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Subordinated stochastic processes with aged operational time
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In this paper, subordinated stochastic processes are considered, where the renewal process acting as the
operational time. It is assumed that the observation of the process begins at a certain time after the start
of the renewal process. A recurrence formula was derived for calculating the multipoint probability density
functions of the aged renewal process. Two-point correlation functions for certain subordinated stochastic
processes, particularly for the generalized Ornstein-Uhlenbeck process, were calculated. A model of relaxation
in a disordered medium with traps and obstacles is proposed.
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I. INTRODUCTION

Subordination is a mathematical method that broadens
the applicability of classical transport models [1–7]. In this
method, the clock time of a stochastic process X(t) is random-
ized by introducing a new time s = S(t). The resulting process
Y (t) = X[S(t)] is said to be subordinated to the parent process
X(s), and s is commonly referred to as the leading process or
the operational time. The operational time introduced in this
way considers the heterogeneity of the medium in which the
process takes place.

If the processes X(s) and S(t) are independent and
if their multipoint probability density functions (PDFs)
P X

n (x1,s1; . . . ; xn,sn) and P S
n (t1,s1; . . . ; tn,sn) are known, the

multipoint probability density functions of the resulting pro-
cess can be calculated by integration [8]:

P Y
n (x1,t1; . . . ; xn,tn) =

∫ ∞

0
ds1 . . .

∫ ∞

0
dsn

×P X
n (x1,s1; . . . ; xn,sn)

×P S
n (t1,s1; . . . ; tn,sn). (1)

A widely known example of a subordinated stochastic
process is the continuous time random walk (CTRW). In this
model, ordinary random walks play the role of the parent pro-
cess, and the renewal process plays the role of the operational
time.

The CTRW model describes a slowing diffusion caused by
traps (binding sites). A characteristic feature of this kind of
slowing diffusion is nonstationarity; its properties depend on
the instant at which the observation begins. From a physical
perspective, this feature is explained by the fact that the initial
distribution over different states differs from the equilibrium
distribution.

Another kind of slowing diffusion corresponds to the
motion in the presence of obstacles (i.e., in a labyrinthine or
crowded environment). In this case, the initial (equiprobable)
distribution coincides with the equilibrium distribution, and
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the nonstationarity effect is absent. The process has stationary
increments. This kind of slowing diffusion can be described
by various models, such as the random walks on fractals, the
Lorentz model, and the random barrier model [9–11]. Besides
those described above, there are other types of slowing diffu-
sion, which are described by other mathematical models, such
as the fractional Brownian motion, the generalized Langevin
equation, and the time-dependent diffusion coefficient [9,10].

In real physical systems, various mechanisms are often
present simultaneously, which cause the slowing of diffusion.
In such cases, an individual model is unable to adequately
describe the process, and it is necessary to combine two or
more models. If one of the mechanisms slowing the diffusion
is a delay in the traps, the combined model can be constructed
using the subordination method, and the renewal process can be
taken as the operational time. The choice of the parent process
depends on the other mechanisms present for slowing the
diffusion. These types of combined models have been proposed
in Refs. [12] and [13]. The multipoint probability density
functions for the renewal process, allowing the calculation of
multipoint correlation functions for such combined models,
were calculated in Ref. [8]. There are examples of successful
application of this type of combined models to describe
experimental data. For instance, in Ref. [14], it is shown that
CTRW on fractals adequately represents the diffusion process
of molecules in a plasma membrane.

In previous works, it was assumed that the waiting time
distribution of the first event coincides with the waiting time
distribution of the second and subsequent events. This means
that at the beginning of the observation, the residence time
(the time elapsed since the last event) is equal to zero. This
assumption is valid if the beginning of the observation coin-
cides with the time of the creation of the system, for example,
in a time-of-flight experiment. However, experiments are often
performed on preexisting systems. For example, in biological
experiments, such as fluorescence correlation spectroscopy
(FCS) or fluorescence recovery after photobleaching (FRAP),
the initial state of the system is in equilibrium. In such cases,
it is more realistic to assume that the residence time was zero
before a certain period of time or that the ensemble of walkers
is in equilibrium with the environment.
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In this paper, we derive the multipoint probability density
functions of the renewal process when the observation of the
process begins at a certain time after the start of the process
(aged renewal process). Subsequently, we consider several
applications of the formulas obtained. In particular, we propose
a model of relaxation in a disordered medium containing traps
and obstacles.

