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Route from discreteness to the continuum for the Tsallis q-entropy
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The existence and exact form of the continuum expression of the discrete nonlogarithmic q-entropy is an
important open problem in generalized thermostatistics, since its possible lack implies that nonlogarithmic q-
entropy is irrelevant for the continuous classical systems. In this work, we show how the discrete nonlogarithmic
q-entropy in fact converges in the continuous limit and the negative of the q-entropy with continuous variables
is demonstrated to lead to the (Csiszár type) q-relative entropy just as the relation between the continuous
Boltzmann-Gibbs expression and the Kullback-Leibler relative entropy. As a result, we conclude that there is no
obstacle for the applicability of the q-entropy to the continuous classical physical systems.
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Since its advent, the nonadditive q-entropy [1,2] has found
numerous fields of application in many diverse fields [3–13].
Despite this apparent progress in the field, however, there
have been some criticisms regarding its applicability and
scope. Among such criticisms, one can particularly cite
the ones related to the Bayesian updating procedure [14],
Lesche stability [15–17], and the methodology of the entropy
maximization [18].

Recently, Abe pinpointed that the nonadditive q-entropy
is inherently limited to the finite discrete systems, since its
continuum expression has not been obtained yet [19] (see also
Refs. [20,21]). In this work, we show that one can indeed obtain
the concomitant continuum expressions of the nonadditive
entropy and therefore point out that the nonadditive q-entropy
can also be used for continuous physical systems.

Before proceeding further with the nonadditive case, one
should be convinced why taking the route from discreteness
to a continuum is essential concerning any entropy measure
in general. Setting the Boltzmann constant to unity, the finite
discrete Boltzmann-Gibbs (BG) entropy reads

S({p}) =
n∑

i=1

pi ln(1/pi), (1)

where pi denotes the probability of the ith event. Let us
now consider its continuous counterpart to be the following
expression:

S(ρ) =
∫ b

a

ρ(x) ln

[
1

ρ(x)

]
dx, (2)

where ρ(x) is a probability density function satisfying the
normalization condition in the interval [a,b].

Although the continuous expression above seems reason-
able at first sight, it has three serious drawbacks. First, the
continuous version in Eq. (2) has an overall unit of log(length),
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whereas the discrete entropy in Eq. (1) is dimensionless [22].
Second, the probability density S(ρ) is not invariant with
respect to coordinate transformations [22]. Last but not the
least, the discrete BG entropy S({p}) in the n → ∞ limit and
S(ρ) yield different results [22]: To see this more explicitly,
consider a uniform distribution ρ(x) in the interval [a,b] as
1/(b − a) so that its discrete counterpart p(xi) is given by 1/n

obtained through dividing the same interval [a,b] into n equal
subintervals where the index i runs from 1 to n. Then, the
continuous entropy S(ρ) for this uniform distribution yields
ln(b − a) while the discrete expression S({p}) attains infinity
in the n → ∞ limit. In other words, the continuum version of
the discrete entropy does not converge to the value obtained
through the continuous version for the uniform distribution.
Therefore, the continuous version of the discrete BG entropy
S({p}) cannot be S(ρ).

The solution of the discrete-to-continuum transition for the
BG entropy is already known [23]. In order to extend BG
entropy to the continuum, we assume some discrete points xi

with i = 1,2, . . . ,n and x1 < · · · < xn filling the interval [a,b]
so that one has a factorizable discrete probability pi [23] as

pi = ρ(xi)�xi , �xi = 1

nm(xi)
(3)

with the property
n∑

i=1

ρ(xi)�xi = 1
n→∞−→

∫ b

a

ρ(x)dx = 1 . (4)

Substitution of Eq. (3) into the discrete entropy expression
given by Eq. (1) yields

S({p}) =
n∑

i=1

pi ln

[
m(xi)

ρ(xi)

]
+ ln(n), (5)

where we have also made use of the normalization
∑n

i=1 pi=1.
Equation (5) can now be rewritten as

S({p}) =
n∑

i=1

ρ(xi) ln

[
m(xi)

ρ(xi)

]
�xi + ln(n) (6)
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so that the above summation in the n → ∞ limit finally yields
the following continuous expression:

lim
n→∞ S({p}) = S(ρ) =

∫ b

a

ρ(x) ln

[
m(x)

ρ(x)

]
dx , (7)

where the additive divergent term limn→∞ ln (n) is omitted
since the entropy is not absolute, but only its change can
be measured [19]. It is worth remarking that the continu-
ous entropy expression given by Eq. (7) is dimensionless
like its discrete counterpart and invariant under different
reparametrization of continuum.

Note that the usual discrete nonadditive q-entropy, i.e., Sq =∑n
i=1 pi lnq(1/pi) [1,2] [lnq(x) is defined in Eq. (9)], cannot

be adopted, since it does not converge in the continuous limit
[19]. Therefore, we consider

Sq({p}) = nq−1
n∑

i=1

pi lnq (1/pi), (8)

where the q-logarithm [24] is defined as

lnq(x) ≡ x1−q − 1

1 − q
, (9)

which becomes the ordinary logarithm in the q → 1 limit so
that the nonadditive entropy becomes the BG entropy. The
discrete entropy expression in Eq. (8) has an additional multi-
plicative term nq−1 compared to the usual nonadditive entropy
expression [1,2]. As we show below, this term is required for
convergence and therefore can be called the convergence factor
[see Eq. (17) below for more on its justification].

