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The Totally Asymmetric Exclusion Process (TASEP) is a classical stochastic model for describing the transport
of interacting particles, such as ribosomes moving along the messenger ribonucleic acid (mRNA) during
translation. Although this model has been widely studied in the past, the extent of collision between particles and
the average distance between a particle to its nearest neighbor have not been quantified explicitly. We provide
here a theoretical analysis of such quantities via the distribution of isolated particles. In the classical form of
the model in which each particle occupies only a single site, we obtain an exact analytic solution using the
matrix ansatz. We then employ a refined mean-field approach to extend the analysis to a generalized TASEP
with particles of an arbitrary size. Our theoretical study has direct applications in mRNA translation and the
interpretation of experimental ribosome profiling data. In particular, our analysis of data from Saccharomyces
cerevisiae suggests a potential bias against the detection of nearby ribosomes with a gap distance of less than
approximately three codons, which leads to some ambiguity in estimating the initiation rate and protein production
flux for a substantial fraction of genes. Despite such ambiguity, however, we demonstrate theoretically that the
interference rate associated with collisions can be robustly estimated and show that approximately 1% of the
translating ribosomes get obstructed.
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I. INTRODUCTION

The Totally Asymmetric Exclusion Process (TASEP) is
a classical stochastic model for transport phenomena in a
nonequilibrium particle system. Although it has been widely
studied by mathematicians and physicists, the TASEP was
first introduced in a biological context by McDonald et al.
[1] to model messenger ribonucleic acid (mRNA) translation
and describe the dynamics of ribosomes moving along the
mRNA. Over the past 15 years, the TASEP and its extensions
have been used for this purpose [2–11], and TASEP-based
models have been recently applied to infer the translation rate
from experimental measurements [9], in particular ribosome
profiling data [12–14]. Ribosome profiling (also known as
Ribo-Seq) is an experimental technique developed to examine
position-specific densities of ribosomes along each mRNA
[15] and thus captures the dynamics of mRNA translation to
some extent. However, analytical tools for interpreting ribo-
some profiling data are still much in need of development [16],
as relating the observed footprint density to the corresponding
protein production rate remains challenging for several reasons
[17]. One notable issue comes from the experimental protocol
used to generate the ribosome profile. In general, long mRNA
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fragments that may account for stacked ribosomes are not
sequenced. As a result, the observed density may only include
well-isolated ribosomes, thus leading to a bias that needs to
be corrected when evaluating the ribosome density [6,14,17–
19]. Although the TASEP has been broadly studied under
different conditions and using various approaches [20,21], to
our knowledge, the density of isolated particles has not been
studied previously.

These theoretical and technical issues motivate us to study
the extent of isolated particles in the TASEP in order to quantify
the relation between the mRNA translation dynamics and the
observed densities in ribosome profiling data. To do so, we
first employ the matrix formulation of Derrida et al. [22] to
derive exact formulas for the density of isolated particles in
the classical TASEP model, in which each particle is pointlike
and occupies a single site. For the case when the number N

of sites is large, we obtain simple asymptotic formulas. We
then extend our study to the general case with particles of an
arbitrary size. Using a refined mean-field approach introduced
by Lakatos and Chou [2], we derive new asymptotic formulas
that agree well with Monte Carlo simulations.

We obtain new results regarding the translation dynamics
by applying our theory to ribosome profiling data. In particular,
our analysis of undetected ribosomes suggests a potential
bias against consecutive ribosomes less than approximately
three codons apart. Using a measurement of ribosome density
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FIG. 1. Illustration of the TASEP with open boundaries. (a) A
schematic representation of the TASEP model. Particles are intro-
duced at the start of the lattice with exponential rate α and move along
with exponential rate 1, provided that there is no particle occupying
the next site. At the end of the lattice, they exit with exponential rate
β. (b) Phase diagram of the average particle density along the lattice.
The profile of average density of particles along the lattice can be
classified according to a phase diagram in (α,β) space, separating
different regions: the maximal current regime (MC), the low density
regime (LD), and the high density regime (HD). The LD and HD
regions can also be decomposed into two separate ones: LD I/II, and
HD I/II, respectively.

called “translation efficiency” (TE), we provide estimates of
the obstruction rate associated with traffic collision and find
that, for a significant fraction of genes, there is some ambiguity
in identifying the initiation rate and the flux from TE. Although
the TE has been widely used as a proxy for protein production
rate [23], these results suggest that more refined methods and
estimates should be used to properly quantify gene expression
at the translation level.

II. THEORETICAL RESULTS

In this section, we briefly introduce the TASEP model
and present our main theoretical results on the classical and
generalized versions of model. Appendices A and B summarize
some previously known results used in our analysis.

A. The density of isolated particles in the classical TASEP model

We first studied the density of isolated particles in the
context of the classical TASEP model with open boundaries
[24]. Briefly, the dynamics of this stochastic process can be de-
scribed as follows [see Fig. 1(a)]. On a one-dimensional lattice
of N sites, the classical TASEP describes the configuration of
pointlike particles, described by a vector τ = (τ1, . . . ,τN ) such
that τi = 0 if the ith site is empty and τi = 1 if it is occupied.
During every infinitesimal time interval dt , each particle at site
i ∈ {1, . . . ,N − 1} has probability dt of hopping to the next
site to its right, provided that the site is empty. Additionally,
a new particle enters site 1 with probability αdt if τ1 = 0.

If τN = 1, then the particle at site N exits the lattice with
probability βdt . The parameters α and β are respectively called
the initiation and termination rates. In the long time limit, the
system reaches steady state and the corresponding expected
marginal density of particles at position i on a lattice of size
N , denoted 〈τi〉N , is defined as

〈τi〉N =
∑

τ∈{0,1}
τP(τi = τ ) = P(τi = 1). (1)

Averaging the process over the events that may occur be-
tween t and t + dt leads to a system of equations relating
one-point correlators to two-point correlators [25]. Similarly,
two-point correlators can be related to three-point correlators
(see Appendix A), and so on. To derive analytic expressions
for the average densities, Derrida et al. [22] showed that
the steady-state probability of a given configuration can be
derived using a matrix formulation satisfying a set of algebraic
rules (see Appendix B). Using these rules, they obtained an
exact formula for 〈τi〉N and showed that, in the large-N limit,
the TASEP follows different dynamics according to a phase
diagram in (α,β) space.

In our work, we employed the aforementioned matrix
formulation to derive analytic expressions for the average
density of isolated particles. Specifically, consider the random
variable τ ′

i defined as

τ ′
i =

⎧⎨
⎩

τ1(1 − τ2), for i = 1,

τi(1 − τi−1)(1 − τi+1), for 2 � i � N − 1,

τN (1 − τN−1), for i = N.

