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A scalar Langevin-type process X(t) that is driven by Ornstein-Uhlenbeck noise η(t) is non-Markovian.
However, the joint dynamics of X and η is described by a Markov process in two dimensions. But even though there
exists a variety of techniques for the analysis of Markov processes, it is still a challenge to estimate the process
parameters solely based on a given time series of X. Such a partially observed 2D process could, e.g., be analyzed
in a Bayesian framework using Markov chain Monte Carlo methods. Alternatively, an embedding strategy can be
applied, where first the joint dynamics of X and its temporal derivative Ẋ is analyzed. Subsequently, the results
can be used to determine the process parameters of X and η. In this paper, we propose a more direct approach
that is purely based on the moments of the increments of X, which can be estimated for different time-increments
τ from a given time series. From a stochastic Taylor expansion of X, analytic expressions for these moments can
be derived, which can be used to estimate the process parameters by a regression strategy.
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I. INTRODUCTION

A stochastically forced, first-order differential equation
provides an appropriate description for the evolution of many
dynamical systems. This includes physical, chemical, and
biological systems as well as more abstract systems like
the evolution of stock-exchange prices (for an overview see,
e.g., Ref. [1] and the references therein). For simplicity, we
restrict ourselves to the evolution of the scalar quantity X(t)
in the following. Additionally, we assume that the coefficient
functions in its evolution equation do not explicitly depend on
time. Thus, we consider an equation of the form

∂

∂t
X = f (X) + g(X) η(t), (1)

where η(t) denotes the stochastic force. Such an equation arises
not only for the “obvious” case, where a deterministic system is
driven by some external stochastic force, but also for complex
dynamical systems consisting of a large number of subsystems.
Here, the phenomenon of self-organization can give rise to
the dynamics of so-called order parameters that “enslave”
the dynamics of the microscopic subsystems [2], leading to
an equation of the above form. However, now the stochastic
force η(t) can no longer be considered to be external but is an
intrinsic part of the system dynamics. For such systems with
intrinsic noise, the fluctuation dissipation theorem must hold
in the stationary state. As a consequence, f and g cannot be
independent. No such restriction is imposed on systems driven
by external noise [3]. However, for the purpose of this paper
it is not necessary to distinguish between systems with either
intrinsic or external noise. We will not prescribe f and g but
infer them from given data. The only exception will be the
numerical test case in Sec. VIII, where we prescribe f and g

and thus should think of η(t) as being external noise.
So far, the statistical properties of η(t) have not been

specified. In practice, this force quite often is treated as
Gaussian white noise. Frequently, the central limit theorem
can be invoked, which then justifies the assumption of a

Gaussian probability density. The assumption of δ-correlated
noise, however, is an idealization. Real-world systems usually
have some finite correlation time θ . How strong the correlations
of η(t) affect the statistics of X(t) depends on the ratio of θ

and the characteristic time scale T of X(t) [4]. For θ � T

the force η(t) can be approximated by δ-correlated noise,
leading to a Markovian description. A famous example is
given by Einstein’s description of Brownian motion by a
Wiener-process [5] (actually, he did not use this term, since his
work predates that of Wiener). Even though the true process is
non-Markovian on a microscopic scale, the Markov property
can be taken for given for increments larger than some limit
time scale. This approach has also successfully been applied
to other problems like the description of turbulent velocity
increments by a process in scale [6,7]. Here, the limit time
scale is replaced by its spatial analogon, which is denoted as
Markov-Einstein coherence length in Ref. [8].

Although there are many systems where θ is sufficiently
small and can be neglected, in a variety of systems such an
idealization leads to notable differences. For such systems,
it is no longer justified to ignore the correlations of η(t).
However, if we want to account for these correlations, we
need a description of the evolution of η(t) that goes beyond
a “purely random Gaussian process” [9]. The most natural
and simple generalization of Gaussian white noise is provided
by exponentially correlated Gaussian noise, as generated by a
stationary Ornstein-Uhlenbeck process. Even if this is not the
most general description of colored noise, the assumption that
η(t) is a stationary process obeying

∂

∂t
η = −1

θ
η + 1

θ
ξ (t), θ > 0, (2)

covers a much larger class of problems than the white-noise
assumption. Here, ξ (t) denotes Gaussian white noise with
〈ξ (t)〉=0 and 〈ξ (t)ξ (t ′)〉=δ(t−t ′). The characteristic time
scale of η(t) is determined by the parameter θ . In the limit
θ → 0, the case of Gaussian white noise is recovered.
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Based on this assumption for η(t), Eqs. (1) and (2) describe
a Markov process in two dimensions. However, the analysis
of this process is hampered by the fact that usually only a
1D-series of values of X(t) will be available in practice. In the
mathematical community this problem is known as “partially
observed diffusions” [10,11]. There are approaches to deal with
such problems. In a Bayesian framework, e.g., one could use
Markov chain Monte Carlo methods for an estimation of f ,
g, and θ (see, e.g., Ref. [12]). Alternatively, an embedding
approach could be used, where first a series of velocities Ẋ(t)
is calculated from the values of X(t) and subsequently the
2D system [X(t),Ẋ(t)] is analyzed. The drift- and diffusion
functions of this 2D system can then be used to determine
f , g, and θ . However, some care has to be taken with this
latter approach, because the velocities need to be estimated
numerically. This leads to spurious correlations that may affect
the results [13].

Here, we propose a more direct approach that is purely based
on the moments of the conditional increments,

�X(τ,t0)|x0 := X(t0 + τ )|x0 − x0, (3)

where (..)|x0 denotes conditioning on X(t0) = x0. In the follow-
ing, we restrict ourselves to a statistically stationary process
X(t), i.e., the moments of �X do not depend on t0 and can be
estimated from a single time series of X(t) for different values
of τ and x0. Our strategy for parameter estimation is based
on a stochastic Taylor expansion, which allows us to express
the increments �X by an infinite sum that involves multiple
integrals with respect to a noise generating process. Since
the Ornstein-Uhlenbeck process can be solved analytically,
explicit expressions for the correlations of these integrals can
be given. Assuming τ and θ to be small as compared to the
characteristic time scale of X(t), the moments of �X can
be approximated by a finite base of functions ri(τ,θ ) that are
weighted by coefficients λi(x0,θ ). These functions are used to
fit the moments of �X and thus allow for an estimation of the
process parameters. In a first step, the parameter θ is estimated
by a nonlinear minimization procedure. Subsequently, by
linear fitting, the coefficients λi are estimated, which are then
used to determine f and g.

It may be noted that in the limit θ → 0 the functions ri

reduce to powers of τ . The above approach then recovers the
direct estimation method, as pointed out for the first time in
Ref. [14], which is applicable to processes driven by Gaussian
white noise. Due to its simplicity of use, this method has found
wide-spread use. For an overview see, e.g., Ref. [1].

As compared to the aforementioned alternative strategies,
a major difference of our approch consists in the fact that
the analytical solution of the Ornstein-Uhlenbeck process is
already utilized during its derivation. As a result, there is no
need for the data to be sampled with a timestep dt � θ . For
an embedding approach like in Ref. [13], however, dt � θ is
mandatory to capture the “fast” dynamics governed by η(t).
Additionally, in such an approach the largest increment that
can be used for an analysis is limited by the time scale θ . If
this time scale is much smaller than the characteristic time
scale T of the system, numerical problems in the estimation of
the “slow” dynamics of X(t) will arise. In a Bayesian approach,
as presented in Ref. [12], a first-order approximation (Tay-
lor scheme) is used for the transition probabilities between

successive data-points. For this approximation to be valid, the
corresponding time-increment again must be much smaller
than θ . However, opposed to an embedding approach, here
the problem of poorly sampled data can be overcome by a
refinement strategy: The data is “augmented” by introducing
additional, simulated, values in-between the given points,
which allows the Monte Carlo runs to reproduce the dynamics
of η(t). Since the implementation of such a full-flagged
Bayesian approach is not a trivial task, an additional point
in favor of our proposed approach is its simplicity. Basically,
we only need to evaluate moments of X(t), feed them into
least-square fits, and use the results to calculate our estimates
for f , g, and θ .

