy landscapes for new thermally excited dipoles,
with no preferential regions for location or extra forces for
unbinding.

Regarding long-range order, we have shown that for
slightly curved substrates the two point correlation function
behaves similarly to the plane, as expected. However, in
highly curved substrates, the presence of unbounded vor-
tices at low temperatures produces a wide dispersion of
correlations along different paths, such that the two-point
correlation function fails to capture long-range correlated
configurations.

Because the model we used here is minimal, in the
sense that it only has the principal energetic contribution
to model tangent order on curved surfaces, the results ob-
tained here should apply to the thermal properties of a va-
riety of soft-matter systems, like crystals or liquid crystals,
when restricted to reside in a two-dimensional curved ge-
ometry or strongly anisotropic magnetic systems. Possible
applications may include a few layers of ferromagnetic Fe
deposited on a curved gold substrate[6], and block copoly-
mer thin films [18,19,32], or liquid crystals [33], on curved
topographies.
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