(2)

Note that τ ′
i = 1 if there is an isolated particle at position i and

τ ′
i = 0 otherwise. From (2), we see that the average density

〈τ ′
i 〉N of isolated particles at an interior site i, where 2 � i �

N − 1, is given by

〈τ ′
i 〉N = 〈τi〉N − 〈τi−1τi〉N − 〈τiτi+1〉N + 〈τi−1τiτi+1〉N . (3)

As detailed in Appendix C, by analyzing the terms on the right-
hand side of (3), we obtained, for 2 � i � N − 1,

〈τ ′
i 〉N = D0(α,β,N ) − D1(α,β,N )〈τi−1〉N−1, (4)

where

D0(α,β,N ) = α[1 − 〈τ2〉N + (1 − 〈τ1〉N )(〈τ1〉N−1 − α)],

(5)
D1(α,β,N ) = α(1 − 〈τ1〉N ). (6)

For the boundaries, we obtained

〈τ ′
1〉N = α(1 − 〈τ1〉N ), (7)

〈τ ′
N 〉N = 〈τN 〉N (1 + β) − 〈τN−1〉N . (8)

As mentioned earlier, exact formulas for 〈τi〉N are known [22]
(see Appendix B), so plugging them into (4)–(8) leads to exact
results for the average densities of isolated particles along the
lattice.

B. Large-N asymptotics in three different phases

We next derived the large-N asymptotics of 〈τ ′
i 〉N from

those of 〈τi〉N . In this section, we drop the dependence on
N and write 〈τi〉 instead of 〈τi〉N . In the large-N limit, the
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TABLE I. Asymptotics of 〈τ ′〉 in the different phases of the classical 1-TASEP. These are obtained by combining Eqs. (4), (7), and (8)
with asymptotics given in Ref. [22]. The asymptotics far from the left boundary (〈τj 〉, 1 � j � N ) can be derived using the “particle-hole
symmetry” (11).

〈τ ′
1〉 [Eq. (7)] 〈τ ′

N−j 〉 (1 � j � N ) (Eq.(4)) 〈τ ′
N 〉 [Eq. (8)]

MC 1
4

1
8

[
1 + 1√

π (j+1)

]
1

4β

(
1 − 1

4β

)
LD I (β < 1

2 ) α(1 − α) α(1 − α)2
[
1 + 2β−1

1−α
( α(1−α)

β(1−β) )j+2
]

α(1−α)
β

[
1 − α(1−α)

β

]
LD II (β > 1

2 ) α(1 − α) α(1 − α)2
[
1 +

[
1

(2α−1)2
− 1

(2β−1)2

]
α(4α(1−α))j+1

√
π(j+1)3/2

]
α(1−α)

β

(
1 − α(1−α)

β

)
HD β(1 − β) β2(1 − β) β(1 − β)

dynamics of the TASEP can be separated into three different
phases—namely, maximal current (MC), low density (LD),
and high density (HD)—depending on the values of (α,β) [see
Fig. 1(b) and (9) below]. At steady state, 〈τi(1 − τi+1)〉 is the
same for all i = 1, . . . ,N − 1. This quantity is defined as the
current (or flux) and is denoted by J . Using the asymptotics
of the particle densities in the three phases [22], we found that
D0(α,β,N ) and D1(α,β,N ) in (5) and (6), respectively, are
both asymptotically equivalent to the asymptotics of J in the
large-N limit, given by

J ∼

⎧⎪⎨
⎪⎩

1
4 , if α > 1

2 , β > 1
2 (MC regime),

α(1 − α), if α < 1
2 , β > α (LD regime),

β(1 − β), if β < 1
2 , β < α (HD regime).

(9)

Hence, it turns out that the asymptotics of 〈τ ′
i 〉 for 2 � i � N −

1 are correctly given by using in (3) the mean-field approx-
imation 〈τi−1τi(1 − τi+1)〉 ∼ 〈τi−1〉〈τi(1 − τi+1)〉 = J 〈τi−1〉.
Finally, noting that 〈τ ′

1〉 = 〈τ1(1 − τ2)〉 = J and β〈τN 〉 = J at
steady state, while 〈τN−1〉 ∼ J + (J/β)2 asymptotically, we
obtain that 〈τ ′

i 〉 is asymptotically given by

〈τ ′
i 〉 ∼

⎧⎪⎨
⎪⎩

J, for i = 1,

J (1 − 〈τi−1〉), for 2 � i � N − 1,
J
β

(
1 − J

β

)
, for i = N.

(10)

Using the asymptotics of 〈τi〉 in different phases [22], the
resulting densities at the boundaries and far from the right
boundary (〈τN−j 〉, 1 � j � N ) can be computed, as summa-
rized in Table I. The asymptotics far from the left boundary
(〈τj 〉, 1 � j � N ) can be derived using the “particle-hole
symmetry” [22]

〈τN+1−i〉N (α,β) = 1 − 〈τi〉N (β,α). (11)

The fraction of isolated particles 〈τ ′
i 〉

〈τi 〉 is given by

〈τ ′
i 〉

〈τi〉 ∼

⎧⎪⎪⎨
⎪⎪⎩

αJ
α−J

, for i = 1,

J (1 − 〈τi−1〉)
〈τi〉 , for 2 � i � N − 1,

1 − J
β
, for i = N.

(12)

As shown in Fig. 2, there is good agreement between
our asymptotic formulas and the exact results obtained from
using the exact 〈τi〉N in Eqs. (4)–(8). We observed some large
boundary effects, as the density of isolated particles at the
boundaries is always larger than in the bulk. In the LD I regime
(β < 1

2 ), slow termination creates queuing so that the density
of isolated particles decreases close to the end, in contrast to

the total density. In the HD regime, high density creates a lot of
stacked particles so the proportion of isolated particles is very
small. In the MC regime, stacked particles are present more in
the beginning of the lattice. As a result, the density of isolated
particles in the bulk increases along the lattice, in contrast to the
total density. In this regime, some mismatches can be observed
at the boundaries and in the middle of the lattice. The apparent
discontinuity in the middle of the lattice is due to the fact that
we respectively employed in left and right parts of the lattice
the asymptotics of the densities far from left and far from right
of the boundaries, obtained from Table I. The resulting order of
magnitude of the discontinuity gap in the middle is 1√

N
, and it

thus vanishes as the lattice length increases. Interestingly, this
gap can also be reduced to any arbitrary size by considering
larger-order approximations of the exact formulas for the
densities found in Ref. [22]. Close to the boundaries, the
formulas we used in Fig. 2 also lead to a mismatch with Monte
Carlo simulations, which can be attributed to using asymptotics
for positions far from the boundaries. This mismatch can be
easily corrected by using the exact formulas for the densities
at positions N − 1 and 2 (Equation (77) in Ref. [22]).