The standard rules for integrodifferential equations apply
to the calculations in this paper for θ > 0, i.e., for correlated
driving noise. Therefore, we adopt the Stratonovich definition
of stochastic integrals in the limit θ = 0. By this choice, the
results will remain valid in unchanged form also in the white-
noise limit [15].

This paper is structured as follows. In Sec. II, we compile
some properties of the stochastic force η(t). Subsequently, the
stochastic Taylor expansion of X(t) is given in Sec. III, which
is used in Sec. IV to provide a series representation for the
moments of the conditional increments of X. The functional
form of the series terms is discussed in Sec. V. Subsequently, a
series truncation is performed in Sec. VI, which then is used in
Sec. VII to formulate a strategy for parameter estimation. To
verify the analytical results, a numerical example will finally
be given in Sec. VIII.

II. STOCHASTIC FORCE

We assume that η(t) is a stationary Ornstein-Uhlenbeck
process obeying Eq. (2). Ornstein-Uhlenbeck processes are
well understood and can be solved analytically. The realization
of η(t � t0) can explicitly be expressed in terms of an initial
value η(t0) and the realization of ξ (t � t0). Since we focus in
the following on the stationary process, we are free to choose
t0 ≡ 0, which simplifies notation. One then finds

η(t) = η(0) e−t/θ + 1

θ

∫ t

0
e(s−t)/θ ξ (s) ds. (4)

This equation holds for arbitrary values of η(0). It describes
a realization of the process η(t), i.e., a trajectory in time, in
terms of η(0) and a trajectory of ξ (t). Expectation values of
functionals of η(t) thus are obtained by averaging over the
realizations of η(0) and ξ (t). As these quantities are statistically
independent, averaging may be performed in two steps using

〈..〉ξ,η(0) = 〈〈..〉ξ 〉η(0) = 〈〈..〉η(0)〉ξ . (5)

In the next section, η(t) will be expressed as derivative of a
noise-generating process V (t) with V (0) ≡ 0. This implies

V (t) :=
∫ t

0
η(s) ds. (6)

This process plays a comparable role for η(t) as the Wiener
process does for Gaussian white noise. Using Eq. (4), we also
may describe a trajectory of V (t) directly in terms of η(0) and
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a trajectory of ξ (t),

V (t) = η(0) θ (1 − e−t/θ ) +
∫ t

0
[1 − e(s−t)/θ ]ξ (s) ds. (7)

It may easily be checked that V (t) approaches the Wiener
process W (t) := ∫ t

0 ξ (s) ds in the limit θ → 0.
Finally, we consider some properties of the stationary pro-

cess. With Eq. (4) the stationary probability density function
(PDF) of η(t) is found to be a Gaussian with variance 1/(2θ )
and vanishing mean. Furthermore, the autocorrelation function
is found to be

〈η(t)η(t ′)〉 = 1

2θ
e−|t−t ′ |/θ . (8)

This means that η(t) is normalized in the following sense:
its strength, i.e., the integral over its autocorrelation function,
is constant and equals unity. Therefore, in the limit θ →0
the autocorrelation approaches δ(t − t ′) and η(t) approaches
Gaussian white noise ξ (t).

III. STOCHASTIC TAYLOR EXPANSION

Since, later on, we will focus on moments of conditional
increments of X(t), we need an analytic description of these
increments. Assuming smooth functions f and g, such a
description can be provided by a stochastic Taylor expansion,
which allows us to express a trajectory of X(t) in terms of X(0),
values and derivatives of f and g at X(0), and a trajectory of
η(t). Such expansions are described in great detail, e.g., in
Ref. [16], and we will closely follow these lines.

The starting point is Eq. (1) in the form dX = f dt + gηdt .
Expressing η(t) as derivative of a noise-generating process
V (t) as defined by Eq. (6), this may be written as

dX(t) = f [X(t)] dt + g[X(t)] dV (t). (9)

Next, the infinitesimal increment of an arbitrary, smooth,
function h(X) is considered. Since X(t) is continuously differ-
entiable, the standard chain-rule of differentiation applies,

dh[X(t)] = ∂h[X(t)]

∂X(t)
dX(t). (10)

Expressing dX by Eq. (9) and introducing the operators

L0 := f [X(t)]
∂

∂X(t)
, (11a)

L1 := g[X(t)]
∂

∂X(t)
, (11b)

this may be written as

dh{t} = [L0h]{t} dt + [L1h]{t} dV (t). (12)

Here, we use the notation {t} to indicate that all arguments of
a function or expression are to be evaluated at time t . Now the
actual expansion of h can be started. In integral form, Eq. (12)
reads

h{t} = h{0} +
∫ t

0
[L0h]{s} ds +

∫ t

0
[L1h]{s} dV (s). (13)

Since we considered f , g, and h to be smooth, L0h and L1h

are also smooth functions of X. Consequently, Eq. (13) can be

applied,

[L0h]{s} = [L0h]{0} +
∫ s

0
[L0L0h]{s ′} ds ′

+
∫ s

0
[L1L0h]{s ′} dV (s ′), (14)

[L1h]{s} = [L1h]{0} +
∫ s

0
[L0L1h]{s ′} ds ′

+
∫ s

0
[L1L1h]{s ′} dV (s ′). (15)

Inserting these results into Eq. (13) then yields

h{t} = h{0} +
∫ t

0
[L0h]{0} ds

+
∫ t

0

∫ s

0
[L0L0h]{s ′} ds ′ ds

+
∫ t

0

∫ s

0
[L1L0h]{s ′} dV (s ′) ds

+
∫ t

0
[L1h]{0} dV (s)

+
∫ t

0

∫ s

0
[L0L1h]{s ′} ds ′ dV (s)

+
∫ t

0

∫ s

0
[L1L1h]{s ′} dV (s ′) dV (s). (16)

The single integrals from Eq. (13), which had time-
dependent integrands [Lih]{s}, are now replaced by single
integrals with constant integrands [Lih]{0} plus additional
double integrals with time-dependent integrands [LiLjh]{s ′}.
Expressing these functions by Eq. (13) will put the game on
the next level, leading to constant double integrals plus variable
triple integrals—and so on. In the end, one is left with an infinite
sum of multiple integrals, which only depend on t and the
realization of V (t), that are multiplied by coefficient functions
that only depend on values and derivatives of f , g, and h at
X(0),

h{t} = h{0} + [L0h]{0}
∫ t

0
ds + [L1h]{0}

∫ t

0
dV (s)

+ [L0L0h]{0}
∫ t

0

∫ s

0
ds ′ ds

+ [L1L0h]{0}
∫ t

0

∫ s

0
dV (s ′) ds + · · · (17)

Using a multi-index α, defined as

α := (α1, . . . ,αn), n ∈ N, αi ∈ {0,1}, (18)

the expansion of h[X(t)] can be compactly written as

h[X(t)] = h[X(0)] +
∑

α

cα[X(0)]Jα(t), (19)

where the coefficient functions cα are given by

c(α1,...,αn)[X(0)] := [Lα1 . . . Lαn
h]{0}, (20)

and the integrals Jα by

J(α1,...,αn)(t) :=
∫ t

sn=0

∫ sn

sn−1=0
· · ·

∫ s2

s1=0

× dZα1(s1) · · · dZαn
(sn), (21)
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with

dZj (s) :=
{
ds, j = 0
dV (s), j = 1 . (22)

In general, these integrals are functionals of the realization
of V (t), respectively, η(t) and thus stochastic quantities. Only
for α1 = . . . = αn = 0 the integrals become purely determin-
istic and evaluate to

