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Original electric-vertex formulation of the symmetric eight-vertex model on the square lattice is
fully nonuniversal
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The partition function of the symmetric (zero electric field) eight-vertex model on a square lattice can be
formulated either in the original “electric” vertex format or in an equivalent “magnetic” Ising-spin format. In
this paper, both electric and magnetic versions of the model are studied numerically by using the corner transfer
matrix renormalization-group method which provides reliable data. The emphasis is put on the calculation of
four specific critical exponents, related by two scaling relations, and of the central charge. The numerical method
is first tested in the magnetic format, the obtained dependencies of critical exponents on the model’s parameters
agree with Baxter’s exact solution, and weak universality is confirmed within the accuracy of the method due
to the finite size of the system. In particular, the critical exponents η and δ are constant as required by weak
universality. On the other hand, in the electric format, analytic formulas based on the scaling relations are derived
for the critical exponents ηe and δe which agree with our numerical data. These exponents depend on the model’s
parameters which is evidence for the full nonuniversality of the symmetric eight-vertex model in the original
electric formulation.
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I. INTRODUCTION

The two-dimensional (2D) eight-vertex model on the square
lattice was proposed as a generalization of ice-type systems
in 1970 [1,2]. Its symmetric (zero electric field) version was
solved by using the idea of commuting transfer matrices and
the Yang-Baxter equation for the scattering matrix as the
consistency condition [3–6]. This became a basis for gener-
ating and solving systematically integrable models within the
so-called “quantum inverse-scattering method” (QISM) [7,8];
see Refs. [9,10].

The partition function of the original “electric” eight-vertex
formulation can be mapped onto the partition function of a
“magnetic” Ising model on the dual square lattice with plaque-
tte interactions [11,12]. The exact magnetic critical exponents
of the symmetric eight-vertex model depend continuously
on the model’s parameters [6]. This violates the universality
hypothesis which states that critical exponents of a statistical
system depend only on the symmetry of microscopic state
variables and the spatial dimensionality of the system [13].
Suzuki [14] formulated the singularities of statistical quantities
near the critical point not in terms of the usual temperature
difference, but in terms of the inverse correlation length which
also goes to zero when approaching the critical point. The
rescaled critical exponents are universal; this phenomenon is
known as “weak universality.” The necessary condition for
weak universality is the constant value of critical exponents
defined just at the critical point, namely η and δ, since the
freedom in the definition of deviation from the critical point
has no effect on these exponents.

Kadanoff and Wegner [12] suggested that the variation of
critical indices is due to the special hidden symmetries of the
zero-field eight-vertex model. If an external field is applied,
they argued that the magnetic exponents should be constant and

equivalent to those of the standard 2D Ising model; see also
Ref. [6]. This conjecture was supported by renormalization-
group calculations [15–17]. Recently, the conjecture was con-
firmed numerically, except for two specific “semisymmetric”
combinations of vertical and horizontal electric fields for which
the model still exhibits weak universality [18].

Historically, the next weakly universal Ashkin-Teller model
[19–22] is in fact related to the eight-vertex model [16]. Weak
universality appears also in interacting dimers [23], frustrated
spins [24,25], quantum phase transitions [26], models of
percolation [27], etc. There are indications that both univer-
sality and weak universality are violated in the symmetric
16-vertex model on the 2D square and three-dimensional (3D)
diamond lattices [28,29], Ising spin glasses [30], frustrated
spin models [31], experimental measurements on composite
materials [32,33], etc.

The six-vertex model is a simplified ice-type version of
the eight-vertex model with certain vertex weights equal to
zero. This model, represented as the quantum Heisenberg
XXZ spin- 1

2 chain, is related to many other systems like
supersymmetric spin chains [34–39], 2D loop and tilling
models [40–42], the random-cluster model of Fortuin and
Kasteleyn [43–45], the restricted solid-on-solid model [46,47]
and classical 2D Potts models [48,49]. The relations of the
six-vertex model to these models have a precise meaning within
Temperley-Lieb algebra representation theory [50]. Although
all partition functions of the related models are equal, the
content of critical exponents is only partially overlapping.

The polarization is an order parameter in the symmetric
eight-vertex model. The corresponding critical exponent βe,
which depends on the model’s parameters, is the only exactly
known electric exponent [6]. The restriction to the six-vertex
model and the related XXZ spin chain provides additional
information about electric critical exponents. Using previous
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results about the arrow correlation length exponent for the
six-vertex model [51], Luther and Peschel [52] have shown that
the arrow correlation function is the same as the transverse spin
correlation of the Heisenberg XXZ model. Using a general-
ization of the Jordan-Wigner transformation for spin operators,
they were able to calculate the asymptotic behavior of spin
correlation functions for a continuum generalization of the
spin- 1

2 XXZ chain and suggested a formula for indices γe and
ηe. The analytical predictions for the electric critical indices
was verified well numerically by using the Trotter approx-
imation [53]. The only numerical complication concerns the
isotropic XXX antiferromagnetic chain where a multiplicative
logarithmic correction for the correlation function exists; for
a controversial discussion about this topic see Refs. [54–56].
A density-matrix renormalization-group study [57] improved
the previous calculations of the logarithmic correction.