C. The �-TASEP with extended particles

During translation, ribosomes move along mRNAs by
decoding one codon at a time but occupy an extended space of
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FIG. 2. The density of isolated particles in different regions of the
TASEP phase diagram. For the different regimes of the TASEP (see
also Fig. 1), the asymptotic formulas from Table I (red points) are
compared with the exact densities (black points) of isolated particles
given by (4)–(8).
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∼10 codons. For that reason, it is also of interest to generalize
our theoretical results to a process where particles occupy a
certain size � � 1 (this process is usually called the �-TASEP
[26]). In this general case, using a matrix product to represent
the steady-state solution leads to equations that are more
complex, making the method employed above inapplicable
(see Discussion). To cope with this complexity, we used a
refined mean-field approach introduced by Lakatos and Chou
[2]. Although this approach cannot capture the variation of
densities along the lattice as in the previous section, it well
approximates the global average density and the current of
particles. The key idea is to approximate the distribution of par-
ticles in the large-N limit by an equilibrium ensemble in which
particles get uniformly distributed. Using such approximation,
we obtained (Appendix D) that the density of isolated particles
far from the boundaries, simply denoted 〈τ ′〉, is given by

〈τ ′〉 = 〈τ 〉
[

1 − �〈τ 〉
1 − (� − 1)〈τ 〉

]2

. (13)

Using the asymptotic densities and currents found by
Lakatos and Chou [2], we derived the asymptotics of 〈τ ′〉. As
for the � = 1 case, the phase diagram can be decomposed into
three parts (MC, HD, LD), separated by critical values α∗ =
β∗ = 1

1+√
�
. For � = 1, we have α∗ = β∗ = 1

2 , in agreement
with the previous section. Combining (13) with the asymptotic
density 〈τ 〉 in the large-N limit [2], we obtained the following
density of isolated particles in the bulk:

〈τ ′〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
�

(1+√
�)3 ,

if α > α∗, β > β∗ (MC regime),
1
2J [(� − 1)J + 1 −

√
[(� − 1)J + 1]2 − 4�J ],

if α < α∗, β > α (LD regime),
1
2J [(� − 1)J + 1 +

√
[(� − 1)J + 1]2 − 4�J ],

if β < β∗, β < α (HD regime),

(14)

where J is the particle flux given by [2]

J ∼

⎧⎪⎪⎨
⎪⎪⎩

1
(1+√

�)2 , in MC regime,
α(1−α)

1+(�−1)α , in LD regime,
β(1−β)

1+(�−1)β , in HD regime.

(15)

Near the entrance and exit, particles potentially get stacked on
one side only. At the entrance, the density of isolated particles
is, for i < �,

〈τ ′
i 〉 = P(ti = 1 , ti+� = 0) = J. (16)

Hence, 〈τ ′
i 〉 at the entrance is exactly given by the current flux

J , as in the case of � = 1. Near the exit, for i > N − �, 〈τ ′
i 〉

satisfies

〈τ ′
i 〉 = P(ti = 1 , ti−� = 0). (17)

Using P(A ∩ B) = 1 − P(Ac) − P(Bc) + P(Ac ∩ Bc) and
P(ti−� = 1 , ti = 0) = J yields

〈τ ′
i 〉 = J + P(ti = 1) − P(ti−� = 1) = J + 〈τi〉 − 〈τi−�〉.

(18)
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FIG. 3. The density of particles in the �-TASEP model. We
simulated and plot (in black) the density of particles of the �-TASEP
(� = 10) in the different regimes LD, HD, and MC. In red, we plot
the estimates of the density in the bulk from Lakatos and Chou [2].

As the flux satisfies J = β〈τN 〉 = 〈τN−1〉 = · · · = 〈τN−�+1〉,
we obtained

〈τ ′
i 〉 =

{
2J − 〈τi−�〉, for N − � < i < N,

J
(
1 + 1

β

) − 〈τN−�〉, for i = N.
(19)

D. Comparison with Monte Carlo simulations
and estimation of obstruction rate

Combining (14), (16), and (19) leads to approximate densi-
ties of isolated particles along the lattice in the �-TASEP. The
isolated particle densities in the bulk (14) and near the entrance
(16) depend only on the flux J , whereas near the exit the result
(19) also depends on the density of particles located � sites
behind. In the LD regime, this density can be approximated by
the density in the bulk [2]. In the other regimes, the density
varies near the boundary, so using this approximation might
be inaccurate (see Fig. 3). As Fig. 4(a) shows, however, our
theoretical results agree well with the empirical densities of
isolated particles obtained from Monte Carlo simulations for
specific values of (α,β) in the LD, HD, and MC regimes (for
a lattice of length 300, typical of the mRNA sequences we
studied next). Contrary to the matrix method for the classical
1-TASEP model, the refined mean-field approximation does
not capture the variation of isolated particle densities across
the lattice. However, this variation is much smaller than that
of the total density, especially in regions of high traffic. Thus,
assuming the density of isolated particles to be constant turns
out to yield a better match with simulated data than when the
same is done for the total density.

More generally, we studied in Fig. 4(b) how the density
and proportion of isolated particles vary as a function of α

for fixed values of β. Overall, our theoretical results were in
good agreement with Monte Carlo simulations. Interestingly,
whereas the total density [Fig. 4(b)] increase and reach a
plateau after transitioning to the HD (when β < β∗) or the
MC (when β > β∗) regime, the density of isolated particles
follows a more complex pattern: First, there is a drop in the
density of isolated particles when transition occurs from LD to
HD. In contrast, we observed an increase in the total density,
showing that most particles contributing to the density are
stacked. Second, as β increases, the amplitude of the drop
decreases until it becomes 0, when the MC regime replaces
the HD regime. However, the maximum of 〈τ ′〉 is not reached
in the MC regime but in the LD regime before phase transition
occurs. In other words, as the initiation rate increases, the
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FIG. 4. Comparison of the results from the refined mean-field approach with Monte Carlo simulations. (a) We simulated the TASEP with
extended particles (size � = 10, sample size = 109) and plotted (in red) the densities of isolate particles in the three different regimes of the
phase diagram. We compared these simulation results with the asymptotics obtain from (13), (16), and (19) (in black). (b) For fixed values of
β, these plots show how the total density, the density of isolated particles, and their ratio vary as a function of α. The results obtained using
Monte Carlo simulations (open circles) of the TASEP with extended particles (size of particles � = 10, sample size of isolated particles 104,
lattice size = 400) are compared with the results obtained from the refined mean-field approach (solid lines). Note that there are discontinuities
when transitioning from LD to HD regime (first and second rows).