J(0,...,0)(t) = 1

n!
tn. (23)

So far, the expansion of some arbitrary function h(X) has
been considered. Being interested in the expansion of X(t)
itself, we choose h(X) ≡ X in the following. Additionally, we
fix the value X(0) to x0, which then leaves us with

X(t)|x0 = x0 +
∑

α

cα(x0) Jα(t)|x0 , (24)

where the coefficient functions are now defined as

c(α1,...,αn)(x0) := [Lα1 . . . Lαn
X]{0}|x0 . (25)

Omitting arguments and using a prime to denote derivatives
with respect to X, the first few of these functions (to be
evaluated at x0) read

c(0) = f, c(0,0) = ff ′, c(1,0) = gf ′, . . .

c(1) = g, c(0,1) = fg′, c(1,1) = gg′, . . . . (26)

The conditioning of Jα in Eq. (24) deserves some comment.
After all, a realization of Jα(t) does not depend on X(0) but
is a pure functional of η(t), which itself is a functional of
η(0) and the realization of ξ (t). However, the PDF of η(0)
will, in general, depend on X(0) [see, e.g., Appendix D for
the expectation value of η(0)|x0 ]. As a consequence, ensemble
averages of any conditioned functional F [η(t)]|x0 need to be
calculated by averaging over the realizations of ξ (t) and over
the conditional realizations η(0)|x0 . Averaging may still be
performed in two steps, e.g., by

〈F [η(t)]|x0〉 = 〈〈F [η(t)]〉ξ 〉η(0)|x0
. (27)

IV. CONDITIONAL MOMENTS OF �X

We now turn to mean and variance of the conditional process
increments of X(t),

M (1)(τ,x) := 〈�X(τ )|x〉, (28a)

M (2)(τ,x) := 〈[�X(τ )|x − M (1)(τ,x)]2〉, (28b)

where the increments are denoted by

�X(τ )|x := X(t + τ )|X(t)=x − x. (29)

Since we are conditioning on the value of X at some
arbitrary time t , we denote this value by x instead of by x0.
Additionally, we suppress the function argument t , because
the statistical properties of the increments �X do not depend
on time for a stationary process. Stationarity also implies that
the moments M (k) can be estimated from a given time series
of X(t) by replacing the above ensemble-averages by time-
averages (tacitly assuming ergodicity). Using the results from

the previous section, we already have an analytical description
for the increments,

�X(τ )|x =
∑

α

cα(x)Jα(τ )|x. (30)

Hence, the conditional moments are given by

M (1)(τ,x) =
∑

α

cα(x)φα(τ,x), (31a)

M (2)(τ,x) =
∑
α,β

cα(x)cβ(x)φα,β(τ,x), (31b)

with (omitting arguments)

φα := 〈Jα|x〉, (32a)

φα,β := 〈Jα|xJβ |x〉 − 〈Jα|x〉〈Jβ |x〉. (32b)

As a result, we now have analytic descriptions of the
moments—but unfortunately in terms of infinite series. To
obtain approximate descriptions with a finite number of terms,
the functional form of φα(τ,x) needs to be investigated in the
following. This also provides us with the functional form of
φα,β(τ,x), because a product JαJβ can be expressed by a sum
of integrals Jγ (see Appendix A),

JαJβ =
∑

γ∈M(α,β)

Jγ , (33)

which implies

φα,β =
∑

γ

φγ − φαφβ . (34)

V. FUNCTIONAL FORM OF φα

The starting point for the calculation of φα is the definition
of the integral Jα , as provided by Eq. (21). Let us consider an
index vector α of length n and denote the number of its nonzero
entries by m. Using dV = η dt , Eq. (21) may then be written
as n-fold integral with respect to time over an m-fold product
of η,

Jα(τ ) =
∫

�(τ )

⎡
⎣ ∏

αj =1

η(sj )

⎤
⎦ ds1 · · · dsn. (35)

Here, the shortcut �(τ ) has been introduced to denote the
integration domain (a simplex in Rn with 0 � si � si+1 and
sn � τ ). The ensemble average of Jα|x then reads

φα(τ,x) =
∫

�(τ )
Cη(sj1 , . . . ,sjm

,x) ds1 · · · dsn, (36)

where the values j1, . . . ,jm denote the positions of the nonzero
entries in α and Cη the m-point correlation function of η(t)|x .
For arbitrary times t1, . . . ,tm this function is defined as

Cη(t1, . . . ,tm,x) := 〈〈η(t1) · · · η(tm)〉ξ 〉η(0)|x . (37)

According to Eq. (4), η may be split up into one part
depending only on η(0) and another one depending only
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on ξ ,

η(t) = Y
e−t/θ

√
θ

+ u(t), (38)

with

Y :=
√

θ η(0), (39)

u(t) := 1

θ

∫ t

0
e(s−t)/θ ξ (s) ds. (40)

Consequently, Cη can be expressed in terms of conditional
moments of Y and correlation functions of u(t), denoted as

C(t1, . . . ,tk) := 〈u(t1) · · · u(tk)〉ξ . (41)

For example, we find

Cη(t1,t2,x)= 〈Y 2|x〉e
−(t1+t2)/θ

θ
+ 〈Y |x〉e

−t1/θ

√
θ

C(t2)

+〈Y |x〉e
−t2/θ

√
θ

C(t1) + C(t1,t2). (42)

Explicit expressions forC can be found by virtue of Eq. (40).
It turns out that the higher-order correlation functions of u(t)
can be calculated exactly the same way as those of Gaussian
white noise ξ (t) (see Appendix B). The k-point correlation of
u vanishes for odd values of k, while for even values it can be
expressed by a sum of products of the two-point correlation
[Eq. (B6)].

Since C(t1, . . . ,tk) vanishes for odd k, the expressions for
Cη may contain either only even or only odd moments of Y |x .
To provide an example:

Cη(t1,t2,t3,x) = 〈Y 3|x〉e
−(t1+t2+t3)/θ

θ
+ 〈Y |x〉e

−t1/θ

√
θ

C(t2,t3)

+〈Y |x〉e
−t2/θ

√
θ

C(t1,t3)

+〈Y |x〉e
−t3/θ

√
θ

C(t1,t2). (43)

With the above results, the integral on the right-hand side
of Eq. (36) can be evaluated, which leads to

φα(τ,x) =
2k�m∑
k=0

〈Ym−2k|x〉ak(τ ). (44)

Here, we introduced the shorthands ak(τ ) to denote the
functions that stem from the integrations with respect to time.
Actually, these functions depend also on the index vector α,
but we suppressed this argument for notational simplicity. For
an explicit example see Appendix C.

Later on, it proves to be useful to rearrange the right-hand
side of this equation by expressing the powers of Y in terms of
Hermite polynomials in Y . Reordering terms then yields

φα(τ,x) =
2k�m∑
k=0

〈Hm−2k(Y )|x〉bk(τ ), (45)

where the kth Hermite polynomial is defined as

Hk(y) := (−1)key2

(
∂

∂y

)k

e−y2
, (46)

and the functions bk are linear combinations of the functions
ak . For example, a right-hand side of the form 〈Y 2|x〉a0 +
a1 becomes 〈H2(Y )|x〉b0 + b1 with b0 = a0/4 and b1 = a1 +
a0/2.