The aim of the present paper is to study numerically both
magnetic and electric critical exponents of the symmetric
eight-vertex model. To achieve a high accuracy, we apply
the corner transfer matrix renormalization-group (CTMRG)
method, based on the renormalization of the density matrix
[58–61]. Four critical exponents which fulfill two scaling
relations and the central charge are calculated in both magnetic
and electric formats. The CTMRG method is first tested on
the magnetic version of the symmetric eight-vertex model;
the obtained dependence of magnetic critical exponents on
the model’s parameters is in good agreement with Baxter’s
exact solution and weak universality is verified. In particular,
the critical exponents η and δ are constant, as required by
weak universality. On the other hand, in the electric format,
analytic formulas based on the scaling relations are derived for
the critical exponents ηe and δe which agree with our numerical
data. These exponent depends on the model’s parameters which
is evidence that both universality and weak universality are
violated, i.e., the original electric formulation of the eight-
vertex model is fully nonuniversal. Thus the equivalence of
the electric and magnetic partition functions does not imply
the same critical properties of the two model versions.

The paper is organized as follows. In Sec. II, we summarize
basic facts about the symmetric eight-vertex model on the
square lattice. These facts include the mapping onto the
Ising model with plaquette interactions, definitions of critical
exponents of interest, and of their scaling relations and the
exact results of Baxter. In Sec. III, we review briefly the
CTMRG numerical method and the evaluation techniques
of magnetic and electric critical exponents. The numerical
method is first tested on magnetic critical exponents in Sec. IV;
their dependencies on the model’s parameters agree with
Baxter’s values and the phenomenon of weak universality is
checked within the accuracy of the method due to the finite size
of the system. The numerical results for electric counterparts
of critical exponents, presented in Sec. V, confirm clearly that
the symmetric eight-vertex model is fully nonuniversal in its
original vertex format. Section VI brings a brief recapitulation.

II. BASIC FACTS ABOUT THE SYMMETRIC
EIGHT-VERTEX MODEL

In vertex models, one attaches to each lattice edge local
two-state variables, say arrows directing to one of the two
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FIG. 1. Admissible configurations of the eight-vertex model, with
the corresponding notation of the Boltzmann vertex weight.

vertices joined by the edge; the arrows can be interpreted
as electric dipoles. In the eight-vertex model, each vertex
configuration of edge states satisfies the rule that only an
even (0, 2, or 4) number of arrows point toward the vertex.
From among 24 = 16 possible vertex configurations just eight
ones fulfill this rule; the admissible configurations of arrows
together with the corresponding Boltzmann vertex weights are
presented in Fig. 1. In the symmetric version of the eight-vertex
model considered here, the Boltzmann weight of a vertex
configuration is invariant with respect to the reversal of all
arrows incident to a vertex which corresponds to zero electric
fields acting on dipole arrows. The Boltzmann vertex weights
can be formally expressed in terms of local energies as follows:

a = C exp(−εa/T ), b = C exp(−εb/T ),
(2.1)

c = C exp(−εc/T ), d = C exp(−εd/T ),

where T is the temperature (in units of kB = 1) and the value of
the prefactor C is irrelevant. The partition function is defined
by

Z8V(T ) =
∑ ∏

(weights), (2.2)

where the summation goes over all possible edge configura-
tions on the lattice and, for a given configuration, the product
is taken over all vertex weights.

A. Mapping onto the Ising model

The symmetric eight-vertex model on the square lattice
can be mapped onto its Ising counterpart defined on the dual
(also square) lattice [11,12]. We assign +1 to the up or right
arrows and −1 to the down or left arrows. A state configuration
φ,χ,τ,κ (φ = ±1, χ = ±1, etc.) of incident edges is depicted
in Fig. 2. The eight-vertex rule is equivalent to the constraint

φχτκ = 1. (2.3)

The Ising spin variables on the dual square σ1,σ2,σ3,σ4 (σ1 =
±1, σ2 = ±1, etc.) are related to the vertex edge variables at
the bond intersections as follows:

φ = σ1σ2, χ = σ3σ4, τ = σ1σ3, κ = σ2σ4. (2.4)

Due to the equality φχτκ = σ 2
1 σ 2

2 σ 2
3 σ 2

4 the eight-vertex re-
quirement (2.3) is automatically fulfilled. Note that the spin-
flip transformation σi → −σi for all i = 1,2,3,4 leaves the
actual values of vertex states unchanged.
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FIG. 2. Mapping from the electric-vertex formulation with edge
states φ,χ,τ,κ to the magnetic Ising representation with site spin
variables σ1,σ2,σ3,σ4.

The Ising Hamiltonian can be written as

HI =
∑
plaq

Hplaq, (2.5)

where each square plaquette Hamiltonian Hplaq involves inter-
actions of four spins σ1,σ2,σ3,σ4 = ±1 as depicted in Fig. 2.
The plaquette Hamiltonian involves diagonal and four-spin
interactions,

−Hplaq = Jσ2σ3 + J ′σ1σ4 + J ′′σ1σ2σ3σ4. (2.6)

It exhibits the spin-flip symmetry σi → −σi (i = 1,2,3,4).
The partition function of the eight-vertex model (2.2) and

the one of the Ising model

ZI(T ) =
∑
{σ }

exp(−HI/T ) (2.7)

are equivalent,

ZI(T ) = 2Z8V(T ), (2.8)

if the Boltzmann vertex weights are expressed in terms of the
Ising interactions in the following way [6]:

a = C exp[(J + J ′ + J ′′)/T ],

b = C exp[(−J − J ′ + J ′′)/T ],

c = C exp[(−J + J ′ − J ′′)/T ],

d = C exp[(J − J ′ − J ′′)/T ]. (2.9)

The Boltzmann vertex weight w(τ,φ|χ,κ), corresponding
to the configuration of the edge state in Fig. 2, which is
constrained by (2.3), is expressible in terms of Ising couplings
as follows:

w(τ,φ|χ,κ) = C exp[(Jφτ + J ′χτ + J ′′φχ )/T ]. (2.10)

In terms of the free energy F defined as −F/T = ln Z, the
relation between the partition functions (2.8) is equivalent to

−FI(T )/T = ln 2 − F8V(T )/T . (2.11)

For the internal energies defined by U = −T 2∂(F/T )∂T , it
holds that

UI(T ) = U8V(T ). (2.12)

Since the Ising Hamiltonian HI is invariant with respect to
the spin-flip transformation σi → −σi at all lattice sites, the
Ising magnetization

M = 〈σ 〉 (2.13)

(〈· · · 〉 means the thermodynamic average) is a good order
parameter in the ferromagnetic phase.