II. AGED RENEWAL PROCESS

As a starting point, we use the Markov representation of
the renewal process. ξn(t,τ ) is set as the probability density
of n events and residence time τ at time t after the beginning
of the observation. Analogously to the CTRW model [15–17],
the balance equation can be written as:

∂ξn(t,τ )

∂t
+ ∂ξn(t,τ )

∂τ
= −ω(τ )ξn(t,τ ), (2)

where ω(τ ) is the rate at which events occur.
Events are counted from the beginning of the observation,

thus the initial condition can be written in the form of ξn(0,τ ) =
δn0f0(τ ), where δn0 is the Kronecker symbol and f0(τ ) is
the initial distribution of the residence times. If the renewal
process starts at time −t0, f0(τ ) = κ(t0 − τ )�(τ ), where κ(t0)
is the probability of an event at time t0 after the start of

the renewal process, and �(τ )
def= exp[− ∫ τ

0 ω(y)dy] is the
survival probability. The boundary condition at τ = 0 differs
from the corresponding condition of the CTRW model in that
only one-sided transitions n − 1 → n occur:

ξn(t,0) =
∫ ∞

0
ω(τ )ξn−1(t,τ )dτ. (3)

We performed Laplace transform on the time variable t and
discrete Laplace transform on variable n: (In this paper, the
original functions and their transforms can be distinguished
by their arguments.)

ξ (u1,k1,τ ) =
∞∑

n=0

∫ ∞

0
exp(−k1n − u1t)ξn(t,τ )dt, (4)

As a result of the transformations, Eqs. (2), and (3) become

∂ξ (u1,k1,τ )

∂τ
= −[ω(τ ) + u]ξ (u1,k1,τ ) + f0(τ ), (5)

ξ (u1,k1,0) = F1, (6)

where F1 = exp(−k1)
∫ ∞

0 ω(τ )ξ (u1,k1,τ )dτ . The solution of
these equations is

ξ (u1,k1,τ ) = �(τ ) exp(−u1τ )

×
[
F1 +

∫ τ

0

exp(u1y)

�(y)
f0(y)dy

]
. (7)

To evaluate the integral, we regard parameter t0 as a variable
and perform the Laplace transform t0 → λ. Thus, the function
f0(τ ) takes the form f0(τ,λ) = �(τ ) exp(−λτ )

1−ψ(λ) [18–20], where
ψ(λ) is the Laplace transform of the waiting time distribution

ψ(t0) [ψ(t0)
def= − d�(t0)

dt0
].

The calculations yield:

ξ (u1,k1,τ )=�(τ )

[
F1 exp(−u1τ )+exp(−λτ )− exp(−u1τ )

[1−ψ(λ)][u1−λ]

]
,

(8)

F1 = exp(−k1)φ(u1,λ)

1 − exp(−k1)ψ(u1)
, (9)

where

φ(u1,λ) = ψ(λ) − ψ(u1)

[1 − ψ(λ)][u1 − λ]
(10)

is the forward recurrence time [18]. The one-point PDF,

P1(u1,k1)
def= ∫ ∞

0 ξ (u1,k1,τ )dτ , can be written as:

P1(u1,k1) = exp(−k1)φ(u1,λ)

1 − exp(−k1)ψ(u1)
�(u1) + �(u1,λ), (11)

where �(u1,λ) = �(λ)−�(u1)
[1−ψ(λ)][u1−λ] = 1

u1λ
− 1−φ(u1,λ)

u1
. Performing

Laplace inversion λ → t0, gives the same expression, but with
replacements φ(u1,λ) → φ(u1,t0) and �(u1,λ) → �(u1,t0). It
should be noted that the limiting forms of the function φ(u1,t0)
are φ(u1,t0 = 0) = limλ→∞ λφ(u1,λ) = ψ(u1) (nonaged sys-
tem) and φ(u1,t0 = ∞) = limλ→0 λφ(u1,λ) = 1−ψ(u1)