By mathematical induction, it may be shown that the
functions ak(τ ), and thus also the functions bk(τ ), are linear
combinations of the functions

r̃0b(τ ) := θ(α)[1 − e−bτ/θ ], (47a)

r̃a0(τ ) := θ(α)(τ/θ )a, (47b)

r̃ab(τ ) := θ(α)(τ/θ )ae−bτ/θ , (47c)

with

a,b ∈ N, a � (α), b � m (48)

and

(α) := n − m

2
=

n∑
i=1

(1 − αi/2). (49)

We thus may express bk in the form
∑

λ̃ij r̃ij . Note, that the
coefficients λ̃ij do not depend on θ , because this dependency
is completely accounted for by the functions r̃ij . This property
will be useful in the next section, when we consider the
magnitude of individual terms. However, since the functions
r̃ij depend on (α), this property cannot be sustained for the
following base of functions rij , which is used to describe the
τ -dependency of bk , and thus of φα , for arbitrary vectors α,

B := {r0b(τ )|b ∈ N} ∪ {ra0(τ )|a ∈ N}
∪ {rab(τ )|a,b ∈ N}, (50)

with

r0b(τ ) := 1 − e−bτ/θ , (51a)

ra0(τ ) := 1

a!
τ a, (51b)

rab(τ ) := (τ/θ )ae−bτ/θ . (51c)

Note that the product of any two functions of this base lies
in the linear span of B. According to Eq. (34), therefore, B
not only provides a base for the functions φα but also for the
functions φαβ .

VI. SERIES TRUNCATION

With the results from the previous section, the series
representation of the moments M (k), Eq. (31), can now be
expressed in terms of functions ri ∈ B,

M (k)(τ,x) =
∑
ri∈B

λ
(k)
i (x) ri(τ ), (52)

where each coefficient function λi consists of an infinite sum
of terms. These terms, in general, are formed by powers of θ ,
the functions cα from the Taylor expansion [Eq. (24)], and the
expectation values 〈Hn(Y )|x〉.

To approximate M (k) by a finite number of functions, it be-
comes necessary to make some assumptions on the magnitude
of the individual terms. First, we assume that X(t) has been
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normalized to ensure a characteristic time scale of unity and
coefficient functions cα of order O(1). Second, we assume

τ = O(ε), θ = O(ε2), (53)

where ε has been introduced to denote a quantity that is small
as compared to unity. This requires some discussion. In a
strict sense, the use of the Landau symbols is not appropriate
here, because we do not consider the limit ε → 0 but deal
with finite values. We rather use the notation F (τ,θ ) = O(εn)
to indicate that the magnitude of some function F , for the
given values of τ and θ , is comparable to (or smaller than)
the magnitude of εn. There is also a physical interpretation
for the seemingly arbitrary parameter ε: Later on, we will
apply least-square fits to the values of the moments M (k)(τi,x)
obtained from the data for a number of increments τi . Here,
increments up to some maximum value τmax will be considered.
We thus may replace the parameter ε by τmax, since this
ensures τ = O(ε) for all values τi . For syntactical convenience,
however, we will stick to the ε-notation. The reasoning for the
requirement θ = O(ε2) is a technical one. If we would allow
θ to be of order O(ε), our truncated representations of M (k)

would consist of a much larger number of functions ri(τ ) and
corresponding coefficients λ

(k)
i (x). Even worse, the coefficients

itself would consist of more terms, including higher-order
derivatives of f and g and also some expectation values
〈Hn(Y )|x〉 with n > 1 that need to be treated as additional,
unknown, functions to be solved for. The associated increase
in numerical problems can be avoided by requiring θ = O(ε2).
As a downside, of course, this restricts our approach to small
correlation-times θ . However, our series-approximation will
have a truncation error of order O(ε4) and will thus be
applicable even for relatively large values of ε, i.e., of τmax.
Therefore, θ = O(ε2) does not imply that θ needs to be
negligible small (see also the numerical example in Sec. VIII).

There are a few more terms to be considered. The expecta-
tion values 〈Hn(Y )|x〉 are, for the time being, treated as O(1)
terms, because Y := θ1/2η is a Gaussian random variable with
a constant variance of 1/2. It remains to ask for the magnitude
of ri(τ ). According to Eq. (51), this is a term of order O(εa)
for ri = ra0, whereas for ri = r0b or ri = rab it may be treated
as term of order O(1), because in this case the value range of
ri is finite and depends only on a and b.

We now focus on a description of M (1), in which only terms
up to order O(ε3) are considered. According to Eq. (47) and the
above assumptions, a function φα may only give rise to terms of
order O(θj τ k) with j + k = (α). Therefore, the lowest-order
contributions in terms of ε are of order O(ε(α)). We thus may
write Eq. (31a) in the form

M (1)(τ,x) =
∑

(α)�3

cα(x)φα(τ,x) + O(ε4). (54)

Evaluating these functions φα and resorting terms then
provides an approximation of M (1) in terms of seven base
functions ri . Of course, the resulting coefficients of these
functions are only truncated versions of the coefficients λi in
Eq. (52). The coefficient of r1,0 ≡ τ , e.g., is only accurate up
to order O(θ )—but this will be sufficient for our purposes.

So far, the expectation values 〈Hn(Y )|x〉 have been treated
as terms of order O(1). Actually, however, this is only a lower

limit for their order of magnitude. This becomes obvious by
looking at the Fokker-Planck equation of the stationary 2D
process [X(t),η(t)], where it turns out that 〈H1(Y )|x〉 is of
order O(ε) (see Appendix D),

〈H1(Y )|x〉 = 2θ1/2〈η|x〉 = −θ1/2 2f (x)

g(x)
. (55)

For n > 1, such explicit results are not available. Never-
theless, the magnitude of terms can be shown to obey (see
Appendix E)

〈Hn(Y )|x〉 = O(θn/2) = O(εn). (56)

With these findings, a number of terms become sufficiently
small to be neglected, which leads to an approximation of M (1)

in terms of the function base {r0,1,r1,0,r2,0,r3,0}. Additionally,
it turns out that terms 〈Hn(Y )|x〉 with n > 1 are no longer
present in the coefficients of these functions.

As a last step, we switch to a modified base {r0,1,r1,r2,r3},
where the new base functions ri are linear combinations of the
former ones,

ri(τ ) :=
{
r1,0(τ ) − θ r0,1(τ ), i = 1
ri,0(τ ) − θ ri−1(τ ), i = 2,3

. (57)

This base not only leads to simpler coefficients in general,
but most importantly, the coefficient of r0,1 now becomes
sufficiently small to be neglected, which leaves us with a base
of only three functions.

Following the above lines, also an approximation of M (2)

can be obtained. As it is the case for the approximation of M (1),
calculations are straightforward but cumbersome. Therefore,
we only give the final results here, which can be summarized
as follows. The moments M (k) can be approximated by

M (k)(τ,x) ≈
3∑

i=1

λ
(k)
i (x) ri(τ ), (58)

with

ri(τ ) =
{
τ − θ (1 − e−τ/θ ), i = 1
1
i! τ i − θ ri−1(τ ), i = 2,3

. (59)

The coefficients of r1 are found to be (omitting arguments)

λ
(1)
1 = f + 1

2gg′ + 1
2θ{f ′gg′ − fg′g′}, (60a)

λ
(2)
1 = gg + θ{f ′gg − fgg′}. (60b)

These equations will allow us to determine f and g, once
we manage to provide values for λ

(k)
1 and θ .

VII. PARAMETER ESTIMATION

Now the estimation of λ
(k)
i and θ can be addressed. For a

given time series of X, the moments M (k) can be estimated for
a number of N time-increments τν with

τν � τmax, ν = 1, . . . ,N. (61)

These estimates of M (k) can be fitted by means of Eq. (58)
in a least-square sense. Estimates of θ and λ

(k)
i thus may be
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obtained by minimizing the residuals

R(k)(x,λ(k),θ ) :=
N∑

ν=1

[
M (k)(x,τν) −

3∑
i=1

λ
(k)
i ri(τν,θ )

]2

,

(62)

where the values λ
(k)
i have been combined into the vector λ(k)

for syntactical convenience. Additionally, the dependency of
the functions ri on θ has been made explicit by the syntax.
Due to this dependency, a nonlinear approach is needed for the
minimization of the above residuals.