For every state configuration of edges incident to each
vertex, the constraints (2.3) and the Boltzmann weights (2.10)
are invariant with respect to the transformation φ,χ,τ,κ →
−φ, − χ, − τ, − κ . The isotropic polarization,

P = 〈φ〉, (2.14)

is therefore a legitimate order parameter as well. Note that due
to the relations between the arrow and spin variables (2.4),
the polarization is equal to the correlation function of nearest-
neighbor Ising spins.

B. Magnetic format: Exact results

The symmetric eight-vertex model has five phases [6]. We
shall restrict ourselves to the ferroelectric-A phase defined
by the inequality a > b + c + d and the disordered phase
in the region a,b,c,d < (a + b + c + d)/2. The second-order
transition between these phases takes place at the hypersurface

ac = bc + cc + dc, (2.15)

where the c subscript means evaluated at the critical temper-
ature Tc. Note that our vertex weights do not belong to the
“principal regime” defined by the inequality c > a + b + d

(see Sec. 10.7 of Ref. [6]), so certain formulas in [6] written
for vertex weights in the principal regime must be adapted to
our case.

In general, only two critical exponents are independent and
all other exponents can be expressed in terms of them by using
scaling relations [6]. Here, we shall concentrate on four critical
exponents.

Let us consider a small temperature deviation from the
critical point 
T = T − Tc. For 
T → 0−, the spontaneous
magnetization M behaves as

M ∝ (−
T )β (2.16)

which defines the critical index β.
The pair spin-spin correlation function at distance r , G(r) =

〈σ0σr〉, has in two dimensions the large-distance asymptotic
form

G(r) ∝ 1

rη
exp(−r/ξ ), (2.17)

where ξ is the correlation length. Approaching the critical
point, the correlation length diverges as

ξ ∝

T →0+

1

(
T )ν
, ξ ∝


T →0−

1

(−
T )ν ′ , (2.18)

where the critical exponents ν and ν ′ are in fact identical. Just at
the critical point, where ξ → ∞, the exponential short-range
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decay of the correlation function (2.17) becomes long ranged,

G(r) ∝ 1

rη
, T = Tc, (2.19)

which defines the exponent η.
Let us apply to the spin system an external magnetic field

H , so that the Ising Hamiltonian can be written as

HI =
∑
plaq

Hplaq − H
∑

i

σi . (2.20)

The critical point corresponds to T = Tc and H = 0. At T =
Tc and for small H , the Ising magnetization M(H ) exhibits the
singular behavior of type

M(H ) ∝ H 1/δ, T = Tc, (2.21)

which defines the critical exponent δ.
The von Neumann entropy is defined by

SN = −Tr ρ ln ρ, (2.22)

where ρ is the density matrix of the Ising model defined below.
At the critical point, the entropy grows with the size L of the
system as [62,63]

SN ∼ c

6
ln L, T = Tc, (2.23)

where c is the central charge. It holds that c = 1 for the weakly
universal symmetric eight-vertex model [6]. We recall that c =
1/2 for the universal 2D Ising model.

In two dimensions, the four exponents of interest fulfill two
scaling relations [6],

η = 2
β

ν
, δ = 4

η
− 1. (2.24)

According to the exact Baxter’s solution of the symmetric
eight-vertex model, the exponents β and ν, whose definition
requires us to introduce the small temperature deviation 
T ,
are given by [6]

β = π

16μ
, ν = π

2μ
, (2.25)

where the auxiliary parameter

μ = 2 arctan

(√
acbc

ccdc

)
= 2 arctan(e2J ′′/Tc ). (2.26)

If J ′′ = 0, when the system splits into two independent Ising
lattices with nearest-neighbor couplings J and J ′, we have
μ = π/2 and Eq. (2.25) gives the standard 2D Ising exponents

βI = 1

8
, νI = 1. (2.27)

Suzuki’s concept of weak universality [14] explains the
dependence of the critical exponents (2.25) on J ′′ by the
ambiguity in the definition of the deviation from the critical
point. If one considers the inverse correlation length ξ−1 ∝
(Tc − T )ν with T → T −

c instead of the temperature difference
Tc − T , the new (rescaled) critical exponent

β̂ ≡ β

ν
= 1

8
(2.28)

becomes universal. According to the definitions (2.19) and
(2.21), the exponents η and δ are defined just at the critical
temperature and as such do not depend on the definition of
the deviation from the critical temperature. Therefore η and δ

must be constant in a weakly universal theory and this fact is
confirmed by Baxter’s result,

η = 1
4 , δ = 15, (2.29)

i.e., η = ηI and δ = δI. The scaling relations (2.24) evidently
holds for the exponents (2.25) and (2.29).

C. Electric format: Exact results

As concerns the electric format, the only exactly known
critical exponent [6]

βe = π − μ

4μ
, (2.30)

with μ defined by Eq. (2.26), describes the singular behavior
of the spontaneous polarization near the critical point,

P ∝ (−
T )βe . (2.31)

In order to distinguish between magnetic and electric expo-
nents, we add the subscript “e” to the latter.

