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Nonuniversal and anomalous critical behavior of the contact process near an extended defect
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We consider the contact process near an extended surface defect, where the local control parameter deviates
from the bulk one by an amount of λ(l) − λ(∞) = Al−s , with l being the distance from the surface. We concentrate
on the marginal situation s = 1/ν⊥, where ν⊥ is the critical exponent of the spatial correlation length, and study
the local critical properties of the one-dimensional model by Monte Carlo simulations. The system exhibits a rich
surface critical behavior. For weaker local activation rates A < Ac, the phase transition is continuous, having an
order-parameter critical exponent, which varies continuously with A. For stronger local activation rates A > Ac,
the phase transition is of mixed order: the surface order parameter is discontinuous; at the same time the temporal
correlation length diverges algebraically as the critical point is approached, but with different exponents on the
two sides of the transition. The mixed-order transition regime is analogous to that observed recently at a multiple
junction and can be explained by the same type of scaling theory.
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I. INTRODUCTION

The contact process [1,2] is the prototype of stochastic
lattice models, which undergoes a nonequilibrium phase tran-
sition from an active, fluctuating phase to a nonfluctuating
(absorbing) one [3–6]. This transition in the homogeneous
system belongs to the robust universality class of directed
percolation. Although the model is not exactly soluble, the
critical exponents and the location of the critical point are
known with high precision by series expansions [7,8]. The
critical properties of the contact process can be modified by
different kinds of inhomogeneities. For example, near a free
surface, where translational invariance is broken, the critical
exponent of the local order parameter is different from the
bulk one, although the divergence of the correlation length
involves the same exponent [9–14]. On the other hand a single
defect site represents an irrelevant perturbation, resulting only
in correction to scaling terms [15]. Recently, the contact
process has been studied near multiple junctions, which are
composed of M > 2 semi-infinite one-dimensional lattices
connected to a common central site [16]. Near such a junction
the model exhibits a mixed-order transition [17]: the local order
parameter is discontinuous, at the same time the temporal
correlation length diverges algebraically as the critical point
is approached. The contact process with quenched spatial
disorder shows infinite-disorder criticality [18–20], while for
temporal disorder, following early numerical works [21,22],
a so called infinite-noise critical behavior was found by a
real-time renormalization-group method [23]. This model has
also been studied with long-range interactions [24,25] on
fractals [26] and different kinds of complex networks [27,28].
We also mention that, in a one-dimensional model of diffusing
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particles, a single boundary site evolving according to the
dynamics of the contact process is able to induce an absorbing
phase transition [29].

In this work, we consider the contact process in the presence
of a smoothly varying inhomogeneity of the power-law form,
where the local control parameter deviates from the bulk one
by an amount

�λ(l) = Al−s , (1)

where l measures the distance from the surface. In solids,
such types of inhomogeneities are known to arise as a result
of a uniform elastic deformation [30]. The contact process
is often interpreted as a simple, idealized model of pop-
ulation dynamics. In reality, however, it is not uncommon
that the local environmental variables which influence the
reproduction rate of a population show some variations with
the geographical coordinates [31]. In this respect, our model
describes population dynamics in the presence of a special
form of spatial inhomogeneity. According to scaling theory,
when lengths are rescaled by a factor b > 1, so that l′ = l/b,
the inhomogeneity in the local control parameter transforms
as: �λ′(l′) = b1/ν⊥�λ(l), where ν⊥ is the critical exponent
of the correlation length measured in the direction of the
inhomogeneity. (In systems with isotropic critical scaling there
is just one correlation length exponent; however, for the contact
process we have different scaling exponents for spatial and
temporal correlations.) Therefore, the prefactor A = �λ(l)ls

obeys the transformation law [32,33]

A′ = Ab1/ν⊥−s . (2)

Thus, for s > ν⊥, when the decay of the inhomogeneity is
fast enough, A is decreasing and one expects the same critical
behavior as at a clean free surface. On the contrary, for s <

1/ν⊥ the decay of the inhomogeneity is so slow, that a new
type of singularity of the surface order parameter at the critical
point is expected.