level of obstruction increases faster than the global density.
This was confirmed when we plotted the ratio 〈τ ′〉

〈τ 〉 [Fig. 4(b),
right panels], showing a linear decrease from α = 0 to α = β,
while the total density gets sublinear as α gets closer to β. The

first-order Taylor expansion in α of 〈τ ′〉
〈τ 〉 = [ 1−�〈τ 〉

1−(�−1)〈τ 〉 ]
2

in the
LD regime gives

〈τ ′〉
〈τ 〉 = 1 − 2α + O(α2). (20)

Interestingly, this formula does not depend on � and using
the formula obtained for the classical 1-TASEP model leads
to the same result. To estimate the amount of obstruction
associated with the dynamics of particles, we approximated
the obstruction rate �, defined as the probability for a particle
to get obstructed, as

� = 1

2

(
1 − 〈τ ′〉

〈τ 〉
)

. (21)

Using Eq. (20), we obtained that � is close to α in the LD
regime.

E. Generalization to larger isolation range

In the next section, one of our goals will be to determine
whether stacked particles are detected in ribosome profiling

experimental protocols. A problem is that we do not know
a priori what is the exact range between two ribosomes
that may prevent them from being detected. For this reason,
we considered the density associated with isolation range d,
denoted 〈τ (d)

i 〉, as〈
τ

(d)
i

〉 = P(τi = 1, x−
i � i − � − d, x+

i � i + � + d), (22)

where x−
i and x+

i are the positions of the closest particles
located before and after site i, respectively. In other words,
〈τ (d)

i 〉 gives the steady-state density of particles under the
�-TASEP at position i such that the distance to their closest
neighbor is at least d + �. In particular, 〈τ (0)

i 〉 gives the total
density of all particles, while 〈τ (1)

i 〉 is equal to 〈τ ′
i 〉, the density

of isolated particles computed above. Following the same
method as in the previous section, we obtained the following
expression for particles in the bulk in the large-N limit:

〈τ (d)〉 ∼ 〈τ 〉
[

1 − �〈τ 〉
1 − (� − 1)〈τ 〉

]2d

. (23)

Hence, for two given isolation ranges d and d ′, the associated
fractions of isolated particles satisfy( 〈τ (d)〉

〈τ 〉
) 1

d

=
( 〈τ (d ′)〉

〈τ 〉
) 1

d′
. (24)
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FIG. 5. A schematic representation of ribosome profiling. (a)
Positions of ribosomes along the mRNA are obtained by nuclease
digestion and allowed to count the number of ribosomes found at
a specific position. However, it is possible that the nuclease cannot
cleave stacked ribosomes [6,14,17–19]. (b) As a result, the profile of
ribosome count along the mRNA recorded from isolated ribosomes
(plotted in red) might be different from the true profile (plotted in
black).

Therefore, we can generalize (21) to obtain a formula for the
obstruction rate for an arbitrary isolation range d � 1:

�(d) = 1

2

[
1 −

( 〈τ (d)〉
〈τ 〉

) 1
d
]
. (25)

III. APPLICATION

We applied our theoretical results to analyze ribosome
profiling data and mRNA translation. Ribosomes are complex
molecular machines (corresponding to particles in the TASEP)
that move along mRNA (the lattice) to translate its associated
sequence of codons into proteins. Once bound to the mRNA,
ribosomes occupy a space of ∼10 codons (� = 10 in the
TASEP). For the reader who is new to biology, more basics
on how proteins are synthesized in a cell can be found in
Ref. [4]. Briefly, the ribosome profiling procedure consists
of using nuclease to digest translating ribosomes and get
ribosome-protected mRNA fragments [15]. These fragments
are then aligned to the mRNA sequence to produce a positional
distribution of ribosomes along the mRNA. Assuming that
there is no bias in ribosome detection and that sufficiently many
fragments are observed, this distribution can be associated with
the stationary average density of particles in the �-TASEP.
However, it is possible that the nuclease may fail to cleave
stacked ribosomes [6,17–19], so only the density of “isolated”
ribosomes gets measured. Hence, the profile of ribosome
counts along the mRNA produced by the experimental pro-
cedure might be different from the true profile (see Fig. 5).
Whether the nuclease can cleave two nearby ribosomes is still
in debate, as the digestion and its efficiency vary depending on
the organism and the protocols which are used [27,28].

A. Estimating the isolation range associated
with nondetection of ribosomes

To assess the extent of nondetection of stacked ribosomes
in an actual ribosome profiling data set, we used publicly
available data of Saccharomyces cerevisiae from Weinberg
et al. [29] (more details in Appendix E). The experimental
protocol used for these data minimizes some of the other biases
known to affect the ribosome profiling, such as sequence biases
introduced during ribosome footprint library preparation and
conversion to cDNA for subsequent sequencing and mRNA-
abundance measurement biases and other artifacts caused by
poly(A) selection [29]. For a given gene, a measure of the
average density of detected ribosomes is given by the so-called
translation efficiency (TE) [23]. More precisely, the TE is given
by the ratio of the RPKM measurement for ribosomal footprint
to the RPKM measurement for mRNA, where RPKM denotes
the number of reads per kilobase of transcript per million
mapped reads. Hence, the TE is proportional to the average
density of detected ribosomes per site of a single mRNA; in
our notation, TE ∝ 〈τ (d)〉. To get the total density of ribosomes,
we used another data set from Arava et al. [30], obtained by
polysome profiling, which is another technique giving, for
a specific gene, the distribution of the number of ribosomes
located on a single mRNA (and forming polysomes). While
polysome profiling data is not biased by the possible omission
of stacked ribosomes, the advantage of ribosome profiling
is that it gives some local information about the ribosome
occupancy.