τ̄ u1
(sys-

tem in full equilibrium), where τ̄ = ∫ ∞
0 τψ(τ )dτ is the mean

residence time. By taking the continuum limit [i.e., replacing
exp(−k1) by 1 − k1] and performing Laplace inversion k1 →
s1 (the operational time s1 is a continuous extension of the
number of events n), the following can be obtained:

P1(u1,s1) = φ1(1−ψ1)

u1ψ
2
1

exp

(
−s1

1−ψ1

ψ1

)
+ψ1−φ1

u1ψ1
δ(s1).

(12)

Here, we introduce the abbreviated notation of ψ1 = ψ(u1),
φ1 = φ(u1,t0). This one-point PDF can be used in Eq. (1) to
obtain the one-point PDFs of the subordinated processes. In
the case of the non-aged system, Eq. (12) reduces to the well-
known formula P1(u1,s1) = (1−ψ1)

u1ψ1
exp(−s1

1−ψ1

ψ1
) [7,21].

As can be seen, the dynamics of the two-component process
[n(t),τ (t)] is Markovian. If the state of the system at time t1 is
known, the conditional probability at any time t2 > t1 can be
obtained by solving Eqs. (2) and (3). This allows us to find the
multipoint PDFs of the renewal process.

The joint PDF P2(t1,n1; σ,�) is defined such that there
are n1 events at time t1 and � = n2 − n1 events during the
time interval σ = t2 − t1. The Laplace transform of this PDF,
P2(u1,k1; u2,k2), can be obtained in the same way as P1(u1,k1)
was obtained, if ξ (σ = 0,k2,τ ) = ξ (u1,k1,τ ) is considered as
the initial condition. In this case, Eq. (7) takes the form:

ξ (u2,k2,τ ) = �(τ ) exp(−u2τ )

×
[
F2 +

∫ τ

0

exp(u2y)

�(y)
ξ (u1,k1,y)dy

]
. (13)

The expression for F2 is

F2 = exp(−k2)
∫ ∞

0
ω(τ )ξ (u2,k2,τ )dτ, (14)
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and the PDF P2(u1,k1; u2,k2) is calculated from
P2(u1,k1; u2,k2) = ∫ ∞

0 ξ (u2,k2,τ )dτ . Substituting Eq. (8)
into Eq. (13) and solving Eqs. (13) and (14) gives:

ξ (u2,k2,τ ) = �(τ )

{
F2 exp(−u2τ )+exp(−u1τ )− exp(−u2τ )

u2 − u1

×
[
F1 − 1

[1 − ψ(λ)][u1 − λ]

]

+ exp(−λτ ) − exp(−u2τ )

[u2 − λ][1 − ψ(λ)][u1 − λ]

}
, (15)

F2 = exp(−k2)

1 − exp(−k2)ψ(u2)

×
[
F1

ψ(u1) − ψ(u2)

u2 − u1
+ φ(u1,λ) − φ(u2,λ)

u2 − u1

]
, (16)

and

P2(u1,k1; u2,k2) = F2�(u1)

+ F1
�(u1) − �(u2)

u2 − u1
+�(u1,λ)−�(u2,λ)

u2 − u1
.

(17)

If the function P2 is known, the Laplace transform of
the function P S

2 appearing in Eq. (1) can be found:
P S

2 (u1,k1; u2,k2) = P2(u1 + u2,k1 + k2; u2,k2) + P2(u1 +
u2,k1 + k2; u1,k1) [22]. The resulting complex expressions
are not presented as the function P2 is sufficient to calculate
the correlation functions [23].