2470-0045/2018/97(1)/012111(8) 012111-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.012111&domain=pdf&date_stamp=2018-01-10
https://doi.org/10.1103/PhysRevE.97.012111


RÓBERT JUHÁSZ AND FERENC IGLÓI PHYSICAL REVIEW E 97, 012111 (2018)

Extended defects of the form in Eq. (1) have been studied
before in two-dimensional Ising [34], Gaussian [35], and
directed-walk models [36], as well as in the mean-field ap-
proximation [37]; for a review, see Ref. [38]. According to
exact results, the local critical behavior in these problems
is in agreement with the relevance-irrelevance criterion in
Eq. (2). The most interesting behavior is found for the marginal
perturbation, when s = 1/ν⊥, in which case the surface critical
behavior depends on the parameter A in Eq. (1). In this paper,
we extend these investigations to the one-dimensional contact
process, in particular we will study the critical behavior for
marginal perturbations through Monte Carlo simulations.

The rest of the paper is organized in the following way.
In Sec. II the model is defined and details of the numerical
calculations are given. Results of the Monte Carlo simulations
can be found in Sec. III. Related problems and scaling con-
siderations are presented in Sec. IV and our main findings are
discussed in Sec. V.

II. THE MODEL

In the contact process, each site of a lattice can either be
vacant (ø) or occupied by one particle (A). The dynamics of the
model is a continuous-time Markov process in which particles
at site l can disappear (A → ø) with a rate μ(l), while new
particles can be produced on empty sites (ø → A), with a rate
p�(l)/n, where n is the coordination number of the lattice
and p is the number of occupied neighbors. Here we consider
a one-dimensional semi-infinite lattice, where l measures the
distance from the free surface and the local control parameter
defined as λ(l) = �(l)/μ(l) has a smooth inhomogeneity in
the form of Eq. (1).

In this system, there is a nonequilibrium phase transition at
λc = 3.297 85(2) [7], so that the bulk order parameter vanishes
as ρ ∼ �β , with a critical exponent β = 0.276 486(8) [8],
for a small reduced control parameter � = λ − λc. At the
same time, the correlation lengths in the bulk diverge as
ξ⊥ ∼ |�|−ν⊥ and ξ‖ ∼ |�|−ν‖ , with ν⊥ = 1.096 854(4) [8] and
ν‖ = 1.733 847(6) [8], in the spatial and temporal directions,
respectively. In the semi-infinite geometry the order parameter
at the surface,ρ1, generally shows a different type of singularity
at λ = λc than its bulk counterpart. In the homogeneous
system with A = 0 there is a second-order surface transition
with a modified order-parameter exponent: β1 = 0.733 71(2)
[12], but the singularity of the correlation lengths involve the
same exponents as in the bulk: ν‖,1 = ν‖ and ν⊥,1 = ν⊥. In
the present study we consider a marginal smoothly varying
perturbation in Eq. (1) with s = 1/ν⊥ and study numeri-
cally how the singularity of ρ1 depends on the value of the
parameter A.

In the numerical simulations, the above continuous-time
process is implemented as follows: The coordinates of active
sites are stored in a list, and, in every update step, a site is
picked randomly. Then, the chosen site is either made inactive
with probability 1/[λ(l) + 1], or one of its equiprobably chosen
neighboring sites is activated with probability λ(l)/[λ(l) + 1]
(provided it was inactive). In case of an end site, the adjacent
site is activated with probability 1

2λ(l)/[λ(l) + 1] (and with the
same probability nothing happens). Time is increased by one
after N (t) updates, where N (t) is the number of active sites at
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FIG. 1. (a) Time dependence of the survival probability measured
in numerical simulations for different values of A, A = 0.5, 1, 1.5,
2, 2.5, 3, 3.25, 3.5, 4, 4.5, 5, 5.5, 6, 7, 8 (from bottom to top) in the
bulk critical point λ = λc. The data at the estimated tricritical point
Ac = 3.25 are shown by circles. (b) Effective decay exponents for the
same data (from top to bottom).

the beginning of the time step. We performed seed simulations
in which all but the first site was initially inactive and measured
the survival probability P (t), which is the probability that the
system has not become trapped in the absorbing state up to
time t , in typically 106 runs. The long-time limit of the survival
probability P (t) defined in this way is nothing but the surface
order parameter ρ1 of the model. The size of the system was
chosen sufficiently large so that, during the simulations, the
other end site of the lattice was never activated.