It may be noted that minimizing R(k) includes the estimation
of θ for each value of x and k—despite the fact that θ is a
constant. This is neither the most efficient nor the most accurate
way for parameter estimation. Instead, we will estimate θ

only once, based on the autocovariance A(τ ) := 〈X(τ )X(0)〉,
respectively, its increments

�A(τν) := A(τν) − A(0)

= 〈[X(τν) − X(0)]X(0)〉. (63)

Estimates of �A are much more accurate than estimates of
M (k), because the latter are based on far less data, due to the
conditioning on x. An approximation of �A that is accurate
up to terms of order O(ε3) is given by (see Appendix G)

�A(τ ) ≈
3∑

i=1

λiri(τ,θ ). (64)

An estimate of θ may thus be obtained by minimizing

R(λ,θ ) :=
N∑

ν=1

[
�A(τν) −

3∑
i=1

λiri(τν,θ )

]2

. (65)

For fixed θ , the optimal values λ∗
i (θ ) can be obtained by

linear regression. This means: we can explicitly calculate

λ∗(θ ) = arg min
λ

R(λ,θ ) (66)

as well as the corresponding residual value R[λ∗(θ ),θ ]. The
optimal value θ∗, which corresponds to the global minimum
R[λ∗(θ∗),θ∗], is thus formally given by

θ∗ = arg min
θ

R[λ∗(θ ),θ ]. (67)

In practice, θ∗ may be found numerically, e.g., by us-
ing some recursive strategy to search for the minimum of
R[λ∗(θ ),θ ] within the interval [0,θmax]. We safely may choose
θmax = τmax, because, according to our assumptions on the
magnitude of τ and θ , Eq. (53), we anyway need to rely on
θ < τmax. Otherwise our series-truncation, Eq. (58), would no
longer be valid.

Once θ has been estimated, estimates of λ
(k)
i become

accessible by a linear regression strategy, which allows us to
explicitly calculate

λ∗(k)(x,θ∗) = arg min
λ(k)

R(k)(x,λ(k),θ∗). (68)

As a last step, it remains to determine f and g using the
estimates of θ and λ

(k)
1 . This is achieved by writing Eq. (60) in

the form (omitting arguments and dropping asteriscs)

f = λ
(1)
1 − 1

2gg′ − 1
2θ{f ′gg′ − fg′g′}, (69a)

g =
√

λ
(2)
1 − θ{f ′gg − fgg′}. (69b)

Because θ is assumed to be small, f and g can be deter-
mined by a fixed-point iteration. For given values f (n) and
g(n), the right-hand sides of the above equations provide the
definitions for f (n+1) and g(n+1). However, as this requires the
evaluation of spatial derivatives of f (n) and g(n), one needs to
simultaneously iterate the values at different locations xi . The
required derivatives can then be estimated by some numerical
differencing scheme. Appropriate starting values are provided
by f (0)(xi) = λ

(1)
1 (xi) and g(0)(xi) = [λ(2)

1 (xi)]1/2 .

VIII. NUMERICAL EXAMPLE

In the following, we investigate the following numerical test
case,

Ẋ = f (X) + g(X) η(t), (70)

η̇ = −1

θ
η + 1

θ
ξ (t), (71)

with

f (x) = −x + 1
2x2 − 1

4x3, (72)

g(x) = 1 + 1
4x2. (73)

Our choice for f and g is not motivated by a specific
physical system. Instead, we want to show that our approach
is able to deal with properties of processes that may lead
to numerical problems. We therefore include nonlinearities
in the deterministic force f (x) and the coupling term g(x).
Furthermore, we consider a process with a heavy-tailed density
function.

We use the above system of equations to generate discrete
time series of X(t), consisting of 107 points, using a sampling
time step dt =0.005. Integration is performed using the Euler-
scheme with an internal time step δt =0.02 × min(θ,dt).
The global time scale of X(t) can be estimated from its
autocorrelation function and approximately equals unity for
small values of θ . In Fig. 1 excerpts of the generated time
series are shown for different values of θ , and in Fig. 2 the cor-
responding probability densities p(X) and the increments �A

of the autocorrelation functions are provided. While stronger
correlations of the driving noise lead to notably smoother time
series, almost no effect on the probability density can be seen.

For the analysis of a given time series, the regression
functions ri(τ,θ ) play a central role. Therefore, we give them
explicitly here again,

r1(τ,θ ) = τ − θ (1 − e−τ/θ ), (74a)

r2(τ,θ ) = τ 2/2 − θ r1(τ,θ ), (74b)

r3(τ,θ ) = τ 3/6 − θ r2(τ,θ ). (74c)
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FIG. 1. Excerpts of the generated time series. For increasing
values of θ , the curves become smoother.

The actual analysis can be summarized as
(1) Estimate the correlation time θ by nonlinear fitting

the increments of the autocovariance of X with the functions
ri(τ,θ ).

(2) Use the estimated value θ∗ to estimate the values
λ

(k)
1 (x,θ∗) by linear fitting the moments M (k)(τ,x) with the

functions ri(τ,θ∗).
(3) Use the estimated values λ

∗(k)
1 (x,θ∗) to calculate esti-

mates for f and g using Eq. (69).
These steps will now be detailed. We first consider the

estimation of the correlation time θ . As mentioned in Sec. VII,
an estimate θ∗ may be found by minimizing the residual
R[λ∗(θ ),θ ], where the vector λ∗(θ ) is obtained from a linear fit
of �A(τ ) using the functions ri(τ,θ ). To find the minimum of
R in an interval [θmin,θmax], we use a recursive strategy. First,
the residual is evaluated for a number of equidistant values θi

covering the whole interval. Next, the interval is narrowed and
repositioned such that it only covers the vicinity of the value θ∗

i ,

FIG. 2. PDFs of the numerical data (a) and increments �A(τ ) of
their autocorrelation (b).

FIG. 3. Ratio θ∗/θ of estimated and true correlation time.

for which the residual was found to be smallest. These steps
can now be repeated until the desired numerical accuracy is
reached.

In our example, we first use the values �A(ν dt) with
1 � ν � 60 for the fits. This corresponds to a maximum
time increment τmax = 0.3. Since we use a truncated series
representation for the description of �A, the value of τmax

affects the systematic errors of the fits and should be chosen
as small as possible. Therefore, once we have calculated
θ∗ with τmax = 0.3, we restrict the maximum increment to
τ ∗

max = √
θ∗, which is consistent with our assumptions on the

magnitude of terms, and repeat the calculation of θ∗.
Estimates for θ that are obtained by following this strategy

are shown in Fig. 3 for the range 0.001 � θ � 0.1. Even if θ

seems to be slightly underestimated for θ > 0.01, the overall
accuracy is quite good.

With an estimate θ∗ at hand, the coefficientsλ
(k)
1 are obtained

from linear fits of the moments M (k) using the functions
ri(τ,θ∗). For the estimation of these moments, we use a binning
approach, where the range −2 � x � 3 is divided into 25
bins. For each bin we estimate the values M (k)(ν dt,x) with
1 � ν � 60 from the data. Here, x is taken to be the position
of the bin-center. In Fig. 4, estimated values and resulting fits
of M (k) at x = −0.9 are shown for different values of θ . The

FIG. 4. Estimates of M (1) (a) and M (2) (b), obtained for a bin
centered at x = −0.9. Estimated values are shown as symbols and
the corresponding fits as solid lines. Additionally, the moments in the
limit θ → 0 are indicated by dashed lines.
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FIG. 5. Estimates of λ
(1)
1 , f , and f + gg′/2 (a) and [λ(2)

1 ]1/2 and
g (b) for θ = 0.01. Estimated values are shown as symbols and the
true functions as solid lines.

values obtained from the data can excellently be fitted with the
functions ri . The mean error is only about 2.5 × 10−4.