Depending on the gap between two ribosomes that prevents
them from being detected, the relation between the TE and the
total average density D = 〈τ 〉 is, according to Eq. (23),

TE = aD

(
1 − 10D

1 − 9D

)2d

, (26)

where a is the rescaling factor (specifically, TE = a〈τ (d)〉) that
we estimate in practice in Fig. 6(a), and d denotes the detection
gap-threshold mentioned previously (if the gap between a
ribosome and its closest neighbor is larger or equal to d, then
it gets detected). Since a ribosome occupies 10 codons, the
parameter � in (23) is set to 10. In Fig. 6(a), we plotted (26) for
different values of d and compared it with the experimental
data from Weinberg et al. and Arava et al. Our goal was
then to determine which value of d leads to the best match
with the experimental data. In Fig. 6(b), we plotted the root-
mean-square error between (26) and the experimental data, as a
function of d and for the value of a corresponding to the linear
fit to genes with total density less than 1 ribosome per 100
codons. We found that the minimum error is obtained when
d is between 4 and 6. On the other hand, as d increases, the
maximum value of TE that can be obtained using (26) decreases
[Fig. 6(a)], potentially leading to some detected densities from
experiment to be greater than the theoretical maximum of TE;
we call such detected densities “anomalous” (as we shall see
below, we can obtain a more refined estimate of the maximum
possible detected density using an estimate of the termination
rate β for each gene). In Fig. 6(c), we plotted for each d the
fraction of genes with anomalous detected densities. Ford � 3,
no anomalous detected density was found, while the fraction
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FIG. 6. Estimation of undetected ribosomes from ribosome pro-
filing experiment. (a) This plot shows experimental ribosome profiling
data of S. cerevisiae from Weinberg et al. [29] against the total
ribosome density obtained from polysome profiling by Arava et al.
[30] (482 genes). Also shown are plots of y = ax( 1−10x

1−9x
)
2d

, obtained
from computing the density of detected particles of size � = 10 as a
function of the total density in the �-TASEP [see (26)] with various
isolation range d = 0, . . . ,10. We set a = 0.82, obtained by linear
fit to genes with total density less than 1 ribosome per 100 codons.
(b) For values of d ∈ {0, . . . ,10}, we plot the root-mean-square error
obtained from comparing experimental data to the theoretical plots
in (a). (c) For d ∈ {0, . . . ,10}, we plot the corresponding fraction of
genes with anomalous detected densities, where a detected density
said to be anomalous if it is larger than the theoretical maximum
value implied by (26), used in (a).

becomes positive for d � 4 (less than 1% for d = 4, ∼2.5% for
d = 6, and ∼8% for d = 8). We concluded that the best values
of d that both minimize the error and the fraction of anomalous
detected density were obtained for d = 3 or 4. In agreement
with our estimate, previous ribosome profiling experiments
found disome fragments (accounting for the mapping of two
ribosomes) of length ∼65 nucleotides [19], suggesting that
d = 3 (2 times 30 nucleotides plus 2 other codons).

B. Identifiability of initiation rates and flux from TE
measurements

Under the �-TASEP model in the LD regime, the TE
is related [as shown in Fig. 7(a)] to the initiation rate α

through Eq. (23) and the asymptotics of 〈τ 〉 and J (given
in Ref. [2]). Assuming that translation occurs in the LD
regime (since translation is generally limited by initiation
under realistic physiological conditions [31,32]), we studied
whether we could infer the gene-specific initiation rate α using
our theoretical results. The detected density is bounded by
∼0.02 ribosomes per codon in our data set. From the plotted
curves in Fig. 7(a), this suggests that for d � 5 and for all
the experimental detected densities, there exists a value for
the initiation rate satisfying (23). However, for d � 3, the
identifiability of α (i.e., the uniqueness of α) does not seem
to be guaranteed.
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FIG. 7. Analysis of initiation and traffic obstruction. (a) For
different values of isolation range d , we plot the density of isolated
particles [see (23)] as a function of the initiation rate α in the
LD regime. (b) For different ranges d of isolation, we studied
the identifiability of the initiation rate. Black line: We estimated
the fraction of genes for which there exists a corresponding value
for the initiation rate α, such that the associated density of isolated
particles is equal to the detected density. This happens when the
detected density is less than 〈τ (d)〉max(β) [see (27)], where β is the
inferred termination rate Red line: We estimated the fraction of genes
for which the initiation rate can be inferred without ambiguity from
the plotted curves in (a), which happens when the detected density is
less than 〈τ (d)〉id(β) [see (28)]. (c) From our data set of 3712 genes, we
used (23) to estimate the fraction of detected ribosomes for different
values of the detection gap threshold d ∈ {1, . . . ,6}. To compute these
fractions when there is an ambiguity in identifying the initiation rate α

[see (b)], we considered two possible estimates: a lower estimate and
an upper one [see also Fig. 8(a)]. The left plot represents the average
fraction of detected ribosomes, with error bars indicating the standard
deviation, using lower estimates (in blue) and upper estimates (in red)
of α. (d) The same as in (c) for obstruction rates, using (25) [see also
Fig. 8(b)].

More precisely, for a given gene and isolation range d,
the theoretical maximal value of the TE, denoted 〈τ (d)〉max,
is determined by the termination rate β, as

〈τ (d)〉max(β) = sup(〈τ (d)〉(α), α ∈ [0,β]). (27)

After estimating the termination rates from our ribosome
profiling data (see Appendix F), in Fig. 7(b) we computed
for different values of d the fraction of genes satisfying TE′ �
〈τ (d)〉max, where TE′ is the TE normalized by the scaling factor
a [see (26)]. We found that all the genes satisfied this condition
for d � 5 before observing a small decrease for d = 6 (98%).

We further looked at the fraction of genes for which we can
identify a unique initiation rate that matches the associated
detected density with the measured TE. As α increases to its
critical value min(β,β∗) (leading to a transition from LD to
the other regimes), the density of isolated particles either only
increases, or increases then decreases, to 〈τ (d)〉id(β), given by

〈τ (d)〉id(β) =
{〈τ (d)〉(β), if β � β∗,
〈τ (d)〉MC, otherwise,

(28)

where 〈τ (d)〉MC is the density of isolated particles in the
MC regime. As a consequence, there is only one identifiable
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initiation rate in the LD region when TE′ < 〈τ (d)〉id(β) and two
when 〈τ (d)〉id(β) � TE′ � 〈τ (d)〉max. In Fig. 7(b), we computed
the fraction of genes satisfying TE � 〈τ (d)〉id. We found that
all genes were then strictly identifiable for d � 2, before the
fraction starts to decrease for d = 3 (96%). For d � 4, a signifi-
cant fraction of genes (at least 19%) is not strictly identifiable.
Thus, in the range of d associated with nondetection found
from Fig. 6, the TE measurement may lead to some ambiguity
in the initiation rates. In this case, two values of the initiation
rate α1 < α2 led to the same detected density: Although the
total density for α2 is larger than for α1, there are also more
closely stacked ribosomes that are not detected. Hence, the
density of isolated particles is the same for both. As the flux
is an increasing function of the initiation rate, such ambiguity
also applies for inferring the flux.