III. NUMERICAL RESULTS

The dependence of the survival probability on time as well
as that of the effective decay exponent calculated by

δeff (t) = − ln P (t) − ln P (t ′)
ln t − ln t ′

, (3)

where t and t ′ are subsequent measuring times (typically ln t −
ln t ′ ≈ 0.08), are shown in Fig. 1 in the bulk critical point
λ = λc for different values of the parameter A. As can be seen
in the figures, two regimes can be distinguished. For small
enough A, the survival probability decays to zero algebraically,

P (t) ∼ t−δ(A), (4)
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TABLE I. Estimated decay exponents for different
values of A in the continuous regime. The value for the
homogeneous system (A = 0) is taken from Ref. [12].

A δ

−1.50 0.645(2)
−1.25 0.608(2)
−1.00 0.570(2)
−0.75 0.535(2)
−0.50 0.500(2)
−0.25 0.460(2)
0.00 0.42317(1)
0.25 0.388(1)
0.50 0.352(1)
0.75 0.317(1)
1.00 0.283(1)
1.25 0.250(1)
1.50 0.216(1)
1.75 0.183(2)
2.00 0.153(2)

and the decay exponent δ(A) is a decreasing function of A. The
estimates of δ(A) obtained by linear fits to the data presented
in Fig. 1, are collected in Table I and are plotted against A in
Fig. 2. The time-window used in our simulation seems to be
not long enough to obtain the asymptotic values of δ(A) for
A > 2, in which regime we simply continued analytically the
data for A � 2, which is indicated by a full line in Fig. 2. This
construction shows that δ(A) goes to zero at around A = Ac ≈
3.25. This observation is in agreement with the behavior of
P (t) shown in Fig. 1: for A > Ac the survival probability tends
to a nonzero limit p(A) for long times; thus, δeff (t) obviously
tends to zero in this regime. To find out the way P (t) tends to
its limit, we analyzed the discrete-time derivative of P (t). The
log-log plot shown in Fig. 3 suggests an algebraic approach to
the long-time limit in the form

P (t) 	 b(A)t−δ′(A) + p(A), (5)
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FIG. 2. Numerical estimates of various surface critical exponents
plotted against A. The curves fit to the data points (quadratic
function for δ and linear for δ′ and ν‖,1) seem to cross the x axis at
A = Ac ≈ 3.25.
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FIG. 3. Time dependence of the quantity tdP (t)/dt in a log-log
plot for different values of A in the discontinuous regime, A = 3.25,
3.5, 4, 4.5, 5, 5.5, 6, 7, 8 (from top to bottom). The asymptotic slope
of the curves is −δ′ according to Eq. (5).

which can be clearly seen at least for values of A not too close
to Ac. Going closer to Ac, the validity of Eq. (5) is shifted to
longer times, but presumably it remains valid asymptotically
in the entire range A > Ac.

The surface order parameter p(A) has been estimated by
fitting a function given in Eq. (5) to the putative asymptotic
regime of the numerical data. Results can be found in Table II
and seen in Fig. 4. Using the estimate Ac = 3.25(10) for the
location of the tricritical point, the order parameter is found to
vanish according to

p(A) ∼ (A − Ac)βtc (6)

as Ac is approached from above, with an exponent βtc =
0.40(4); see the inset of Fig. 4. This asymptotic form fits
to the numerical data for A � 3.75. However, the correction
exponent δ′(A) is found to be more sensitive to the size of the
time window and the calculated estimates obtained by linear
fits to the data presented in Fig. 3 are stable for A � 4.5. These
are collected in Table II and are plotted against A in Fig. 2.
By continuing analytically these data δ′(A) seems to vanish at
around Ac ≈ 3.25 in agreement with the behavior of δ(A) and

TABLE II. Estimated values of the correction exponent δ′, the
correlation-length exponent ν‖,1, and the order parameter p for
different values of A.