By taking the continuum limit in Eq. (17) [i.e., replacing
exp(−k1) by 1 − k1 and exp(−k2) by 1 − k2] and performing
Laplace inversions k1 → s1, k2 → �, and λ → t0 (� is a
continuous variable equal to s2 − s1), the following results can
be obtained:

P2(u1,s1; u2,�) = �2 − �1

u1 − u2
δ(s1)δ(�)

+�2 − �1

u1 − u2

φ1

ψ1

[
1

ψ1
exp

(
− s1

1 − ψ1

ψ1

)
− δ(s1)

]
δ(�)

+�2

ψ2

φ2 − φ1

u1 − u2

[
1

ψ2
exp

(
− �

1 − ψ2

ψ2

)
− δ(�)

]
δ(s1)

+�2

ψ2

ψ2 − ψ1

u1 − u2

[
1

ψ2
exp

(
− �

1 − ψ2

ψ2

)
− δ(�)

]

× φ1

ψ1

[
1

ψ1
exp

(
− s1

1 − ψ1

ψ1

)
− δ(s1)

]
, (18)

where ψ2 = ψ(u2), φ2 = φ(u2,t0), �i = 1−ψi

ui
, and �i = 1−φi

ui

(i = 1,2). This function can be used to calculate the Laplace
transforms of the two-point correlation functions of the subor-
dinated process. If the correlation function of the parent process

〈xk
1xm

2 〉X(s1,s2)
def= 〈xk(s1)xm(s2)〉 is known, the Laplace trans-

form of the correlation function of the subordinated process can
be calculated from the equation:〈

xk
1xm

2

〉Y
(u1,u2) =

∫ ∞

0
ds1

∫ ∞

0
d�

〈
xk

1xm
2

〉X
(s1,s1 + �)

×P2(u1,s1; u2,�). (19)

This expression follows from Eq. (1).

Hence, a two-point PDF was obtained. For PDFs of order
n higher than two, the indices in Eqs. (12) and (13) have to
be increased successively by one and these equations have to
be solved. After finding ξ (un,kn,τ ) and Fn, the n-point PDF
Pn can be acquired from the relation Pn(u1,k1; . . . ; un,kn) =∫ ∞

0 ξ (un,kn,τ )dτ . If Pn is known, P S
n can be obtained.

III. CERTAIN DIRECT CONSEQUENCES

The mean-squared displacement (MSD) of the subordinated
process is calculated using the one-point PDF from Eq. (12):
〈x2〉Y (u1) = ∫ ∞

0 ds1〈x2(s1)〉XP1(u1,s1). The result is

〈x2〉Y (u1) = φ1(1 − ψ1)

u1ψ
2
1

f

(
1 − ψ1

ψ1

)
, (20)

where f (u1) is the Laplace transform of 〈x2(s1)〉X. For the
fully equilibrated system (i.e., where φ1 = 1−ψ1

τ̄ u1
)

〈x2〉Yeq(u1) = (1 − ψ1)2

τ̄ u2
1ψ

2
1

f

(
1 − ψ1

ψ1

)
, (21)

and it follows from this that if the MSD of the parent process
is a linear function of time (i.e., if f (u1) = const.

u2
1

), the MSD of
the subordinated process is also a linear function of time. This
is the case in the CTRW model [11]. For a nonaged system
(i.e., where φ1 = ψ1), the well-known result 〈x2〉Yne(u1) =
1−ψ1

u1ψ1
f ( 1−ψ1

ψ1
)can be obtained.

Let the parent process be a certain process with stationary
increments. For such processes, the MSD during a certain time
interval 〈[x(s2) − x(s1)]2〉X is equal to 〈x2(s2 − s1)〉X [9]. As
〈[x(s2) − x(s1)]2〉X is a linear combination of the correlation
functions, Eq. (19) can be applied to it, with a result of

〈[x2 − x1]2〉Y (u1,u2) = φ2(1 − ψ1) − φ1(1 − ψ2)

ψ2(u1 − u2)(1 − ψ1)

×1 − ψ2

u2ψ2
f

(
1 − ψ2

ψ2

)
. (22)

In the case of a fully equilibrated system

〈[x2 − x1]2〉Yeq(u1,u2) = (1 − ψ2)2

τ̄ u1u
2
2ψ

2
2

f

(
1 − ψ2

ψ2

)
. (23)

This shows that 〈[x(t2) − x(t1)]2〉Yeq is only a function of the
time difference t2 − t1. In the case of a nonaged system

〈[x2 − x1]2〉Yne(u1,u2) = ψ2 − ψ1

ψ2(u1 − u2)(1 − ψ1)

×1 − ψ2

u2ψ2
f

(
1 − ψ2

ψ2

)
. (24)

If the parent process is a simple Brownian motion [i.e., if
f (u1) = const.

u2
1

], this expression reduces to

〈[x2 − x1]2〉Yne(u1,u2) = const.

