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Magnetic flux conservation in an imploding plasma
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The theory of magnetic flux conservation is developed for a subsonic plasma implosion and used to describe the
magnetic flux degradation in the MagLIF concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. Depending
on the initial magnetic Lewis and Péclet numbers and the electron Hall parameter, the implosion falls into either
a superdiffusive regime in which the magnetization decreases or a magnetized regime in which the magnetization
increases. Scaling laws for magnetic field, temperature, and magnetic flux losses in the hot spot of radius R

are obtained for both regimes. The Nernst velocity convects the magnetic field outwards, pushing it against the
liner and enhancing the magnetic field diffusion, thereby reducing the magnetic field compression and degrading
the implosion performance. However, in the magnetized regime, the core of the hot spot becomes magnetically
insulated and undergoes an ideal adiabatic compression (T ∼ R−4/3 compared to T ∼ R−2/3 without magnetic
field), while the detrimental Nernst term is confined to the outer part of the hot spot. Its effect is drastically
reduced, improving the magnetic flux conservation.
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In inertial confinement fusion (ICF), fuel areal densi-
ties ρR > 0.3 g/cm2 and implosion velocities exceeding
30 cm/μs are required for the onset of the ignition process
[1]. Magneto-inertial fusion concepts [2,3] are based on mag-
netizing the fuel in order to suppress heat losses and enhance
confinement of the fusion products [4], thereby relaxing im-
plosion velocity and areal density requirements and increasing
fusion yields [5,6].

In 2010, Slutz et al. [7] proposed the magnetized liner iner-
tial fusion (MagLIF) scheme, in which a pulsed power device
drives the implosion of a cylindrical beryllium liner filled with
fusion fuel. The target is initially magnetized with a 10–30 T
magnetic field, and the fuel is preheated by a laser to tempera-
tures 200–400 eV. The implosion velocity is of the order of 10
cm/μs, while the final areal density is about 0.07 g/cm2. The
first fully integrated experiments testing the MagLIF concept
produced up to 2 × 1012 thermonuclear deuterium-deuterium
neutrons, demonstrating its viability [8]. In 2012, Slutz and
Vesey [9] reported implosions simulations of targets in which a
dense cryogenic deuterium-tritium layer is added on the inside
surface of the metal liner. The fusion energy gains exceeded
100, which is adequate for fusion energy applications.

A major degradation mechanism reported in Ref. [7] is the
loss of magnetic flux during compression caused by the Nernst
effect (magnetic field convection due to perpendicular temper-
ature gradients), which degrades the fusion yield enhancement.
Understanding the Nernst effect as well as the evolution of the
magnetohydrodynamic variables is a crucial step to improve
the design of this scheme. In MagLIF implosions, the Mach
number Ma is typically less than unity. Subsonic unmagnetized

*Corresponding author: fernando.garcia.rubio@upm.es

implosions have been analytically studied in an ICF context
[10–13], whereas the Nernst term effect on magnetic flux
conservation in a plasma slab in contact with a cold wall has
been investigated in Refs. [14,15].

In this work, we describe a detailed analytical model of
a cylindrical subsonic magnetized plasma implosion, relevant
for free fall, deceleration, and stagnation phases. We consider a
deuterium plasma (hot spot) surrounded by an imploding shell
of cold high-density plasma (liner) made of the same material
for simplicity. The independent variables are time t and radial
distance r . We analyze the hot spot region limited by the
inner wall of the liner, r = R(t). The implosion velocity Vi =
−dR/dt is assumed to be constant and set by the conditions
during the acceleration phase. We consider a fully ionized
plasma fluid model with Braginskii’s expressions and notation
for the transport coefficients [16] and the ideal gas assumption
with adiabatic index γ = 5/3. The state of the plasma is
determined by the ion particle density n, plasma temperature
T , pressure p = pi + pe = 2nT , radial velocity v, and axial
magnetic field B. We introduce the thermal to magnetic pres-
sure ratio β = 8πpc/B

2
c . Hereinafter, the subindex c denotes

the value of the variables at the center r = 0 (symmetrical
axis), which evolves in time, while the subindex 0 refers to the
value at t = 0. The problem is greatly simplified noticing that
Ma � 1 and β � 1 in many typical implosions. The analysis
is performed in this double limit. Momentum conservation
simplifies to isobaricity p(r,t) = pc(t). Ion continuity, total
energy conservation, and induction equations read

∂n
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r
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The coefficient χ⊥ accounts for electron plus ion conduc-
tivities, Dm⊥ = α⊥c2/4πe2n2 is the magnetic field diffusion
coefficient appearing in the Joule term, and βuT

∧ refers to the
transport coefficient for the thermoelectric Nernst effect.