A δ′ ν‖,1 p

3.25 0.15(5)
3.5 0.26(1)
3.75 0.319(2)
4.0 2.00(2) 0.377(2)
4.25 0.421(2)
4.5 0.29(1) 2.13(2) 0.462(2)
5.0 0.37(2) 2.29(2) 0.528(1)
5.5 0.47(2) 0.580(1)
6.0 0.56(2) 2.61(3) 0.620(1)
7.0 0.75(3) 2.89(3) 0.682(1)
8.0 0.96(3) 3.21(3) 0.727(1)
9.0 1.15(4) 3.53(4) 0.760(1)
10.0 1.37(5) 3.88(4) 0.786(1)
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FIG. 4. Numerically estimated surface order parameters as a
function of A. The full (red) line represents the extrapolated behavior
according to Eq. (6). The slope of the straight line in the inset is 0.40.

p(A). (It is amusing to notice that Ac ≈ λc, within the error of
the calculation.)

The local critical behavior of the contact process at an
extended surface defect seems to be similar to that of the planar
Ising model with an extended surface defect, for which ana-
lytical results exist [34,38–40]. In that model, in the marginal
case s = 1/ν = 1, the spatial spin-correlation function G‖(r)
parallel with the surface shows different behavior depending
on A. If A < Ac = 1, G‖(r) decays algebraically with the
nonuniversal exponent 2xs = 1 − A/Ac, whereas if A = Ac,
it decays logarithmically as G‖(r) ∼ (ln r)−1. In the regime
A > Ac, there is a spontaneous surface magnetization, which
vanishes as (A − Ac)1/2 as Ac is approached. Here, G‖(r) tends
to its limiting value according to a power law with the exponent
2x ′

s = A/Ac − 1. In the contact process, the quantity which
is analogous to G‖(r) is the density autocorrelation function
C(t2 − t1) in the steady state. The nonstationary scaling behav-
ior of the survival probability is related to the stationary scaling
of the autocorrelation function through C(t) ∼ [P (t)]2, so in
the case of an analogous behavior to that of the Ising model
one would expect

P (t) ∼ (ln t)−γ (7)

at the point A = Ac with some exponent γ , which may possibly
be different from that of the Ising model γ = 1/2. Plotting
ln[P (t)] against ln(ln t) as shown in Fig. 5, we can see that
the decay of P (t) is compatible with the logarithmic form
in Eq. (7) at Ac ≈ 3.25, while below or above this value,
the data curve downward or upward, respectively. A linear
fit to the long-time domain gives γ = 0.53, which is quite
close to the corresponding value 1/2 of the Ising model.
The approximatively logarithmic decay of P 2(t) at Ac ≈ 3.25
is also demonstrated in Fig. 6. We note that, by using the
assumption in Eq. (5), the estimates from our limited time
series at A = Ac are p = 0.15(5) and δeff = 0.13(1), which
illustrates that much longer simulations would be necessary to
reach the asymptotic region.

We have also studied the scaling of the survival probability
in the case when the bulk is off-critical. Let us first consider the
regime A < Ac, where the surface order parameter exhibits a
continuous transition as the bulk control parameter � ≡ λ −
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FIG. 5. The logarithm of the survival probability as a function
of ln(ln t) for different values of A. The slope of the straight line is
−0.53.

λc crosses the critical point � = 0. In the off-critical system,
the temporal correlation length ξ‖ is finite, which manifests
itself in the behavior of P (t) either as an exponential cutoff
in the inactive phase � < 0 or an exponential approach to the
stationary value in the active phase � > 0. Approaching the
critical point from either phase, ξ‖ diverges according to

ξ‖ ∼ |�|−ν‖,1(A) (8)

and P (t) possesses the scaling property

P (t,�) = t−δ(A)f (�t1/ν‖,1(A)), (9)

where the scaling function f (x) is different in the active and
inactive phase. In accordance with the surface critical behavior
of the homogeneous contact process (A = 0) [5], this scaling
relation is fulfilled with the bulk value ν‖,1(A) = ν‖ of the
correlation-length exponent in the whole domain A < Ac,
although, in the vicinity of Ac, there are strong corrections
to scaling.