{
1

u1 − u2

[
ψ2

u2(1 − ψ2)

− ψ1

u1(1 − ψ1)

]
− ψ1

u1u2(1 − ψ1)

}
.

(25)
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In real time, the known CTRW relation [9]

〈[x(t2) − x(t1)]2〉Yne = 〈x2〉Yne(t2) − 〈x2〉Yne(t1) (26)

is obtained.
In stationary state, the normalized two-point correla-

tion function of the standard Ornstein-Uhlenbeck process
is 〈x(s1)x(s2)〉 = exp[−γ (s2 − s1)] [24]. By substituting this
expression into Eq. (19), the Laplace transform of the two-point
stationary correlation function of the generalized Ornstein-
Uhlenbeck process can be obtained:

〈x1x2〉Y (u1,u2) = 1

u1u2
− φ2(1 − ψ1) − φ1(1 − ψ2)

u2(u1 − u2)(1 − ψ1)

× γ

1 − ψ2 + γψ2
. (27)

Three cases are considered: (i) t0 = 0. The Laplace trans-
form of the single-time correlation function 〈x(0)x(t2)〉Y
can be obtained either by using the one-point distribu-
tion in Eq. (12) or from the relation 〈x1x2〉Y (t1 = 0,u2) =
limu1→∞ u1 × 〈x1x2〉Y (u1,u2). The result is

〈x1x2〉Y (t1 = 0,u2) = 1

u2

1 − ψ2 + γ (ψ2 − φ2)

1 − ψ2 + γψ2
. (28)

This expression was previously obtained in Ref. [23]. (ii) Fully
equilibrated system. By substituting φi = 1−ψi

τ̄ui
into Eq. (27),

〈x1x2〉Yeq(u1,u2) = 1

u1u2

[
1 − γ

τ̄u2

1 − ψ2

1 − ψ2 + γψ2

]
(29)

can be obtained. In this case, the correlation function
〈x(t1)x(t2)〉Yeq is only a function of the time difference t2 − t1.
(iii) Nonaged system. This case was considered in Ref. [24].
To show that our approach yields the same results, Eq. (27)
was transformed with φi = ψi into:

〈x1x2〉Yne(u1,u2) = 1

u1 − u2

[
1

u2 + γ θ2
− 1

u1 + γ θ1

]

×
[

γψ1

1 − ψ1
+ 1

]
, (30)

where θi = uiψi

1−ψi
. With the function ψi corresponding to the

anomalous subdiffusion (ψi = 1
1+uα

i

), ψ1

1−ψ1
= u−α

1 and θi =
u1−α

i . By substituting these expressions into Eq. (30) and
performing Laplace inversion, the obtained result coincides
with that obtained in Ref. [24]:

〈x(t1)x(t2)〉Yne = 1

�(α)

∫ t1

0
dttα−1Eα[−γ (t2 − t)α]

+ 1

γ
Eα(−γ tα2 ), (31)

where �(x) is the Gamma function and Eα(x) is the Mittag-
Leffler function.

IV. NON-DEBYE RELAXATION

In Laplace space (u,λ), the correlation function in
Eq. (28) (denoted here by �) satisfies the following

equation:

u�(u,λ) − 1

λ
= −γ�(u)�(u,λ)

+ γ

[
�(u)

uλ
− 1

λ − u

(
�(u)

u
− �(λ)

λ

)]
.