Finally, we consider the estimates of the coefficients λ
(k)
1

and of the functions f , f + gg′/2, and g. We do not show
the results for θ = 0.001, because these would look almost
identical to the results for θ = 0.01, which are presented in
Fig. 5. Here, we find that the estimates of f and g are in
very good accordance with the true values. Additionally, it
shows that—for the given value of θ—the values of λ

(1)
1 and

[λ(2)
1 ]1/2 are almost identical to the values of f + gg′/2 and g,

respectively. But this will change, when larger values of θ are
considered.

In Fig. 6 the results for θ = 0.05 are shown, where [λ(2)
1 ]1/2

clearly deviates from g. However, since we account for this
deviation by Eq. (69), we still obtain accurate estimates for f

and g.

FIG. 6. Estimates of λ
(1)
1 , f , and f + gg′/2 (a) and [λ(2)

1 ]1/2 and
g (b) for θ = 0.05. Estimated values are shown as symbols and the
true functions as solid lines.

FIG. 7. Estimates of λ
(1)
1 , f , and f + gg′/2 (a) and [λ(2)

1 ]1/2 and g

(b) for θ = 0.1. Estimated values are shown as symbols and the true
functions as solid lines.

To also show the limitations of our approach, the results for
θ = 0.1 are presented in Fig. 7. Here, the estimates become less
accurate outside the range −1 < x < 2. Especially for x > 2
the estimates of λ

(1)
1 now show fluctuations that hamper the

estimation of the spatial derivatives that are needed to calculate
f and g using Eq. (69).

As a final remark, we want to point out that the influence of
θ on the moments M (k) is notable even for increments τ much
larger than θ , as can be seen in Fig. 4. Considering, e.g., the case
θ = 0.001, one finds that up to τ = 0.05 = 50 θ the observed
moments clearly differ from the white-noise case. This finding
is somewhat counter-intuitive, since η(t) is exponentially
correlated. It is best understood when considering Eq. (74a),
which provides the lowest order description of the effects
of colored noise on the moments. Using M

(k)
0 to denote the

moments in the white-noise limit, θ = 0, one finds

M (k)/M
(k)
0 = 1 − θ

τ
(1 − e−τ/θ ), (75)

which approaches 1 − θ/τ for τ  θ . The effect of θ thus
does not decay exponentially but algebraically in τ .

IX. CONCLUSIONS

A parameter-free approach has been developed that allows
for the analysis of a stochastic process X(t) that is driven
by exponentially correlated, Gaussian noise. This analysis is
purely based on the moments of the conditional increments of
X and provides estimates for the drift- and diffusion-functions
of the process as well as for the correlation time θ of the driving
noise.

It should be noted that we use a perturbative approach,
where θ is assumed to be small as compared to the characteris-
tic time scale of X. Actually, the method presented in this paper
is accurate up to first-order terms in θ . In principle, however,
also higher-order approximations are possible. The method
may be seen as generalization of the direct estimation method
[1], which also formally is recovered in the limit θ → 0.
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The applicability and accuracy of our approach has been
demonstrated by a numerical example, where reasonable ac-
curate results are obtained even for values of θ as large as
ten percent of the global time scale. For smaller values of
θ , the results are (aside from finite-size fluctuations) close to
exact.

The presented approach is straightforward to implement and
neither demanding with regard to memory nor to CPU power.
An analysis of a series of 107 values is performed within a few
seconds on a standard desktop PC.

APPENDIX A: PRODUCTS OF INTEGRALS Jα

According to Eq. (21), the integrals Jα are defined as

J(α1,...,αn)(τ ) :=
∫ τ

sn=0

∫ sn

sn−1=0
· · ·

∫ s2

s1=0

× dZα1 (s1) · · · dZαn
(sn), (A1)

with

dZj (s) :=
{
ds, j = 0
dV (s), j = 1 . (A2)

There are a number of obvious solutions, like

J(0)(τ ) = τ, J(1)(τ ) = V (τ ). (A3)

Additionally, it is possible to express a product of two
integrals by a sum of single integrals: According to the above
definition, an integral Jα may be written as

Jα(τ ) :=
∫ τ

s=0
Jα−(s) dZαn

(s), (A4)

where the syntax (α1, . . . ,αn)− := (α1, . . . ,αn−1) has been
introduced. The differential increment of Jα is thus given by

dJα(τ ) = Jα−(τ ) dZαn
(τ ). (A5)

For the differential increment of a product JαJβ , one finds

d(JαJβ) = Jα dJβ + Jβ dJα. (A6)

In integrated form, we obtain (assuming β to have m

components)

Jα(τ )Jβ(τ ) =
∫ τ

s=0
Jα(s)Jβ−(s) dZβm

(s)

+
∫ τ

s=0
Jα−(s)Jβ(s) dZαn

(s). (A7)

This equation can now be applied recursively to the products
within the integrals. In the end, this leads to a sum of integrals
Jγ with index-vectors of length n + m,

JαJβ =
∑

γ∈M(α,β)

Jγ . (A8)

Actually, the vectors γ ∈ M(α,β) represent all ( n+m

n
)

possibilities to mix the indices of α and β while keeping their
relative ordering, This means, the position of αi in γ must
always precede that of αi+1, and the same must hold for the
components of β. As an example, one obtains

M[(α1,α2),(β1)] = {(β1,α1,α2),(α1,β1,α2),
(α1,α2,β1)}. (A9)

With this rule at hand, one finds, e.g.,

J(0)J(0) = 2J(0,0), (A10a)

J(0)J(0,0) = 3J(0,0,0),

... (A10b)

J(1)J(1) = 2J(1,1), (A10c)

J(1)J(1,1) = 3J(1,1,1),

... (A10d)

which implies (assuming a vector of length n)

J(0,...,0)(τ ) = 1

n!
[J(0)(τ )]n = 1

n!
τn, (A11)

J(1,...,1)(τ ) = 1

n!
[J(1)(τ )]n = 1

n!
[V (τ )]n. (A12)

One may also derive relations like

J(0)J(1) = J(1,0) + J(0,1), (A13)

J 2
(0)J(1) = 2[J(1,0,0) + J(0,1,0) + J(0,0,1)], (A14)

J(0)J
2
(1) = 2[J(0,1,1) + J(1,0,1) + J(1,1,0)], (A15)

J(1,0)J(1,0) = 2J(1,0,1,0) + 4J(1,1,0,0). (A16)

APPENDIX B: CORRELATION FUNCTIONS OF u(t)

Using the definition of u(t) [Eq. (40)], the definition of C

[Eq. (41)] reads

C(t1, . . . ,tn) =
〈

1

θn

∫ t1

s1=0
· · ·

∫ tn

sn=0

n∏
i=1

e(si−ti )/θ ξ (si)

× ds1 · · · dsn

〉

= 1

θn

∫ t1

s1=0
· · ·

∫ tn

sn=0
〈ξ (s1) · · · ξ (sn)〉

×
n∏

i=1

e(si−ti )/θ ds1 · · · dsn. (B1)

As ξ (t) is Gaussian white noise, the expectation values
〈ξ (t1) · · · ξ (tn)〉 are well known. For odd values of n they are
vanishing,

〈ξ (t1) · · · ξ (tn)〉 = 0, n = 2k + 1. (B2)

All even correlations can be expressed in terms of two-point
correlations. For n = 2k, this leads to a sum of k-fold products
of δ functions. This sum contains 1 × 3 × · · · × (n−1) terms,
which is the number of possibilities to permutate the function
arguments of such a product when only distinguishable func-
tions are allowed (functions may be indistinguishable due to
the symmetry of the delta function or due to the commutativity

012113-10



ANALYZING A STOCHASTIC PROCESS DRIVEN BY … PHYSICAL REVIEW E 97, 012113 (2018)

of multiplication). Up to n = 4, this reads

〈ξ (t1)ξ (t2)〉 = δ(t1−t2), (B3)

〈ξ (t1)ξ (t2)ξ (t3)ξ (t4)〉 = δ(t1−t2)δ(t3−t4) + δ(t1−t3)δ(t2−t4)