Next, let us consider the regime A > Ac, where the surface
order parameter is nonzero at the bulk critical point � = 0.
In the inactive phase, again with strong corrections close to
Ac, the relation in Eq. (9) is found to hold with δ(A) = 0 and a
correlation-length exponent which depends on A, as illustrated
for A = 4 in Fig. 7. The estimates of ν‖,1(A) obtained by
achieving a data collapse can be found in Table II and are
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FIG. 6. The inverse of the square of the survival probability
plotted against ln t for different values of A.

012111-4



NONUNIVERSAL AND ANOMALOUS CRITICAL BEHAVIOR … PHYSICAL REVIEW E 97, 012111 (2018)

-6

-4

-2

0

-8 -4 0 4

ln
[P

(t
,Δ

)]

ln[t|Δ|ν||,1]

-5

0

0  14

ln
[P

(t
,Δ

)]

ln t

Δ=-0.1024
Δ=-0.0512
Δ=-0.0256
Δ=-0.0128
Δ=-0.0064

FIG. 7. Scaling plot of the survival probability in the inactive
phase for A = 4. The parameter ν‖,1 = 2.0 was used. The inset shows
the unscaled data.

plotted in Fig. 2. Note that the stationary value p(A) has little
influence on the quality of the data collapse in Fig. 7, contrary to
the determination of the correction exponent δ′(A). Therefore
the estimates of ν‖,1(A) are stable at least in the region A � 4.

In the active phase � > 0, the deviation of P (t,�) from
the critical surface order parameter p ≡ limt→∞ P (t,0) is
expected to have the scaling property

P (t,�) − p(A) = t−δ′(A)f (�t1/ν ′
‖(A)). (10)

To eliminate p(A), we considered the derivative dP (t)/dt

rather than P (t) itself, which behaves according to

dP (t,�)

dt
= t−δ′(A)−1g(�t1/ν ′

‖(A)), (11)

where g(x) is another scaling function. As demonstrated in
Fig. 8 for A = 5, a satisfactory scaling collapse is obtained
in accordance with Eq. (11) if the bulk correlation-length
exponent ν‖ is used for ν ′

‖(A). Although the quality of the data
collapse seems to be better by using the somewhat lower value
of 1.6, we attribute this deviation to corrections to scaling.
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FIG. 8. Scaling plot of the derivative of the survival probability in
the active phase for A = 5. The parameters δ′ = 0.37 and ν ′

‖ = 1.7338
were used. The inset shows the unscaled data.

IV. RELATED PROBLEMS AND SCALING
CONSIDERATIONS

In the previous section, we presented numerical results
about the local critical behavior of the contact process at an
extended, marginal surface defect. Here we compare these
results with the local critical behavior in similar problems.
First, we consider the local critical behavior at a multiple
junction and use this analogy to present a scaling theory, which
explains some of our numerical results. Then we consider the
case when the extended defect is placed in the bulk of the
system. Finally, we present some scaling results about relevant
extended surface defects.

A. Critical behavior at multiple junctions

A multiple junction is a geometry in which M > 2 semi-
infinite chains are connected to a central site [16,41–43]. The
local critical behavior of the contact process at multiple junc-
tions has recently been studied and a mixed-order transition
has been observed [16]. The critical exponents at the junction,
such as δ′ and ν‖,1 in the inactive phase are M dependent, and
by comparing their values with the series of data in Table II we
can assign an approximate effective parameter AM for each
value of M . These are A3 ≈ 4.75, A4 ≈ 7.3, and A5 ≈ 9.5.
The observed critical behavior at multiple junctions has been
explained within the frame of a scaling theory in Refs. [16,44],
which is expected to hold for the problem of the marginal
extended defect in the region A > Ac. In the following we
recapitulate the essential points of this scaling reasoning.

B. Scaling consideration for A > Ac

We start to write the survival probability (the surface order
parameter) P = P (�,h1,�1,t) as a function of the bulk and
surface control parameters � and �1, respectively, as well as
the surface ordering field h1. According to the scaling theory
in Ref. [16], when lengths are rescaled by a factor b > 1, so
that l → l/b, the survival probability satisfies the relation

P (�,h1,�1,t) = b−z+yh1 P̃ (�b1/ν⊥ ,h1b
yh1 ,�1b

y�1 ,t/bz).