In analogy with the magnetic system, we introduce the
pair arrow-arrow correlation function at distance r , Ge(r) =
〈φ0φr〉. In two dimensions, it exhibits the large-distance be-
havior of type

Ge(r) ∝ 1

rηe
exp(−r/ξe). (2.32)

Close to the critical point, the correlation length ξe diverges as

ξe ∝

T →0+

1

(
T )νe
, ξe ∝


T →0−

1

(−
T )ν ′
e
, (2.33)

where νe = ν ′
e. At the critical point,

G(r) ∝ 1

rηe
, T = Tc. (2.34)

Let us apply an isotropic electric field Ex = Ey = E, so that
the Hamiltonian changes by −E

∑
〈i,j〉 φ〈i,j〉 where φ〈i,j〉 is the

state variable on the edge connecting nearest-neighbor sites i

and j . The critical point corresponds to T = Tc and E = 0. At
T = Tc and for small E, the polarization P (E) behaves as

P (E) ∝ E1/δe , T = Tc, (2.35)

which defines the electric exponent δe.
As in the magnetic format, the von Neumann entropy Se

N is
defined by (2.22) with ρ being the density matrix of the vertex
model. At the critical point, the entropy grows with the system
size L as

Se
N ∼ ce

6
ln L, T = Tc, (2.36)

where ce is the electric central charge.
The four electric critical exponents of interest fulfill the

electric counterparts of scaling relations (2.24):

ηe = 2
βe

νe
, δe = 4

ηe
− 1. (2.37)
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FIG. 3. The CTMRG renormalization process. The density matrix
ρ is composed of four transfer matrices C1, C2, C3, and C4; each
straight line represents L matrix site indices which are either fixed
(“free” lines adjacent to C1 and C4) or summed out [common lines of
pairs (C1,C2), (C2,C3), and (C3,C4)]. The expansion process of the
corner transfer matrix C and the half-row transfer matrix H from the
previous iteration, see text.

III. NUMERICAL METHOD

A. CTMRG approach

The CTMRG method [64,65] is based on Baxter’s tech-
nique of corner transfer matrices [6]. Each quadrant of the
square lattice with size L × L is represented by one of the
corner transfer matrices C1, . . . ,C4 and the partition function
Z = Tr(C1C2C3C4). The density matrix is defined by ρ =
C1C2C3C4, see Fig. 3, so that Z = Tr ρ. The number of degrees
of freedom grows exponentially with L and the density matrix
is used in the process of their reduction. Namely, degrees of
freedom are iteratively projected to the space generated by the
eigenvectors of the density matrix with the largest eigenvalues.
The projector on this reduced space of dimension D will be
denoted by O; the larger the truncation parameter D taken, the
better is the precision of the results attained. In each iteration
the linear size of the system is expanded from L to L + 2
via the inclusion of the Boltzmann weight W of the basic
plaquette cell (see Fig. 2). The expansion process transforms
the corner transfer matrix C to C ′ and the half-row transfer
matrix H to H ′ in the way represented schematically in Fig. 3.
The empty boxes (circles) represent new multispin (spin)
variables obtained after the renormalization which consists
in the summation and O projection of multispin (spin) black
boxes (circles) from the previous iteration. The fixed boundary
conditions are used, with each spin at the boundary set to the
value σ = −1. This choice ensures a quicker convergence of
the method in the ordered phase.

Technically, one has to distinguish between two choices of
vertex weights c and d.

The choice

c = d (3.1)

leads to the symmetric density matrix ρ. In the Ising repre-
sentation (2.9), the choice (3.1) corresponds to the constraint

J = J ′. The original formulation of CTMRG [64,65] requires
that the density matrix ρ is symmetric. In that case we can
return to the row-to-row transfer matrix T and denote by |ψ (l)

0 〉
and |ψ (r)

0 〉 its left and right eigenvectors corresponding to the
largest eigenvalue, respectively. For the symmetric T , we have
the equality |ψ (l)

0 〉 = |ψ (r)
0 〉. In the limit L → ∞, the product

of the corner matrices C1C2 is expressible as |ψ (l)
0 〉 and C3C4

as 〈ψ (r)
0 |, so that

ρ = Tr
∣∣ψ (l)

0

〉〈
ψ

(r)
0

∣∣. (3.2)

Here, the trace is taken over common indices of the corner
matrices C2 and C3; see Fig. 3.

If

c 
= d, (3.3)

it holds that |ψ (l)
0 〉 
= |ψ (r)

0 〉 and the density matrix is nonsym-
metric. Within the Ising representation (2.9), this choice of
vertex weights corresponds to the inequality J 
= J ′. It can be
shown [59,66] that the symmetrized density matrix

ρ = 1
2 Tr

(∣∣ψ (l)
0

〉〈
ψ

(l)
0

∣∣ + ∣∣ψ (r)
0

〉〈
ψ

(r)
0

∣∣) (3.4)

provides an optimal basis set which minimizes the distance of
a trial vector in the reduced space (of dimension D) from the
right and left eigenstates |ψ (l)

0 〉 and |ψ (r)
0 〉. This fact allows us

to use the symmetrized density matrix (3.4) within the standard
CTMRG [64,65] when treating the more complicated case
(3.3). The only exception is the von Neumann entropy (2.22)
for which the above approach does not work and therefore
in this case we shall consider only the choice c = d with the
symmetric density matrix ρ.

B. Calculation of critical exponents

First we focus on the magnetic critical exponents ν, η, β, δ

and the central charge c, and then on their electric counterparts.