In order to extend the discrete expression above to the
continuum, we consider the same apparatus as before [see
Eq. (3) and related explanations above it] with the exception
that we now have �xi = 1

n mq (xi )
. The measure mq(xi) is the

q-deformed form of the previous measure m(xi) in Eq. (3)
to account for the nonadditivity as also noted in Ref. [19]
[see Eq. (10) therein]. Therefore, the probability normalization
condition in Eq. (4) is satisfied in the case of the nonadditive
q-entropy as well albeit now under mq(xi) so that

Sq({p}) = nq−1
n∑

i=1

pi lnq

[
nmq(xi)

ρ(xi)

]

= nq−1

{ n∑
i=1

pi lnq

[
mq(xi)

ρ(xi)

]
− lnq (1/n)

n∑
i=1

p
q

i

}
.

(10)

Note now that using Eqs. (8) and (9), the following relation is
seen to hold:

n∑
i=1

p
q

i = [1 + (1 − q)n1−q Sq] . (11)

The substitution of the relation above into Eq. (10) yields the
analogous expression of the Shannon entropy in Eq. (6)

Sq({p}) =
n∑

i=1

ρ(xi) lnq

[
mq(xi)

ρ(xi)

]
�xi + ln2−q (n). (12)

Finally, taking the limit n → ∞, we obtain the continuous
form of the discrete nonadditive entropy as

Sq(ρ) = lim
n→∞ Sq({p}) =

∫ b

a

ρ(x) lnq

[
mq(x)

ρ(x)

]
dx . (13)

where we omitted the divergent term limn→∞ ln2−q(n) due to
the same reason we omitted limn→∞ ln(n) in the Shannon case
in Eq. (6). Namely, the physical observable is not the entropy
itself but its change �S, so that the divergence limn→∞ ln(n) in
Eq. (6) and limn→∞ ln2−q(n) in Eq. (13) for the Shannon and
Tsallis entropy, respectively, vanishes, allowing the entropic
structure to converge in the energy continuum.

Another issue worth noting is that the negative of the
continuous expression S(ρ) in Eq. (7) for the BG entropy
is nothing but the relative entropy (also known as Kullback-
Leibler divergence) [23,25], which reads

K[ρ‖m] =
∫ b

a

ρ(x) ln

[
ρ(x)

m(x)

]
dx , (14)

i.e., −S(ρ) = K[ρ‖m].
Considering now the negative of the continuous nonadditive

q-entropy in Eq. (13), we have

−Sq(ρ) = −
∫ b

a

ρ(x) lnq

[
mq(x)

ρ(x)

]
dx

=
∫ b

a

ρ(x) ln2−q

[
ρ(x)

mq(x)

]
dx , (15)

where we have used the relation − lnq(x) = ln2−q(1/x) [18].
The last expression above is exactly the Csiszár-type nonad-
ditive relative entropy Kq[ρ‖m] (see Eq. (24) in Ref. [25] or
Ref. [26], for example). In other words, just as its additive
counterpart, i.e., −S(ρ) = K[ρ‖m], the nonadditive entropy
preserves the relation −Sq(ρ) = Kq[ρ‖m] between its con-
tinuous generalization and the concomitant relative entropy
expression.

So far we have shown that the term nq−1 in Eq. (8) is essen-
tial, in the discrete case, to correctly obtain the concomitant
continuous expression. The presence of this factor can further
be elucidated by noting that the discrete entropy is maximized
when the states are uniformly distributed. In other words, if we
consider the discrete form of the relative entropy expression in
Eq. (14) with a uniformly distributed prior, i.e., ri = 1/n, then
one obtains

K[p‖1/n] =
n∑

i=1

pi ln

(
pi

ri

)
=

n∑
i=1

pi ln (npi)

= −S({p}) − ln(1/n), (16)

where S({p}) denotes the discrete BG entropy in Eq. (1).
The relation above shows that the entropy maximization is
equivalent to the relative entropy minimization when the
prior is chosen to be uniform [27]. Therefore, the maximum
entropy principle is a particular case of the relative entropy
minimization.

A similar calculation using the discrete form of the non-
additive relative entropy Kq[p‖r] in Eq. (15) with a uniform
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prior yields

Kq[p‖1/n] = −nq−1
n∑

i=1

pi lnq(1/pi) − lnq(1/n)

= −Sq({p}) − lnq (1/n), (17)

where the first expression on the right-hand side of the
equality above is exactly the discrete entropy adopted in
Eq. (8). In other words, the minimum relative entropy with a
uniform prior is equivalent to the maximum discrete q-entropy

expression Sq({p}) = nq−1 ∑n
i=1 pi lnq(1/pi), which explains

the discrete form of the q-entropy adopted in Eq. (8) [28,29].
To conclude, we have shown that the discrete nonadditive

q-entropy does indeed converge for any q values. Moreover,
the negative of the continuous q-entropy is shown to lead to
the (Csiszár-type) q-relative entropy mimicking exactly the
relation between the negative of the continuous BG expression
and the Kullback-Leibler relative entropy. Therefore, there is
no obstacle for the use of the q-entropy to the continuous
classical physical systems as many applications in the field
also indicate [2].
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