C. The fraction of detected ribosomes and obstruction rates

On estimating the threshold of gap distance between con-
secutive ribosomes leading to their nondetection and studying
the identifiability of the initiation rate α, we then quantified
the resulting fraction of detected ribosomes and the associated
obstruction rate. As discussed above, for some values of d and
〈τ (d)〉, there may be two distinct values of α, and hence two
distinct values of the total average density 〈τ 〉, corresponding to
the same 〈τ (d)〉. This implies that the fraction 〈τ (d)〉/〈τ 〉 of de-
tected ribosomes and the obstruction rate may not be uniquely
determined for some values of d and 〈τ (d)〉. Indeed, for some
of the experimentally observed TE values from Weinberg
et al. [29], we encountered ambiguity in estimating α when
d � 3 [see Fig. 7(b)]. Thus, when such ambiguity occurred, we
considered both lower and upper estimates of α and found their
respective resulting fractions of detected ribosomes 〈τ (d)〉/〈τ 〉
and interference rates [Fig. 7(c) and 7(d)]. We obtained that
for d = 3 or 4, suggested by Fig. 6(b) and 6(c), the lower
estimates of α lead to fractions of detected ribosomes lying
between 91.2 ± 5% and 93.5 ± 3.5%. The upper estimates of
α led to smaller mean and larger variability (between 80 ± 26%
and 91.6 ± 11.7%). As expected, we observed no substantial
difference between the lower and upper estimates for d = 1
or 2 (since no gene presents any ambiguity). As d increases,
however, the fraction of detected ribosomes decreases (notably
because of the increasing fraction of genes with ambiguity).
Interestingly, in contrast to these important variations, we
observed that the obstruction rates corresponding to the lower
estimates of α remain stable around 1% for all d, with only
a slight increase of standard deviation from 0.5 to 0.9%.
Somewhat larger variation is observed for the interference
rates corresponding to the upper estimates of α, with ranges
1.5 ± 2.7% and 3.6 ± 5.5% for d = 3 and 4, respectively.

This difference in the amplitude between the fraction of
detected ribosomes and obstruction rate can be explained
theoretically, as illustrated in Fig. 8. When plotting the fraction
〈τ (d)〉
〈τ 〉 of detected ribosomes as a function of 〈τ (d)〉 [Fig. 8(a)],

we observed that for large values of the fraction (associated
with low α), the curves for different values of d were well
separated, such that for 〈τ (d)〉 ∼ 0.01 (corresponding to the
range of our data set), the fraction of detected ribosomes
can vary between 98% (for d = 1) and 85% (for d = 6). In
contrast, the obstruction rate takes approximately the same
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FIG. 8. The fraction of isolated particles and obstruction rate as
a function of 〈τ (d)〉. (a) For different isolation ranges d ∈ {1, . . . ,6},
we plot the fraction of isolated particles as a function of the average
density of isolated particles 〈τ (d)〉, according to (23). Note that for
given d , some values of 〈τ (d)〉 can lead to two possible fractions of
isolated particles. (b) As in (a), we plot the isolation rate as a function
of the average density of isolated particles 〈τ (d)〉, according to (25).
Note that for 〈τ (d)〉 � 0.02 and all d , the initiation rates associated
with the lower branch are very close.

value for all d [∼1%, see Fig. 8(b)]. More generally, the
formula (25) for obstruction rate shows that, as d increases,
any observed decrease in the fraction 〈τ (d)〉

〈τ 〉 is compensated

by the power 1
d

. Furthermore, as d increases, the range of

the ratio 〈τ (d)〉
〈τ 〉 also increases (from 60–100% for d = 0 to

∼3–100% for d = 6), leading to larger differences between the
lower and upper estimates and higher variability across genes.
In contrast, the obstruction rate remains bounded (by ∼0.2),
explaining its smaller variation across our data set and different
values of d.

IV. DISCUSSION

A. Comparison with existing literature

In this article, we provided a complete analysis of the
distribution of isolated particles in the TASEP model with
open boundaries. This study was motivated by the possible
nondetection of stacked ribosome in ribosome profiling, which
is a recent experimental technique [23]. As shown in (3), the
density of isolated particle is related to two- and three-point
correlators, while most past analyses focused on computing
the total density profile and the flux, which involve one- and
two-point correlators. In the classical form of the model, we
obtained exact analytic solutions using the matrix formulation
originally developed by Derrida et al. [22]. We also obtained
accurate asymptotic formulas in the limit of large N for differ-
ent regimes of the phase diagram. In the past, the classical 1-
TASEP has been studied in various geometric settings [20,21],
such as rings [33,34] and networks [35,36], or with more
complex dynamics associated with pausing [37,38], random
rates [33,39,40], or multiple species [22,34,40–42], to name a
few. A possible extension of our work would be to investigate
the behavior of isolated particles in these different contexts. In
many cases, the solution of the associated master equation can
be found using a matrix formulation [20,21,40,42], suggesting
that the work presented here could be generalized.

We further studied the �-TASEP model with extended
particles of size � and derived asymptotic formulas for densities
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using a refined mean-field approach. In this more general case,
the steady-state solution of the associated master equation
can, in principle, also be written in the form of a generic
matrix product [20,43]. In practice, however, the associated
algebra is rather complex, making it challenging to derive
analytic results [2,20]. To cope with this complexity, sev-
eral approaches using a mean-field approximation have been
developed [2,4,37,44,45]. Although the mean-field treatment
may inaccurately capture the full profile in some regimes
[37], it provides a more accurate approximation when the
profile is restricted to isolated particles. More generally, the
“level” of the “mean field” can also impact the quality of
the approximation. At the simplest level, assuming a uniform
distribution of particles without anticorrelations due to local
interactions and using (13), one may obtain a rather poor
approximation of the density of isolated particle, as the
different regimes are not even separated correctly (all the
cases in Fig. 4 would, for example, be considered as being
in HD). Unlike this simple mean-field approach, the refined
analytic approximation proposed by Lakatos and Chou [2]
leads to formulas that show good agreement with simulations
for current and bulk density [37]. In our work, we employed a
similar approach to obtain a simple, accurate formula for the
density of isolated particles with a given minimum distance to
the closest neighbor. Higher “levels” of “mean field” [44,45]
can help to improve the accuracy of the local density but at the
cost of losing analytic expressions and possible existence of
numerical instabilities and imprecisions [45].

The choice of lattice length (n = 300) in our comparison
with Monte Carlo simulations was motivated by the typical size
of the mRNA found in our data set. As the length of the lattice
increases, we expect the accuracy to improve, especially in the
bulk, as the density would vary less. For much longer lattices,
it would also be natural to study the hydrodynamic limit of the
�-TASEP with open boundaries. Interestingly, while previous
studies derived a general PDE satisfied by the density for
the �-TASEP in the hydrodynamic limit [46,47], a rigorous
derivation, notably including that of boundary conditions, and
analysis of the PDE to determine the associated phase diagram
are still missing. We are currently exploring this research
direction.