1. Magnetic exponents

The critical magnetic exponent ν can be obtained from the
dependence of the internal energy UI on the linear size of the
system L at the critical point [67],

UI(L) − UI(∞) ∝ L−2+1/ν, T = Tc. (3.5)

The effective (i.e., L-dependent) exponent νeff is calculated as
the logarithmic derivative of the internal energy as follows:

νeff (L) =
[

3 + ∂

∂ ln L
ln

(
∂UI

∂L

)]−1

. (3.6)

If T is close to the critical Tc, the plot νeff (L) either goes to 0
(in the ordered phase) or diverges (in the disordered phase)
with increasing L. We can therefore determine the critical
temperature Tc from the requirement that νeff (L) goes to a
finite nonzero value as L → ∞, i.e.,

lim
L→∞

νeff (L) → ν, T = Tc, (3.7)

where 0 < ν < ∞ is the critical exponent we are searching
for. For the model under consideration with the known critical
manifold this procedure is not necessary, but we checked that
it reproduces with a high precision the exact relation (2.15).
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The magnetic index η follows from the L dependence of
the magnetization at the critical point [67],

M ∝
L→∞

L−η/2, T = Tc. (3.8)

The effective exponent ηeff is calculated as the logarithmic
derivative of magnetization

ηeff (L) = −2
∂ ln M

∂ ln L
. (3.9)

As before, η = limL→∞ ηeff (L).
To calculate the magnetic exponent β, we make use of the T

dependence of the spontaneous magnetization M close to the
critical temperature Tc; see Eq. (2.16). The effective exponent
βeff is extracted via the logarithmic derivative

βeff (T ) = ∂ ln M

∂ ln(Tc − T )
. (3.10)

In general, βeff as a function of T has one extreme (maximum)
at T ∗, decays slowly for T < T ∗ and drops abruptly for T ∗ <

T < Tc, as a sign that the CTMRG method is inaccurate close
to Tc. The extreme condition ∂βeff/∂T |T =T ∗ = 0 indicates a
weak dependence of βeff on T close to T ∗. This is why we take
as the critical index β the maximal value of βeff , β = βeff (T ∗).

To obtain the magnetic exponent δ, we recall that the
magnetization M behaves at the critical temperature T = Tc

according to the relation (2.21). The effective exponent δeff is
calculated as follows:

δeff (H ) =
(

∂ ln M

∂ ln H

)−1

. (3.11)

In close analogy with the case of βeff , δeff as a function of H

has one extreme (minimum) at H ∗ and δ = δeff (H ∗).
As concerns the von Nemann entropy (2.22), at T = Tc we

define the effective central charge

ceff (L) = 6
∂SN

∂ ln L
(3.12)

and c = limL→∞ ceff (L).

2. Electric exponents

Now we pass to the electric critical exponents. The critical
index νe can be calculated from the electric counterpart of
Eq. (3.5),

U8V(L) − U8V(∞) ∝ L−2+1/νe , T = Tc. (3.13)

Choosing the equivalent boundary conditions, the relation
between the Ising and vertex internal energies (2.12) can be
adopted for any system size L,

UI(T ,L) = U8V(T ,L). (3.14)

In view of relations (3.5) and (3.13), the corresponding mag-
netic and electric exponents coincide:

νe = ν. (3.15)

The critical electric index ηe follows from the large-L
dependence of the polarization at the critical point [67],

P ∝ L−ηe/2, T = Tc. (3.16)

The effective exponent ηeff
e is calculated as

ηeff
e (L) = −2

∂ ln P

∂ ln L
. (3.17)

Finally, ηe = limL→∞ ηeff
e (L).

Taking into account that below the critical temperature the
spontaneous polarization P behaves as

P ∝ (Tc − T )βe as T → T −
c , (3.18)

the effective exponent βeff
e is retrieved via

βeff
e (T ) = ∂ ln P

∂ ln(Tc − T )
. (3.19)

The critical index βe corresponds to the maximal value of
βeff

e (T ) at T = T ∗, βe = βeff
e (T ∗).

The electric exponent δe is defined by the singular depen-
dence (2.35) of the polarization P at T = Tc, under weak
electric field E. Defining the effective exponent δeff

e as

δeff (E) =
(

∂ ln P

∂ ln E

)−1

. (3.20)

and denoting the minimum point of the plot δeff (E) as E∗, we
have δe = δeff

e (E∗).
Using the von Nemann entropy at T = Tc, we define the

effective electric central charge as

ceff
e (L) = 6

∂Se
N

∂ ln L
(3.21)

and ce = limL→∞ ceff
e (L).

IV. NUMERICAL ANALYSIS OF
MAGNETIC EXPONENTS

In all considered cases, for simplicity we fix the vertex
energy εa = 0, i.e., a = ac = 1. The value of the critical
temperature Tc is set to 1. In what follows, the truncation

0 0.002 0.004 0.006 0.008 0.01
1/L

0.7

0.8

0.9

1

1.1

νef
f

bc = 0.15

bc = 0.25

bc = 0.35

bc = 0.45

FIG. 4. The symmetric eight-vertex model with c = d: the depen-
dence of the effective critical index νeff on the inverse system size 1/L,
for four values of the critical vertex weight bc = 0.15, 0.25, 0.35, and
0.45. As 1/L goes to 0, the linear a + b/L fittings of νeff (L) give the
asymptotic ν values denoted by crosses. Baxter’s exact values are
represented by dotted lines.
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f
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FIG. 5. The symmetric eight-vertex model with c 
= d: the depen-
dence of νeff on 1/L, for four choices of the critical vertex weights
(4.2). The asymptotic ν values are denoted by crosses, Baxter’s exact
values are represented by dotted lines.

parameter D = 1000 in all L-dependent plots, while D = 200
in all dependencies of the effective exponents on the deviation
from the critical temperature 
T = Tc − T or the applied
magnetic (electric) H (E) field. The critical hypersurface
(2.15) of the ferroelectric-A phase is considered.