+ δ(t1−t4)δ(t2−t3). (B4)

According to Eq. (B1), it follows immediately that C also
vanishes for odd values of n,

C(t1, . . . ,tn) = 0, n = 2k + 1. (B5)

For n = 2, one finds

C(t1,t2) = 1

θ2

∫ t1

s1=0

∫ t2

s2=0
δ(s1−s2)

× e(s1+s2−t1−t2)/θ ds1 ds2

= 1

θ2

∫ min(t1,t2)

s=0
e(2s−t1−t2)/θ ds

=
{

e(t1−t2)/θ−e(−t1−t2)/θ

2θ
, t1 � t2

e(t2−t1)/θ−e(−t2−t1)/θ

2θ
, t1 > t2

. (B6)

The higher-order correlation functions of u(t) can be ex-
pressed in terms of two-point correlations like in the case of
Gaussian white noise. This can be seen when inserting the
expressions for 〈ξ (t1) · · · ξ (t2k)〉 into Eq. (B1). For each of the
k-fold products of the delta function, the integral factorizes into
a k-fold product of integrals of the form of Eq. (B6). Therefore,
the expressions for the correlation functions of ξ (t) directly
translate to that of u(t). One finds

C(t1,t2,t3,t4) = C(t1,t2)C(t3,t4) + C(t1,t3)C(t2,t4)
+C(t1,t4)C(t2,t3),
... (B7)

APPENDIX C: EXPLICIT EXAMPLE FOR φα

To provide an explicit example for the calculation of φα , the
case α = (1,0,1) is considered. Equation (36) then reads

φ(1,0,1)(τ,x) =
∫

�(τ )
Cη(s1,s3,x) ds1ds2ds3, (C1)

where we again denote the integration domain 0 � s1 � s2 �
s3 � τ by �(τ ) and Cη is defined according to Eq. (37).

By expressing η in terms of Y and u [Eqs. (38)–(40)], the
two-point correlation Cη(s1,s3,x) can be expressed in terms
of moments of Y and correlation functions of u, which are
denoted by C and defined according to Eq. (41),

Cη(s1,s3,x) = 〈Y 2|x〉e
−(s1+s3)/θ

θ
+ 〈Y |x〉e

−s1/θ

√
θ

C(s3)

+〈Y |x〉e
−s3/θ

√
θ

C(s1) + C(s1,s3). (C2)

Taking into account that, according to Eq. (B2), the func-
tions C(s1) and C(s3) are vanishing, this leaves us with
(omitting index vector and arguments for φ)

φ = 〈Y 2|x〉
∫

�(τ )

e−(s1+s3)/θ

θ
ds1ds2ds3

+
∫

�(τ )
C(s1,s3) ds1ds2ds3. (C3)

Inserting Eq. (B6) and taking into account that s1 � s3 holds
within the integration domain, this becomes

φ = 〈Y 2|x〉
∫

�(τ )

e−(s1+s3)/θ

θ
ds1ds2ds3

+
∫

�(τ )

e(s1−s3)/θ

2θ
ds1ds2ds3

−
∫

�(τ )

e(−s1−s3)/θ

2θ
ds1ds2ds3, (C4)

which evaluates to

φ = 〈Y 2|x〉a0(τ ) + a1(τ ), (C5)

with

a0(τ ) = 1
2θ2(1 − e−2τ/θ ) − τθe−τ/θ , (C6a)

a1(τ ) = 1
2τθ − θ2(1 − e−τ/θ )

− 1
4θ2(1 − e−2τ/θ ) + tθe−τ/θ . (C6b)

In terms of the Hermite Polynomials H0(Y ) := 1 and
H2(Y ) := 4Y 2 − 2 this can be rewritten as

φ = 〈H2(Y )|x〉b0(τ ) + 〈H0(Y )|x〉b1(τ ), (C7)

with

b0(τ ) = 1
8θ2(1 − e−2τ/θ ) − 1

4τθe−τ/θ , (C8a)

b1(τ ) = 1
2τθ − θ2(1 − e−τ/θ ) + 1

2 tθe−τ/θ . (C8b)

APPENDIX D: EXPECTATION VALUE OF η|x

Equations (1) and (2) describe a Markov process in two di-
mensions. Using x and s to denote the phase-space variables of
X and η, the Kramers-Moyal coefficients of the corresponding
Fokker-Planck equation are given by

D(1)(x,s) =
[
f (x) + g(x)s

−s/θ

]
, (D1)

D(2)(x,s) =
[

0 0
0 1/θ2

]
. (D2)

The Fokker-Planck equation thus reads

∂tp(x; s) = −∂x{p(x; s)[f (x) + g(x)s]} + ∂s{p(x; s)s/θ}
+ 1

2∂2
s {p(x; s)/θ2}. (D3)

Integrating with respect to s then gives [using p(x; s)=
p(x)p(s|x) and

∫
s
s p(s|x)=〈η|x〉]

∂tp(x) = −∂x{p(x)[f (x) + g(x)〈η|x〉]}
= −∂xj (x), (D4)

where j denotes the probability flux. For the stationary process
we have ∂tp(x) = 0, implying a constant flux. For natural
boundary conditions (vanishing flux and density at |x| → ∞)
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this implies j ≡ 0, and thus

〈η|x〉 = −f (x)

g(x)
. (D5)

APPENDIX E: EXPECTATION VALUES 〈Hn(Y )|x〉
In terms of Y (t) ≡ √

θη(t) our evolution equations [Eqs. (1)
and (2)] read

∂

∂t
X = f (X) + 1√

θ
g(X) Y, (E1)

∂

∂t
Y = −1

θ
Y + 1√

θ
ξ (t). (E2)

The corresponding Fokker-Planck equation for the station-
ary process may then be written as

0 = − ∂

∂x
{p(x; y)[θf (x) +

√
θ g(x) y]}

+ ∂

∂y
[p(x; y) y] + 1

2

∂2

∂y2
p(x; y), (E3)

where p(x; y) denotes the stationary joint PDF of X(t) and
Y (t). Actually, this density also depends on the parameter θ , but
we will not make this explicit by the syntax. In the following,
we express p(x; y) by a Hermite expansion of the form

p(x; y) = p0(x)
∞∑
i=0

θ i/2ci(x,θ ) Hi(y) G(y), (E4)

with

ci(x,θ ) :=
∞∑

j=0

θj ci,j (x), (E5)

G(y) := 1√
π

e−y2
, (E6)

Hi(y) := (−1)i
1

G(y)

∂i

∂yi
G(y). (E7)

The function p0(x), finally, denotes the density of X(t) in
the limit θ → 0. In this limit, Eq. (1) becomes Ẋ = f + gξ

(to be interpreted in the Stratonovich sense). The stationary
density of X can then be calculated from the corresponding
Fokker-Planck equation 0 = ∂x[fp0 − 1

2g∂x(gp0)], leading to

p0(x) := lim
θ→0

p(x)

= N

g(x)
exp

(∫ x

−∞

2f (s)

g2(s)
ds

)
, (E8)

where N is a normalization constant.
As the Hermite polynomials Hn(y) are orthogonal under the

weight G(y), i.e.,∫ ∞

−∞
Hn(y) Hm(y) G(y) dy = 2nn! δnm, (E9)

one first finds from Eq. (E4)∫ ∞

−∞
Hn(y) p(x; y) dy = θn/22nn!p0(x)cn(x,θ ). (E10)

Using p(x; y) = p(x)p(y|x) and
∫
y
F (y)p(y|x) =

〈F (Y )|x〉, the left-hand side of this equation may be rewritten

to obtain

p(x)〈Hn(Y )|x〉 = θn/22nn! p0(x)cn(x,θ ). (E11)

For the case n = 0, one finds (because of H0(y) ≡ 1)

p(x) = p0(x)c0(x,θ ). (E12)

Together with Eq. (E5) and p0(x) = limθ→0 p(x), this
provides us with the value of c0,0,

c0,0(x) = lim
θ→0

c0(x,θ ) = lim
θ→0

p(x)

p0(x)
= 1. (E13)

For n = 1, a relation between the coefficients c0,i and c1,i

can be obtained by using 〈H1(Y )|x〉 = −2
√

θf/g [Eq. (55)]
and p = p0c0. One first finds

c1(x,θ ) = −f (x)

g(x)
c0(x,θ ), (E14)

and as this equation holds for arbitrary θ , Eq. (E5) implies

c1,i(x) = −f (x)

g(x)
c0,i(x). (E15)

In the general case, one obtains

〈Hn(Y )|x〉 = θn/22nn!
cn(x,θ )

c0(x,θ )
. (E16)

Assuming the coefficients ci,j to be of orderO(1) then yields

cn(x,θ )

c0(x,θ )
= cn,0(x) + O(θ )

1 + O(θ )
= cn,0(x) + O(θ ), (E17)

which implies 〈Hn(Y )|x〉 = O(θn/2), as claimed by
Eq. (56).