(12)

Here, yh1 and y�1 are the scaling exponents associated with h1

and�1, respectively, and z = ν‖/ν⊥ is the dynamical exponent.
For A > Ac the surface is ordered at the transition point, so
P = p is constant and scale independent and consequently
yh1 = z.

The essence of the scaling theory that we assume is that the
irrelevant variable �1 has different properties in the active and
inactive phases. In the active phase � � 0, �1 is a harmless
variable, thus the scaling functions are analytic and can be
expanded in a Taylor series:

P (�,h1,�1,t) − p = by�1 P̂ (�b1/ν⊥ ,h1b
yh1 ,t/bz). (13)

From this equation, by using standard scaling considerations,
we obtain the exponent relations δ′ = −y�1/z and β ′ =
−y�1ν⊥.

In the inactive phase � < 0, �1 is a dangerous variable and
the scaling functions are nonanalytic in �1. For the temporal
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correlation length we assume the following functional form:

ξ‖(�,h1,�1,l) = �−ε
1 ξ‖(�,h1�

−ε
1 ,l), (14)

from which it follows that the correlation-length exponent at
the surface is given by ν‖,1 = ν‖(1 + εδ′). From this relation
we can extract the new exponent:

ε = (ν‖,1/ν‖ − 1)/δ′, (15)

which has been calculated from the measured data in Table II.
The results are presented in Fig. 2. For large enough values
of A, A > 4, the calculated exponents are saturated around
ε ≈ 0.9, the same value that has been obtained for multiple
junctions [16]. In the region Ac < A < 4, we have no accurate
estimates for the critical exponents in the large-time limit, but
presumably ε remains constant all the way to Ac.

C. Extended defect in the bulk

The extended defect can also be placed in the bulk, so
that the inhomogeneity in the local control parameter as-
sumes the form λ(l) − λ = A|l|−s , where −∞ < l < ∞ now
measures the distance from the center of the defect. The
relevance-irrelevance criterion in this case is the same as
for the surface defect, see in Eq. (2). Having the marginal
perturbation, s = ν⊥, according to numerical investigations
now the critical value is at Ac = 0. Note that the same is true
for the planar Ising model [45]. For A � 0, the phase transition
at the defect is continuous and the local critical exponents
are A dependent. For a small enough value of A < −2 the
local critical exponents are approximately the same as in the
semi-infinite problem. Thus the extended defect seems to act
as an effective cut. For negative values of A which are closer
to zero, the calculated effective exponents have not reached
their asymptotic value within the available time window but
have a tendency to continuously increase with t . The measured
effective exponents at the largest available time are smaller
than in the semi-infinite system. Whether this trend stays
valid also for the asymptotic values, we cannot decide due
to strong corrections to scaling. For A > 0 the phase transition
at the defect is of mixed order and the corresponding critical
exponents are A dependent again.

We have also checked the local critical behavior at multiple
junctions with M > 2 having also a marginal extended defect.
In this case, the two regimes (nonuniversal continuous transi-
tion for A � Ac and mixed-order transition for A > Ac) are
separated by a tricritical point at Ac < 0. For example, with
M = 3, the tricritical point is estimated as Ac ≈ −0.7.

D. Scaling considerations for relevant inhomogeneities

For slowly varying inhomogeneities with s < 1/ν⊥ the
perturbation is relevant and a new type of surface critical
behavior is induced. The singular behavior of the surface order
parameter can be calculated through a scaling theory [38]. For
enhanced surface couplings, A > 0, the survival probability
(surface order parameter) stays finite at the bulk critical point
and satisfies the scaling relation:

P (�,A) = b−β1/ν⊥P (�b1/ν⊥ ,Ab1/ν⊥−s), A > 0, (16)

where we have used the scaling law of A in Eq. (2). Now putting
b = ξ⊥ we obtain

P (�,A) = �β1f

(
�

ξ⊥

)
, � = |A|−ν⊥/(1−ν⊥s), (17)

where � is the (finite) length scale induced by the inhomo-
geneity. The scaling function f (x) for small argument behaves
as f (x) ∼ xω with ω = −β1/ν⊥, which ensures that the �

dependence cancels, so P stays constant. Consequently, the
survival probability at the bulk critical point behaves as

p ∼ �ω ∼ |A|β1/(1−ν⊥s), A > 0. (18)