The symmetric eight-vertex model with c = d is then
defined by

bc, cc = 1 − bc

2
. (4.1)

The values of bc under consideration are 0.15, 0.25, 0.35, and
0.45.

In the case of the symmetric eight-vertex model with c 
= d,
we consider four choices of vertex weights:

1 : bc = 0.15, cc = 0.60, dc = 0.25,

2 : bc = 0.25, cc = 0.15, dc = 0.60,

3 : bc = 0.35, cc = 0.50, dc = 0.15,

4 : bc = 0.45, cc = 0.20, dc = 0.35.

(4.2)

0 0.002 0.004 0.006 0.008 0.01
1/L

0.236

0.238

0.24

0.242
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0.248

0.25

ηef
f

bc = 0.15

bc = 0.25

bc = 0.35

bc = 0.45

FIG. 6. The symmetric eight-vertex model with c = d: the depen-
dence of the effective critical index ηeff on the inverse system size 1/L,
for four values of the critical vertex weight bc = 0.15, 0.25, 0.35, and
0.45. In all cases, as 1/L → 0, ηeff goes to 1/4.

0 0.002 0.004 0.006 0.008 0.01
1/L

0.234

0.236
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0.244

0.246

0.248

0.25

ηef
f

1

2
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FIG. 7. The symmetric eight-vertex model with c 
= d: the depen-
dence of ηeff on 1/L, for four choices of the critical vertex weights
(4.2). In all cases, ηeff goes asymptotically to 1/4.

In this section, our numerical method is first tested within
the framework of the magnetic formulation, with the known
Baxter’s values of critical exponents. The obtained numerical
results will be first presented in figures to document visually
their accuracy, then the numerical values obtained via asymp-
totic fits will be tabulated and compared with the exact values
in Table I at the end of this section.

The effective exponent νeff as a function of the inverse
system size 1/L is pictured in Fig. 4 for c = d and in Fig. 5
for c 
= d. As 1/L goes to 0, the linear a + b/L fittings of
νeff (L) give the asymptotic ν values denoted by crosses which
are close to the Baxter’s exact values of ν represented by the
horizontal dotted lines. The number of individual values of L

used in the numerical calculation is documented by vertical
segments in Fig. 5 on the plot corresponding to the choice 1 of
vertex weights; we recall that the difference between segments
corresponds to the increase of L by 2. We see that as 1/L → 0

1e-06 1e-05 0.0001
H

14.9
15

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9

16

δef
f

bc=0.25

bc=0.35

bc=0.45

bc=0.15

FIG. 8. The symmetric eight-vertex model with c = d: the de-
pendence of the effective critical exponent δeff on the applied
magnetic field H , for four values of the critical vertex weight bc =
0.15, 0.25, 0.35, and 0.45. The actual δ values, identified with the
minimum points of the plots, are close to the exact Baxter’s result,
δ = 15.
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16

δef
f

2
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1

FIG. 9. The symmetric eight-vertex model with c 
= d: the depen-
dence of δeff on the magnetic field H , for four choices of the critical
vertex weights (4.2).

the point set is quasicontinuous. Since ln(L + 2) − ln L ∼
2/L for large L, the discrete evaluation of the derivative with
respect to ln L is accurate.

The dependence of the effective exponent ηeff on the inverse
system size 1/L is presented in Fig. 6 for c = d and in Fig. 7
for c 
= d. As L increases, all curves converge to the Ising value
η = 1/4 as it should be for a weakly universal critical theory.
Note that the curves corresponding to choices 3 and 4 in Fig. 7
are indistinguishable in the present zoom.

In the logarithmic scale, the plots of the effective exponent
δeff versus the applied magnetic field H are presented in Fig. 8
for c = d and in Fig. 9 for c 
= d. The actual δ values are
identified with the minimum points of the plots. They are close
to the Baxter’s constant prediction δ = 15. The only exception

1e-05 0.0001 0.001 0.01
ΔT
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0.09

0.1

0.11

0.12

0.13

0.14

βef
f

0.15 0.25 0.35 0.45
bc

0.1244

0.1246

0.1248

0.125

β
∧

bc= 0.15

bc= 0.25

bc= 0.35

bc= 0.45

FIG. 10. The symmetric eight-vertex model with c = d: the effec-
tive exponent βeff vs the deviation from the critical point 
T = Tc −
T , for four values of the critical vertex weight bc = 0.15, 0.25, 0.35,
and 0.45. The β values are identified with the maximum points of the
plots, Baxter’s exact values are represented by dotted lines. The inset
documents an almost constant dependence of the rescaled exponent
β̂ = β/ν ∼ 1/8 on bc.
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ΔT
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0.125

β
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1
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FIG. 11. The symmetric eight-vertex model with c 
= d: the
dependence of βeff on 
T for four choices of the critical vertex
weights (4.2). Baxter’s exact values are represented by dotted lines.
The inset shows the dependence of β̂ on bc.

is the plot for bc = 0.15 which does not exhibit a minimum
and therefore we fitted the original dependence (2.21).

In the logarithmic scale, the numerical results for the
effective exponent βeff as the function of the deviation from the
critical temperature 
T are presented in Fig. 10 for c = d and
in Fig. 11 for c 
= d. The plots of βeff (
T ) exhibit maxima
values close to Baxter’s exact results for β (dotted lines)
as it should be. The insets of the figures show the model’s
dependence of the exponent ratio β̂ = β/ν. In spite of a slight
dispersion of the results, β̂ is close to the Ising value βI = 1/8,
in agreement with the concept of weak universality.