(32)

In real-time space, this takes the form of

∂�(t,t0)

∂t
= −γ

∫ t

0
dτ�(t − τ )�(τ,t0)

+γ

[ ∫ t

0
dτ�(τ ) −

∫ t+t0

0
dτ�(τ )

]
. (33)

If, as is usually the case in physical systems [25], function ψ(t)
is a composition of exponentials

ψ(t) =
∫ ∞

0
dν[νρ(ν) exp(−νt)], (34)

then the function �(t) has the following representation [26]:

�(t) = 〈ν〉δ(t) − Q(t), (35)

where Q(t) is a positive function and the integral
∫ ∞

0 dτQ(τ )
is equal to 〈ν〉 − 1

〈 1
ν
〉 . [Angular brackets mean averaging by

the function ρ(ν).] As the arithmetic mean is greater than
the harmonic mean, the inhomogeneous term in Eq. (33) is
non-negative. For t0 = 0, it is identically equal to zero. With
increasing t0 (i.e., with increasing age of the system), it grows
while keeping the sum of the right-hand side of the equation
negative. Thus, the greater the age of the system, the slower �

relaxes to the equilibrium value.
Let us consider a particular example where the function

ψ(t) is the sum of two exponentials:

ψ(t) = ρ1ν1 exp(−ν1t) + ρ2ν2 exp(−ν2t) (36)

with

ν1,ν2 > 0,ρ1 ∈ (0,1),ρ2 = 1 − ρ1. (37)

In such a case, the correlation function �(t) has the form of

�(t) = β1 exp(−μ1t) + β2 exp(−μ2t), (38)

where

μ1,2 = 1

σ
+ ξa ±

√(
1

σ
+ ξa

)2

− ξ

σ
, (39)

β1,2 = μ1,2 − ξ [1 + (a − 1) exp(− t0
σ

)]

μ1,2 − μ2,1
, (40)

ξ = γ

τ̄
,τ̄ = ρ1

ν1
+ ρ2

ν2
, (41)

σ = 1

ν1ν2τ̄
,a = τ̄ (ρ1ν1 + ρ2ν2). (42)

The derivative of the function in Eq. (38) at zero is equal
to −ξ [1 + (a − 1) exp(− t0

σ
)] and the integral of this function

from zero to infinity is equal to 1
ξ

+ σ (a − 1)[1 − exp(− t0
σ

)].
With the increasing of t0, the absolute value of the derivative
decreases, and the value of the integral increases. The absolute
value of the product of these quantities is always greater than
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one. In the limit of t0 = ∞, it is 1 + ξσ (a − 1). For certain
combinations of the parameters of the initial distribution in
Eq. (36), this quantity can be quite large. This means that
the equilibrium correlation function can differ substantially
from the classical exponential function. (For an exponential
function, the product of the derivative at zero and the integral
from zero to infinity is −1.) As is well known, the correla-
tion function of an unbiased CTRW in the equilibrium state
following classical laws. It is usually concluded from this that
for large times, the CTRW with the function ψ(t) having a
finite first moment, does not differ from the CTRW with the
exponential function ψ(t). The example considered shows that
this is not the case for a biased CTRW.

Equations (28), (32), and (33) are valid for any quantity that
relaxes according to an exponential law in the parent process.
For example, the relaxation of the dielectric polarization of
a disordered medium can be described by these equations. In
this case, the polarization of the medium, which satisfies the
assumptions of Debye’s theory plays the role of the parent
process.

In the relaxation experiment, a constant external driving was
applied to the system at a time t = −∞ such that the equilib-
rium condition prevails by the time t = 0. At t = 0, an external
driving was turned off and the relaxation process started.
Obviously, such a process corresponds to the case t0 = ∞ and
must be described by Eq. (28) with the function φ equal to 1−ψ

τ̄u
:

�(u) = 1

u

[
1 − γ

τ̄

1

u + γ�(u)

]
. (43)

The following shape function [�(ω)
def= 1 − iω�(iω)]

corresponds to this relaxation equation:

�(ω) = γ

τ̄

1

iω + γ�(iω)
. (44)

Here, ω is the frequency of the harmonic external driving.
In previous works, the following equations are used to

describe the non-Debye relaxation within the framework of
the CTRW model:

�(u) = 1

u + γ�(u)
, (45)

�(ω) = γ�(iω)

iω + γ�(iω)
. (46)