The spatial correlation function between two sites, G(l1,l2),
can be calculated by noticing that, in the vicinity of the bulk
transition point, a smoothly varying local length scale can be
defined as

ξ⊥(l) ∼ [�λ(l)]−ν⊥ , (19)

and the complete correlation function is obtained in the form
of an integral:

G(l1,l2) ∼ exp

(
−

∫ l2

l1

dl

ξ⊥(l)

)

∼ exp
[ − a

(
l
1−sν⊥
2 − l

1−sν⊥
1

)]
. (20)

Thus the spatial correlations at the bulk transition point
between the surface and the bulk are given in a stretched
exponential form:

G(0,l) ∼ exp[−(l/�)1−sν⊥ ], (21)

where � is defined in Eq. (17).
For reduced surface couplings (A < 0) in the active phase

(� > 0), the surface order is induced by the bulk order
parameter at a distance r from the surface. r can be estimated
by equating the contributions from the bulk control parameter
� and that of the inhomogeneity |A|r−s , leading to r ∼
(|A|/�)1/s . Now, we argue that the order parameter near the
surface is proportional to the correlation function at r , thus we
obtain from Eq. (21):

P (�,A) ∼ exp[−a|A|1/s�ν⊥−1/s]. (22)

V. DISCUSSION

In this paper, we study the surface critical behavior of the
one-dimensional contact process in the presence of a smooth
inhomogeneity of the power-law form in Eq. (1) and concen-
trate on the marginal perturbation with s = ν⊥. In this case,
for weak surface couplings having a parameter A < Ac, the
surface phase transition is continuous and the critical exponent
of the surface order parameter is a continuous function of A.
At the same time, the correlation-length exponents ν⊥ and ν‖
stay constant and retain their bulk values. Interestingly, we
can tune the parameter to such a value, A ≈ 1.95 ≈ 0.6Ac,
that the critical behavior at the surface is identical to that
in the bulk. For strong surface couplings with A > Ac, the
surface transition is of mixed order: the surface order parameter
is discontinuous at the transition point, while the correlation
lengths are divergent. In this regime, the temporal correlation
length shows an exponent asymmetry: in the active phase the
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estimate is compatible with the bulk value, while in the inactive
phase it exceeds the bulk value and increases with A. The
jump in the surface order parameter vanishes algebraically
as the tricritical point is approached and at the tricritical
point A = Ac, the survival probability exhibits a logarithmic
decay.

We have shown that the critical behavior in the mixed-order
transition regime (A > Ac) is similar to that at a multiple
junction having M > 2 legs. The critical behavior of both
problems can be described by the same type of scaling
theory, in which an irrelevant parameter plays important role.
One can define a combination of the measured exponents,
ε = (ν‖,1/ν‖ − 1)/δ′, which turns out to be (approximately)
independent of the parameters A and M , having the same value
ε ≈ 0.9. We note that similar observation has been made for
the planar Ising model, in which case this exponent is exactly
known as ε = 1 [16].

If the extended defect is placed in the bulk, then the
continuous and mixed-order transition regimes are separated
at Ac = 0 and, for (large enough) negative values of A, the
defect acts as an effective cut.

Finally, we mention that the extended-defect problem can
be generalized to higher dimensions, as well. The defect
can then be located either at the surface along which it is
translationally invariant or centered in the bulk so that the
system is translationally invariant in a subspace of ddef <

d dimensions and rotationally symmetric in the orthogonal
subspace of d − ddef dimensions. In the case of a surface defect
or a bulk defect with ddef = d − 1, a scenario similar to that of
the one-dimensional problem is expected to hold. If, however,
ddef < d − 1, the local critical behavior can be different. For
example, for a rotationally symmetric bulk defect with ddef = 0
in d = 2 dimensions, no local ordering at the center of the
defect is expected, in analogy with the similar problem for the
planar Ising model [38,46].
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