For the vertex weights c = d, the magnetic effective central
charge ceff is presented as a function of the inverse system size
1/L in Fig. 12. For all four values of the critical vertex weight
bc = 0.15, 0.25, 0.35, and 0.45, as 1/L → 0 the plots tend
to the value c = 1 which is the central charge of the weakly
universal symmetric eight-vertex model [6].

0 0.002 0.004 0.006 0.008 0.01
1/L

0.75

0.8

0.85

0.9

0.95

1

cef
f

bc = 0.15

bc = 0.25

bc =  0.35

bc = 0.45

FIG. 12. The symmetric eight-vertex model with c = d: the
dependence of the magnetic effective central charge ceff on 1/L, for
four values of the critical vertex weight bc = 0.15, 0.25, 0.35, and
0.45. As 1/L → 0, all curves tend to the central charge c = 1.
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TABLE I. Numerical data for the magnetic exponents and central
charge obtained from Figs. 4–12 and compared with the Baxter’s exact
results.

Fig. 4: bc = 0.15 νnum = 1.0624 νexact = 1.0628
= 0.25 = 0.8468 = 0.8470
= 0.35 = 0.7349 = 0.7351
= 0.45 = 0.6643 = 0.6646

Fig. 5: 1 νnum = 0.9975 νexact = 1.0000
2 = 0.7599 = 0.7622
3 = 0.6887 = 0.6906
4 = 0.6557 = 0.6572

Fig. 6: bc = 0.15 ηnum = 0.2496 ηexact = 1/4
= 0.25 = 0.2494 = 1/4
= 0.35 = 0.2495 = 1/4
= 0.45 = 0.2494 = 1/4

Fig. 7: 1 ηnum = 0.2493 ηexact = 1/4
2 = 0.2490 = 1/4
3 = 0.2488 = 1/4
4 = 0.2487 = 1/4

Fig. 8: bc = 0.15 δnum = 15.0355 δexact = 15
= 0.25 = 15.0648 = 15
= 0.35 = 15.0891 = 15
= 0.45 = 14.9811 = 15

Fig. 9: 1 δnum = 15.0051 δexact = 15
2 = 15.1055 = 15
3 = 15.1404 = 15
4 = 15.1554 = 15

Fig. 10: bc = 0.15 βnum = 0.1324 βexact = 0.1328
= 0.25 = 0.1053 = 0.1059
= 0.35 = 0.0913 = 0.0919
= 0.45 = 0.0826 = 0.0831

Fig. 11: 1 βnum = 0.1241 βexact = 0.1250
2 = 0.0942 = 0.0953
3 = 0.0854 = 0.0863
4 = 0.0813 = 0.0821

Fig. 12: bc = 0.15 cnum = 0.9972 cexact = 1
= 0.25 = 0.9932 = 1
= 0.35 = 0.9823 = 1
= 0.45 = 0.9614 = 1

Numerical data for the magnetic exponents obtained from
Figs. 4–12 are tabulated in Table I. The comparison with Bax-
ter’s exact results confirms a high precision of our numerical
results.

V. NUMERICAL ANALYSIS OF ELECTRIC EXPONENTS

In the logarithmic scale, the numerical results for the
effective exponent βeff

e as the function of the deviation from
the critical temperature 
T are presented in Fig. 13 for c = d

and in Fig. 14 for c 
= d. The plots of βeff (
T ) exhibit maxima
close to Baxter’s exact result for βe (2.30) (horizontal dotted
lines). This fact confirms the adequacy of our numerical results
also in the electric format.

Let us combine Baxter’s exact result for the electric expo-
nent βe (2.30) with the equality between magnetic and electric
ν indices (3.15) and the scaling relations (2.37). The exponents

1e-05 0.0001 0.001 0.01 0.1
ΔT

0.1

0.15

0.2

0.25

β eef
f

bc= 0.15

bc= 0.25

bc= 0.35

bc= 0.45

FIG. 13. The symmetric eight-vertex model with c = d: the
electric effective exponent βeff

e vs the deviation from the critical
point 
T = Tc − T , for four values of the critical vertex weight
bc = 0.15, 0.25, 0.35, and 0.45. The βe values are identified with the
maximum points of the plots, Baxter’s exact values are represented
by dotted lines.

ηe and δe are then given by

ηe = 1 − μ

π
, δe = 3π + μ

π − μ
. (5.1)

As was explained before, the dependence of the electric
exponents ηe and δe, defined just at the critical temperature, on
a model’s parameters means that the original electric version of
the symmetric eight-vertex model cannot be weakly universal,
but it is fully nonuniversal.

The plot of the effective exponent ηeff
e versus the inverse

system size 1/L is pictured in Fig. 15 for c = d and in
Fig. 16 for c 
= d. As L increases, the curves converge to the
asymptotic values (crosses) which are in agreement with our
suggested formula (5.1).

In the logarithmic scale, the plots of the effective exponent
δeff

e versus the applied electric field E are pictured in Fig. 17
for c = d and in Fig. 18 for c 
= d. Note the shallowness of the
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FIG. 14. The symmetric eight-vertex model with c 
= d: the
dependence of βeff

e on 
T for four choices of the critical vertex
weights (4.2). Baxter’s exact values are represented by dotted lines.
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FIG. 15. The symmetric eight-vertex model with c = d: the
dependence of the effective critical exponent ηeff

e on the inverse
system size 1/L, for four values of the critical vertex weight bc =
0.15, 0.25, 0.35, and 0.45. The suggested values obtained from (5.1)
are represented by dotted lines.

plots. The δe values are identified with the minimum points of
the plots, the suggested values (5.1) are represented by dotted
lines.