In earlier studies, the function corresponding to the anomalous
subdiffusion �(u) = const. × u1−α was used only [27]. In a
recent study [7], other possibilities were considered. Equations
(45) and (46) can be derived, for example, in the framework
of the generalized Debye theory [28]. In this theory, the
generalized equation of rotational diffusion is written as

∂W (t,ϕ)

∂t
= �2

∫ t

0
dτ�(t − τ )

∂W (τ,ϕ)

∂ϕ
, (47)

where ϕ is the angular coordinate, W (t,ϕ) is the probability
where the coordinate is equal to ϕ at time t , and � is the
elementary angular spacing. This equation can be solved by
using the initial condition

W (0,ϕ) = 1

2π

[
1 + μF

kBT
cos(ϕ)

]
. (48)

A time-dependent solution is sought in the form of

W (t,ϕ) = 1

2π

[
1 + �(t)

μF

kBT
cos(ϕ)

]
. (49)

Substitution of Eq. (49) into Eq. (47) gives function �(t), which
is the original one of the function in Eq. (45) with γ = �2.
The function in Eq. (46) can be found from the generalized
drift-diffusion equation

∂W (t,ϕ)

∂t
= �2

∫ t

0
dτ�(t−τ )

∂2W (τ,ϕ)

∂ϕ2
+�2 ∂

∂ϕ

[∫ t

0
dτ�(t−τ )

× μF

kBT
sin(ϕ) exp(iωτ )W (τ,ϕ)

]
, (50)

which is valid for a weak field μF � kBT . An ω-dependent
solution can be sought in the form of

W (t,ϕ) = 1

2π

[
1 + �(ω)

μF

kBT
exp(iωt) cos(ϕ)

]
. (51)

Substitution of Eq. (51) into Eq. (50) gives the function in
Eq. (46) with γ = �2.

Two comments have to be made here. First, Eq. (47) is
valid both in the CTRW model and in the random barrier
model [26,29]. However, in the CTRW model it is valid only
for an equiprobable initial distribution. With an equilibrium
initial distribution, the inhomogeneous term must be present
in the equation [11]

∂W (t,ϕ)

∂t
= �2

∫ t

0
dτ�(t − τ )

∂2W (τ,ϕ)

∂ϕ2

−�2

[ ∫ t

0
dτ�(τ ) − 1

uτ̄

]
∂2W (0,ϕ)

∂ϕ2
. (52)

In the random barrier model, this equation is valid for both the
equiprobable and the equilibrium initial distributions (in this
model these two distributions coincide). It follows from this
that if Eq. (47) is applied to a process with an equilibrium initial
distribution, the description is carried out within the framework
of the random barrier model. Second, Eq. (50) is valid within
the framework of the random barrier model [30]. The frame-
work of the CTRW model is not suitable for this case. In this
model, the drift-diffusion equation has the following form [31]:

∂W (t,ϕ)

∂t
= �2

∫ t

0
dτ�(t − τ )

∂2W (τ,ϕ)

∂ϕ2

+�2 ∂

∂ϕ

[
μF

kBT
sin(ϕ) exp(iωt)

×
∫ t

0
dτ�(t − τ )W (τ,ϕ)

]
. (53)

This equation differs from Eq. (50) in that the time-dependent
force is outside the integral. It is easy to verify that Eqs. (52)
and (53) imply Eqs. (43) and (44), respectively. Based on the
foregoing, it can be concluded that Eqs. (45) and (46) describe
relaxation in the random barrier model, and that Eqs. (43) and
(44) describe relaxation in the CTRW model.