B. Application to ribosome profiling data and comparison
with other approaches

We applied our theoretical results to study mRNA transla-
tion using ribosome profiling data. In particular, our analysis
suggests that the representation of the ribosome density may be
biased by the nondetection of ribosomes with a gap distance of
less than approximately codons. In general, different protocols
applied to different organisms can affect the nuclease action
and in particular its ability to cleave ribosomes [28]. Hence,
it would be interesting to apply our method to other data
sets and other organisms to find possible differences in the
detection gap distance. In particular, such differences could
be visible near the terminal end of the transcript sequence,
where slow termination can cause obstructed traffic [48,49].
In yeast (which is the organism studied in our data set), no
periodic peaks of density were detected in this region across
multiple data sets [19,50–57], suggesting nondetection of

stacked ribosomes. In contrast, such peaks have been detected
for other organisms and different protocols [58,59].

Other methods have also been developed previously to
infer the initiation rates associated with specific genes from
polysome [9] or ribosome profiling [12]. These approaches
used Monte Carlo simulations that can be computationally
expensive. Using our theoretical results, it is possible to infer
the initiation rate directly from the observed average detected
density. Interestingly, we found that for our typical detection
gap distance, some initiation rates were not uniquely identifi-
able (i.e., two initiation rates can lead to the same observed TE
arising from isolated ribosomes), as having a higher initiation
rate also creates more obstruction that decreases the detected
density. As a result, our work suggests that, for some genes,
there could be ambiguity in identifying the initiation rate and
the flux from TE, although this measurement has been widely
used as a proxy for protein production [23].

We also provided robust estimates of the average rate
of obstruction that ribosomes experience during translation.
These estimates implicitly depend on the initiation rate and
homogeneous elongation rate but do not include other possible
sources of obstructed traffic due to local heterogeneities. More
precisely, there is evidence of variation of the elongation rate
along the transcript, especially in the first∼200 codons, leading
to the “5′ translational ramp” [23] (in another study [14], we
quantified the extent of obstructed traffic created by this ramp).
However, it has been shown that the average elongation speed
along the transcript sequence is approximately constant around
5.6 codon/s [15], allowing the use of the homogeneous TASEP
model as a first approximation of the translation dynamics.

Overall, our work shows how studying the interaction range
of particles in exclusion process can help to get a better
understanding of the process and that it can be applied to
problems where the data available are biased against this range.
Similarly, while we focused here on isolated particles, our
methods can be applied to situations where only aggregated
particles following a transport process get detected.
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APPENDIX A: EQUATIONS SATISFIED
BY THE CORRELATORS IN THE TASEP

Averaging the master equation associated with the TASEP,
the particle densities satisfy the following relations [60]:

0 = 〈τ1〉N − 〈τ1τ2〉N − α(1 − 〈τ1〉N ), (A1)

0 = 〈τiτi+1〉N − 〈τi−1τi〉N − 〈τi〉N + 〈τi−1〉N ,

for 2 � i � N − 1, (A2)

0 = β〈τN 〉N − 〈τN−1〉N + 〈τN−1τN 〉N . (A3)

Note that (A2) implies 〈τi(1 − τi+1)〉N = 〈τi−1(1 − τi)〉N for
all i = 2, . . . ,N − 1. This translation-invariant quantity is
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called the current (or flux) and is denoted by J . One can also
relate the two-point correlators with the three-point correlators
as

0 = 〈τ1τ2τ3〉N − 〈τ1τ2〉N (1 + α) + α〈τ2〉N, (A4)

0 = 〈τi−1τiτi+1〉N − 〈τi−2τi−1τi〉N − 〈τi−1τi〉N + 〈τi−2τi〉N,

for 3 � i � N − 1, (A5)

0 = 〈τN−2τN−1τN 〉N − 〈τN−2τN 〉N + β〈τN−1τN 〉N . (A6)

APPENDIX B: DESCRIPTION OF THE MATRIX ANSATZ
USED IN THE SIMPLE TASEP

To derive analytical expressions for the average densities
of the TASEP, Derrida et al. [22] showed that the steady-state
probability of a given configuration can be derived using a
matrix formulation as

P(t1, . . . ,tN ) = fN (t1, . . . ,tN )∑
θ1=0,1 · · · ∑θN=0,1 fN (θ1, . . . ,θN )

, (B1)

where

fN (t1, . . . ,tN ) = 〈W |
N∏

i=1

(tiD + (1 − ti)E|V 〉. (B2)

Here D and E are infinite-dimensional square matrices and |V 〉
and 〈W | are column and row vectors, respectively, satisfying

DE = D + E, (B3)

D |V 〉 = 1

β
|V 〉, (B4)

〈W | E = 1

α
〈W |. (B5)

Using this formulation, the particle density can be derived as

〈τi〉N = 〈W |Ci−1DCN−i |V 〉
〈W |CN |V 〉 , (B6)

where C = D + E. More generally, for any given index set
i1,i2, . . . ,ik such that 1 � i1 < · · · < ik � N , we get

〈τi1 · · · τik 〉N

= 〈W |Ci1−1DCi2−i1−1 · · ·Cik−ik−1−1DCN−ik |V 〉
〈W |CN |V 〉 . (B7)

APPENDIX C: COMPUTING THE DENSITY
OF ISOLATED PARTICLES

Using the matrix ansatz, we derive here an analytical
expression for the average density of isolated particles 〈τ ′

j 〉N .
Our goal is to get 〈τ ′

j 〉N as a function of the average densities
〈τj 〉N . The density of isolated particles inside the lattice (2 �
i � N − 1) is given by [see Eq. (3)]

〈τ ′
i 〉N = 〈τi〉N − 〈τi−1τi〉N − 〈τiτi+1〉N + 〈τi−1τiτi+1〉N .