It remains to be shown, however, that there exists a set of
finite coefficients ci,j , for which Eq. (E4) is a solution of the
Fokker-Planck equation as specified by Eq. (E3). To calculate
these coefficients, we insert Eq. (E4) into Eq. (E3). Using the
well-known relations

y Hn(y) = nHn−1(y) + 1
2Hn+1(y) (E18)

and

∂

∂y
[Hn(y) G(y)] = −Hn+1(y) G(y), (E19)

this first leads to (omitting arguments)

0 = − ∂

∂x

{
fp0θ

∞∑
i=0

θ i/2ciHiG

+ gp0θ
1/2

∞∑
i=0

θ i/2ci

[
iHi−1 + 1

2Hi+1
]
G

}

−p0

∞∑
i=0

θ i/2iciHiG. (E20)

Multiplying by Hn(y) and integrating with respect to y then
gives (dividing by θn/2 and formally defining c−1 := 0)

0 = −ncnp0 − ∂

∂x

{
1

2
cn−1gp0 + θcnfp0

+ (n + 1)θcn+1gp0

}
. (E21)
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As Eq. (E8) implies ∂x(gp0) = 2f

g
p0, we can get rid of the

factor p0. In terms of the operator

L := g

2

∂

∂x
+ f

g
, (E22)

this leads to

0 = ncn + L

[
cn−1 + 2f

g
cn + 2(n + 1)cn+1

]
. (E23)

For n = 0, this equation does not provide any additional
information, because it evaluates to 0 = L[(f/g)c0 + c1],
which, according to Eq. (E14), is fulfilled for all values of
θ . Therefore, we only need to look at n > 0 in the following.
Inserting Eq. (E5) and sorting terms by powers of θ then yields

0 = {ncn,0 + Lcn−1,0}
+

∞∑
i=1

θ i

{
ncn,i + L

[
cn−1,i + 2f

g
cn,i−1

+ 2(n + 1)cn+1,i−1

]}
. (E24)

As this equation must hold for arbitrary θ , all expressions
in curly brackets must vanish individually. The first of these
expressions, together with c0,0 ≡ 1, allows us to calculate all
coefficients cn,0,

cn,0 = −1

n
Lcn−1,0 = . . . = 1

n!
(−L)n · 1. (E25)

Explicitly one finds

c1,0 = −f

g
, (E26a)

c2,0 = 1

2

[
g

2

(
f

g

)′
+

(
f

g

)2]
,

... . (E26b)

Similarly, all coefficients cn,1 (and subsequently cn,2, cn,3,
. . .) can be calculated using

cn,i = −1

n
L

[
cn−1,i + 2f

g
cn,i−1 + 2(n + 1)cn+1,i−1

]
.

(E27)

However, to start the iterative calculation of c1,i , c2,i , . . .,
we need the coefficient c0,i , which can be obtained as follows.
For n = 1, we may use Eq. (E15) to express the left-hand side
of the above equation by −(f/g)c0,i . This leads to

∂

∂x
c0,i = −

(
∂

∂x
+ 2f

g2

)[
2f

g
c1,i−1 + 4c2,i−1

]
. (E28)

We thus find

c0,i = Ci + c∗
0,i (E29)

with

c∗
0,i = −

∫ x

0

(
∂

∂s
+ 2f (s)

g2(s)

)

×
[

2f (s)

g(s)
c1,i−1(s) + 4c2,i−1(s)

]
ds, (E30)

where Ci is an integration constant, which can be determined
by using the fact that

∫
x
p0c0,i vanishes for i > 0 (see Ap-

pendix F). Multiplying Eq. (E29) by p0 and integrating with
respect to x, therefore, yields

Ci = −
∫ ∞

−∞
p0(x)c∗

0,i(x) dx. (E31)

To summarize results: We now have equations for all
coefficients ci,j and for all integration constants Ci . But, as
noted above, these quantities need to be finite to ensure the
validity of Eq. (56). We thus need to presume smooth and
finite functions g and f/g. Additionally, the limit density p0

needs to decay sufficiently fast, to ensure finite values Ci .
As a final remark: The result for the coefficient c0,1, which

is found to be

c0,1 = −g

(
f

g

)′
−

(
f

g

)2

−
∫ ∞

−∞
p0(s)

[
f (s)

g(s)

]2

ds,

(E32)

may be checked for correctness using one of the small-θ
approximations for p(x) that are available in the literature (see,
e.g., Ref. [4]). These approximations are known to correctly
account for the first order terms in θ . Therefore, when expand-
ing one of them into a power-series in θ , the first-order term
needs to equal θp0c0,1—which indeed is found to be the case.

APPENDIX F: INTEGRALS
∫

x p0ci, j

Integrating Eq. (E4) with respect to x, inserting Eq. (E5)
and noting p(y) ≡ G(y) and 1 ≡ H0(y) leads to

H0(y) =
∞∑
i=0

θ i/2Hi(y)
∞∑

j=0

θj

∫ ∞

−∞
p0(x) ci,j (x) dx. (F1)

Since the functions Hi are independent, it first follows

1 = 1 +
∞∑

j=1

θj

∫ ∞

−∞
p0(x) c0,j (x) dx, (F2)

0 =
∞∑

j=0

θj

∫ ∞

−∞
p0(x) ci,j (x) dx, i > 0, (F3)

where c0,0 ≡ 1, implying
∫
x
p0c0,0 = 1, has been used in the

first equation. As these equations must hold for arbitrary θ , it
further follows

0 =
∫ ∞

−∞
p0(x) c0,j (x) dx, j > 0, (F4)

0 =
∫ ∞

−∞
p0(x) ci,j (x) dx, i > 0. (F5)

APPENDIX G: AUTOCORRELATION OF X(t)

With the autocorrelation of X(t) given by

A(τ ) := 〈X(τ )X(0)〉, (G1)

one first finds

�A(τ ) := A(τ ) − A(0)

= 〈[X(τ ) − X(0)]X(0)〉
=

∫
x,x ′

(x ′ − x)x p(x ′,τ ; x,0) dx ′ dx. (G2)
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Using p(x ′,τ ; x,0)=p(x,0)p(x ′,τ |x,0) then yields the
connection to M (1),

�A(t) =
∫

x

p(x,0) x

∫
x ′

(x ′ − x)p(x ′,τ |x,0) dx ′ dx

=
∫

x

p(x,0) xM (1)(τ,x) dx. (G3)

With Eq. (58) one thus finds [up to order O(ε3)]

�A(τ ) =
3∑

i=1

[∫
x

xλ
(1)
i (x) p(x,0) dx

]
ri(τ )

=
3∑

i=1

λiri(τ ), (G4)

with unknown but constant coefficients λi .
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