Using the subordination method, we can construct a model
describing the relaxation in a medium containing both traps and
obstacles. To this end, we apply the subordination procedure
to the expression, describing the relaxation in the random
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barrier model: �mix(u) = ∫ ∞
0 ds�(s)P1(u,s). Here, �mix(u) is

the relaxation function for the mixed model and �(s) is the
original one of relaxation function in Eq. (45). For the fully
equilibrated system we find

�mix(u) = 1

u

[
1 − γ

τ̄

�b(u)

u + γ�t (u)�b(u)

]
, (54)

where �b(u) = �[ 1−ψ(u)
ψ(u) ] is the memory function correspond-

ing to the barriers and �t (u) = uψ(u)
1−ψ(u) is the memory function

corresponding to the traps. The shape function corresponding
to this relaxation function is as follows:

�mix(ω) = γ

τ̄

�b(iω)

iω + γ�t (iω)�b(iω)
. (55)

These expressions for the relaxation and shape functions can
also be derived from the dynamic equations describing diffu-
sion and drift-diffusion processes in a medium containing traps
and obstacles. (Such equations can be derived from the mean-
field approximation in the framework of the lattice model [32].)

Relations in Eqs. (54) and (55) contain two unknown func-
tions, �t (u) and �b(u). Finding these functions theoretically
is impossible, thus these can only be found on the basis of
experimental data. For this, at least two experimental curves
are required, and these curves have to be independent. One
such curve may be �mix(ω) or its equivalent �mix(t). For
another curve, it is expected that a response of the system to a
nonperiodic perturbation can be used.

Let us show that the expression in Eq. (55) with a realistic
functions �t (u) and �b(u) is capable of reproducing quali-
tatively the experimental dependence �exp(ω). Suppose that
ψ(t) is given by formula in Eq. (38) with the density

ρ(ν) = τ̄

πZ
1

2n

sin

[
1

n
arcsin

(
sin[nπ ]

Z
1
2

)]
, (56)

where τ̄ is the mean residence time, 0 < n � 1, and Z = 1 +
(τ̄ ν)2n + 2(τ̄ ν)n cos(nπ ). The Laplace image of ψ(t) has the
form of [33]

ψ(u) = 1 − τ̄ s[1 + (τ̄ s)n]−
1
n (57)

and the memory function �t (u) can be written as

�t (u) = [1 + (τ̄ s)n]
1
n

τ̄
− u. (58)

Suppose that the memory function �b(u) has a similar form:

�b(u) = [1 + (τbs)m]
1
m − τbu (59)

with m and τb being positive parameters, 0 < m � 1. Sub-
stituting Eqs. (58) and (59) into (55), we obtain the shape
function as

�mix(ω) = 1
τ̄ iω

γ {[1+(τbiω)m]
1
m −τbiω}

+ [1 + (τ̄ iω)n]
1
n − τ̄ iω

.

(60)

The low-frequency dependence of the function �mix(ω) ∼
1 − 1

n
(τ̄ iω)n agrees with the experiment. The high-frequency

dependence �mix(ω) ∼ [ mτ̄

γ τ 1−m
b

(iω)m + τ̄ 1−n

n
(iω)1−n]−1 can re-

produce both the typical relaxation behavior and the less typical
relaxation behavior [34] with the appropriate combinations of
parameters n and m.

It is worth noting the general property of the expression
in Eq. (55). If the memory function corresponding to the
barriers �b(iω) is equal to a constant, then the high-frequency
dependence of the function �mix(ω) is �mix(ω) ∼ (iω)−1. For
this dependence to have the form �mix(ω) ∼ (iω)−k with 0 <

k < 1, it is necessary that the function �b(iω) is not a constant.
Thus, the experimental high-frequency dependence of the form
�exp(ω) ∼ (iω)−k with 0 < k < 1 indicates that the obstacles
affect the relaxation process. In terms of the relaxation func-
tion, the conclusion is as follows: If the experimental relaxation
function behaves like �exp(t) ∼ 1 − const. × tk with 0 < k <

1 at small times, then the obstacles have an effect on the
relaxation process.

V. CONCLUSIONS

In this study, a class of subordinated stochastic processes
are introduced, in which the aged renewal process acts as the
operational time. Such stochastic processes can be used to
model various processes in disordered media with complex
structures. As an example, non-Debye relaxation in media
containing traps and obstacles is considered. It is shown that
the theoretical expression for the relaxation function contains
two functional parameters, one corresponding to the traps and
the other corresponding to the obstacles. The practical determi-
nation of these parameters requires independent experiments
in addition to traditional relaxation experiments.
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