(C1)

For 2 � j � N − 1, we first derive the expression of the two-
point correlators 〈τj τj+1〉N by summing equation (A2) over
i ∈ {2, . . . ,j} and using the boundary equation (A1)

〈τj τj+1〉N = 〈τj 〉N − α(1 − 〈τ1〉N ). (C2)

Similarly, for 3 � j � N − 1, summing equation (A5) from
i = 3 to j and using boundary equations (A1) and (A4) gives

〈τj−1τj τj+1〉N = 〈τ1τ2τ3〉N +
j∑

p=3

〈τp−1τp〉N − 〈τp−2τp〉N

(C3)

= (1 + α)2〈τ1〉N − α(1 + α + 〈τ2〉N )

+
j∑

p=3

〈τp−1τp〉N − 〈τp−2τp〉N . (C4)

Using the matrix formulation and the identities DCD =
D(DC − DE + ED) = DDC − DC + CD, we get

〈τp−2τp〉N = 〈W |Cp−3DCDCN−p|V 〉
〈W |CN |V 〉

= 〈τp−2τp−1〉N + JN (〈τp−1〉N−1 − 〈τp−2〉N−1),

(C5)

where JN = 〈W |CN−1|V 〉
〈W |CN |V 〉 = α(1 − 〈τ1〉N ) is the particle current

at steady state [22]. Combining (C5) with (C4) and using (C1)
and (A1) yield the result for the three-point correlator

〈τj−1τj τj+1〉N
= 〈τj−1〉N − α[1 + α + 〈τ2〉N − · · · (2 + α)〈τ1〉N ]

− JN (〈τj−1〉N−1 − 〈τ1〉N−1), (C6)

for 3 � j � N − 1. Using (A1) and (A4), this equation is also
true for j = 2. Using (C6), (C2), and (3) gives us the formula
for the density of isolated particles, for 2 � i � N − 1,

〈τ ′
i 〉N = α[1 − 〈τ2〉N + α(〈τ1〉N − 1)] − · · ·

× JN (〈τi−1〉N−1 − 〈τ1〉N−1). (C7)

Finally, we can use JN = α(1 − 〈τ1〉N ) to write the above
formula in a more compact notation, as

〈τ ′
i 〉N = D0(α,β,N ) − D1(α,β,N )〈τi−1〉N−1, (C8)

where

D0(α,β,N ) = α[1 − 〈τ2〉N + (1 − 〈τ1〉N )(〈τ1〉N−1 − α)],

(C9)

D1(α,β,N ) = α(1 − 〈τ1〉N ). (C10)

Similarly, using Eqs. (A1) and (A3) at the boundaries yields

〈τ ′
1〉N = α(1 − 〈τ1〉N ), (C11)

〈τ ′
N 〉N = 〈τN 〉N (1 + β) − 〈τN−1〉N . (C12)

012106-10
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APPENDIX D: DENSITY OF ISOLATED PARTICLES
IN THE BULK FOR THE �-TASEP

We compute here an estimate of the density of isolated
particles of size � in the bulk (〈τi〉, 1 � i � N − l). To do so,
we use an approximation from Lakatos and Chou [2], assuming
that the number of states of n particles of length l, confined to a
length of N ′ � n� lattice sites, is given by the partition function
[61]

Z(n,N ′) =
(

N ′ − (� − 1)n

n

)
. (D1)

For a given position i ∈ {1, . . . , � N − l}, we introduce x−
i

and x+
i as the positions of the closest particles to the left and

the right of i, respectively, so we get

〈τ ′
i 〉 = P(τi = 1, x−

i < i − �, x+
i > i + �), (D2)

= P(τi = 1)P(x−
i < i − �, x+

i > i + � | τi = 1).

(D3)

Assuming x−
i and x+

i being independent yields

〈τ ′
i 〉=P(τi=1)P(x−

i < i−� | τi=1)P(x+
i > i + � | τi=1).

(D4)

Using (D1), the probability p+
n,N ′ that x+

i > i + �, conditioned
on τi = 1 and there being n particles in the window [i + � :
i + � + N ′ − 1] is

p+
n,N ′ = Z(n,N ′ − 1)

Z(n,N ′)
= 1 − ρ�

1 − ρ(� − 1)
, (D5)

where ρ = n
N ′ . When n and N ′ get large and assuming the

density of particles in the bulk of the lattice to be approximately
constant (denoted 〈τ 〉), we can replace p+

n,N ′ and ρ in Eq. (D5)
by P(x+

i > i + � | τi = 1) and 〈τ 〉, respectively, which gives

P(x+
i > i + � | τi = 1) = 1 − 〈τ 〉�

1 − 〈τ 〉(� − 1)
. (D6)

Similarly, we obtain P(x−
i < i − � | τi = 1) = 1−〈τ 〉�

1−〈τ 〉(�−1) .
Combining these relations and replacing P(τi = 1) by 〈τ 〉 in
Eq. (D3), we obtain that the density of isolated particles in the
bulk, simply denoted 〈τ ′〉, is given by

〈τ ′〉 = 〈τ 〉
[

1 − �〈τ 〉
1 − (� − 1)〈τ 〉

]2

. (D7)

Similarly, for isolation range d, we obtain

〈
τ

(d)
i

〉 ∼ P(τi = 1)

[
Z(n,N ′ − d)

Z(n,N ′)

]2

, (D8)

which simplifies to the following expression in the large-N
limit:

〈τ (d)〉 ∼ 〈τ 〉
[

1 − �〈τ 〉
1 − (� − 1)〈τ 〉

]2d

. (D9)

APPENDIX E: EXPERIMENTAL DATA SET

The flash-freeze ribosome profiling data from Weinberg
et al. [29] can be accessed from the Gene Expression Omnibus
(GEO) database with the accession number GSE75897. To map
the A-sites from the raw short-read data, we used the following
procedure: We selected the reads of lengths 28, 29, and 30
nt, and, for each read, we looked at its first nucleotide and
determined how shifted (0,+1, or −1) it was from the closest
codon’s first nucleotide. For the reads of length 28, we assigned
the A-site to the codon located at position 15 for shift equal to
+1, at position 16 for shift equal to 0, and removed the ones
with shift −1 from our data set, since there is ambiguity as to
which codon to select. For the reads of length 29, we assigned
the A-site to the codon located at position 16 for shift equal
to +0 and removed the rest. For the reads of length 30, we
assigned the A-site to the codon located at position 16 for shift
equal to 0, at position 17 for shift equal to −1, and removed
the reads with shift +1.

APPENDIX F: ESTIMATION OF TERMINATION RATES

For a given profile (P1, . . . ,PN ) containing the number of
footprints with A-site detected at each position, we estimate
the associated scaled termination rate as

β = (N − 1)

PN

∑N−1
i=1

1
Pi

. (F1)

Such estimation is valid when there is little ribosomal inter-
ference, such that the elongation rate can be approximated
by the inverse of the profile [14]. In another study [14], we
developed a more refined inference procedure that uses these
rates as first estimates (this method applies for genes with high
footprint coverage), leading to excellent agreement between
the observed and simulated profiles for the same data set used
here. As in average, our refined procedure lead to correction
for ∼1.57 site per gene, these “naive” estimates are valid over
a large majority of the sites.
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