For the vertex weights c = d, the dependence of the electric
effective central charge ceff

e on the inverse system size 1/L is
pictured in Fig. 19. As before for the magnetic case, for all
four values of the critical vertex weight, bc = 0.15, 0.25, 0.35,
and 0.45, the plots tend as 1/L → 0 to the same
value ce = 1.

Numerical data for the electric exponents obtained from
Figs. 13–19 are tabulated in Table II. The comparison with the
Baxter’s exact result for βe or the values obtained from our
suggested formulas in Eq. (5.1) shows a high precision of our
numerical results.

0 0.002 0.004 0.006 0.008 0.01
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FIG. 16. The symmetric eight-vertex model with c 
= d: the de-
pendence of ηeff

e on 1/L, for four choices of the critical vertex weights
(4.2). The suggested values obtained from (5.1) are represented by
dotted lines.
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FIG. 17. The symmetric eight-vertex model with c = d: the
dependence of the effective critical exponent δeff

e on the the ap-
plied electric field E, for four values of the critical vertex weight
bc = 0.15, 0.25, 0.35, and 0.45. The δe values are identified with
the minimum points of the plots, the suggested values (5.1) are
represented by dotted lines.

TABLE II. Numerical data for the electric exponents and central
charge obtained from Figs. 13–19 and compared with Baxter’s exact
result for βe (2.30) or the values generated from our suggested
formulas (5.1).

Fig. 13: bc = 0.15 βnum
e = 0.2801 βexact

e = 0.2814
= 0.25 = 0.1731 = 0.1735
= 0.35 = 0.1174 = 0.1175
= 0.45 = 0.0822 = 0.0823

Fig. 14: 1 βnum
e = 0.2483 βexact

e = 0.2500
2 = 0.1306 = 0.1311
3 = 0.0951 = 0.0953
4 = 0.0785 = 0.0786

Fig. 15: bc = 0.15 ηnum
e = 0.5288 ηsugg

e = 0.5296
= 0.25 = 0.4091 = 0.4097
= 0.35 = 0.3193 = 0.3198
= 0.45 = 0.2473 = 0.2477

Fig. 16: 1 ηnum
e = 0.4987 ηsugg

e = 0.5000
2 = 0.3428 = 0.3440
3 = 0.2750 = 0.2760
4 = 0.2383 = 0.2392

Fig. 17: bc = 0.15 δnum
e = 6.5561 δsugg

e = 6.5539
= 0.25 = 8.7674 = 8.7641
= 0.35 = 11.5123 = 11.5077
= 0.45 = 15.1562 = 15.1500

Fig. 18: 1 δnum
e = 7.0054 δsugg

e = 7.0000
2 = 10.6365 = 10.6265
3 = 13.5057 = 13.4928
4 = 15.7393 = 15.7251

Fig. 19: bc = 0.15 cnum
e = 0.9988 csugg

e = 1
= 0.25 = 0.9987 = 1
= 0.35 = 0.9985 = 1
= 0.45 = 0.9985 = 1
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FIG. 18. The symmetric eight-vertex model with c 
= d: the
dependence of δeff

e on the electric field E for four choices of the critical
vertex weights (4.2). The suggested values (5.1) are represented by
dotted lines.

VI. CONCLUSION

Baxter solved the symmetric eight-vertex model on the
square lattice within its magnetic formulation of Ising spins on
the dual square lattice with plaquette interactions. Some of the
magnetic critical exponents depend on the model’s parameters.
Pointing out a freedom in the definition of deviation from
the critical point, Suzuki proposed a rescaling of critical
indices. The rescaled indices become constant, namely 2D
Ising-like, and this property is known as weak universality.
Weak universality requires that the exponents η and δ, which
are defined just at the critical temperature and therefore do
not depend on the definition of the deviation from the critical
temperature, are constant and indeed η = 1/4 and δ = 15.
We tested our numerical estimates of critical indices against
Baxter’s exact results (dotted lines) in Figs. 4–11; see also
numerical data in Table I—the agreement is very good.

As concerns the original vertex (electric) formulation,
Baxter was able to derive the explicit formula (2.30) for the
critical exponent βe related to the spontaneous polarization.
The crucial point of our analysis was the equivalence of the
exponents ν and νe in Eq. (3.15). Combining this relation with
Baxter’s exact result for βe (2.30) and the scaling relations

0 0.002 0.004 0.006 0.008 0.01
1/L

0.975

0.98

0.985

0.99

0.995

1

cef
f e

FIG. 19. The symmetric eight-vertex model with c = d: the
dependence of the effective electric central charge ceff

e on 1/L for
four values of the critical vertex weight bc = 0.15, 0.25, 0.35, and
0.45. As 1/L → 0, all curves tend to ce = 1.

(2.37), the suggested exponents ηe and δe (5.1) turn out to be
dependent on the model’s parameters. As is seen in Figs. 15
and 16, the numerical check of the suggested formula for ηe

is very good. The same applies to the numerical checks of the
suggested formula for δe; see Figs. 17 and 18. Since the critical
exponents ηe and δe are defined just at the critical temperature
and therefore are independent of the definition of the deviation
from the critical temperature, their dependence on the model’s
parameters means that the electric-vertex formulation of the
model is fully nonuniversal. Consequently, in spite of the
equivalence of the partition functions, the magnetic and electric
versions of the model possess different critical properties.

We believe that this work will be a motivation for a rigorous
derivation of the suggested formulas (5.1), maybe by using the
QISM machinery. The full nonuniversality of statistical models
is probably not so exceptional as is generally believed.
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