As initial conditions, we impose that the target is uniformly
magnetized with an external magnetic field B0. Addition-
ally, an initial temperature profile needs to be proposed. As
boundary conditions, we consider that during the implosion,
the liner remains colder than the plasma in the hot spot:
T (R,t) = 0. The cold dense liner acts as an electric insulator
where currents cannot flow, and the axial magnetic field is
equal to the external field,B(R,t) = B0. In addition, we require
v = dR/dt (= −Vi) at r = R. The thermal conductivity can
be neglected at the inner liner surface, and the heat conduction
losses are recycled back via the ablated liner material [10,11]
(r = R represents an ablation front). The energy conservation
balance in the hot spot enclosed by the cold liner states that,
although the hot spot mass increases with time, it behaves like
a closed system that is adiabatically heated: pcR

2γ is kept
constant.

We normalize the spatial coordinate, η = r/R(t), the
implosion time, τ = log [R0/R(t)], the plasma temperature
θ (η,τ ) = [T/Tc(τ )]5/2, magnetic field φ(η,τ ) = B/Bc(τ ),
and velocity u(η,τ ) = v/Vi . The transport coefficients
can therefore be written as χ⊥ = K̄T

5/2
c θPc, Dm⊥ =

D̄T
−3/2
c θ−3/5Pd , with K̄ = 8.64 × 1027 sec−1 cm−1 keV−5/2

and D̄ = 93.2 cm2 keV3/2/sec conductivity and diffusivity
constants, and cβuT

∧ /en = [(γ − 1)χ⊥/γp]PnB. The latter
relation indicates that the Nernst term in Eq. (3) accounts
for magnetic field convection in the heat flux direction. The
terms Pc(xe), Pn(xe), and Pd (xe) represent the effect of mag-
netization on thermal conduction, Nernst effect, and magnetic
diffusivity, respectively [14]. They are rational functions of the
local electron Hall parameter (electron cyclotron frequency
times the electron collision time) xe = ωeτe = xecθφ and
plotted in Fig. 1:
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and xi = ωiτi = √
2me/mixe standing for the ion magneti-

zation. The values for the coefficients γ ′
0, δ0, and so on are

taken from Braginskii [16] and specified for a deuterium
plasma (Z = 1, A = 2). A blow-off velocity based on thermal
conduction can be defined as Vb = 2(γ − 1)K̄T

7/2
c /5γRpc

[10–13]. The global plasma parameters are thereby reduced to
three dimensionless numbers: the Péclet number Pe = Vi/Vb,

xe

Pc

xe xe

xe

xe

Pn Pd

x Pn

Pd

FIG. 1. Dependence of transport coefficients on the magnetiza-
tion (electron Hall) parameter xe.

the magnetic Reynolds number Re = ViR/Dc, with Dc =
D̄T

−3/2
c , and the electron Hall parameter at the center xec.

These numbers evolve during the implosion. For convenience,
we use the magnetic Lewis number instead of the Reynolds,
defined as Le = VbR/Dc = Re/Pe. In addition, the thermal to
magnetic pressure ratio β can be related to Le, xec through

Le = (γ − 1)γ0

20γα0
βx2

ec = 0.12βx2
ec. (4)

In order to be consistent with the β � 1 assumption, we restrict
our analysis to Le � x2

ec.
The dimensionless velocity can be written as u = −η + uc,

where uc = (1/Pe)Pcθ
2/5∂θ/∂η stands for the contribution of

thermal conduction. Using this expression, Eqs. (1) and (3)
after normalization read
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PeLeη

∂

∂η

(
ηPdθ

−3/5 ∂φ

∂η

)
, (6)

where the eigenvalues λT = (dnc/dτ )/nc − 2 = 2(γ − 1) −
(dTc/dτ )/Tc and λB = 2 − (dBc/dτ )/Bc, with nc = pc/2Tc,
describe the evolution of the variables at the center and measure
how much it differs from an ideal implosion (infinite Pe and
Re: no ablation and nc ∼ R−2, Tc ∼ R−4/3, Bc ∼ R−2). Two
opposite effects are accounted for in the advection term in
Eq. (6): convection due to uc, in the opposite direction to the
heat flux, and convection due to the Nernst term, in the same
direction. For xe < xeth = 4.37, 1 − Pn is negative and the
latter prevails [Fig. 1(b)]. All the information about the initial
state is condensed into the initial Péclet Pe0 and Lewis Le0

numbers, the initial Hall parameter xec0 and the initial profiles
for θ and φ.

The system (5)–(6) is coupled through the magnetization
effect on the thermal conductivity, Pc(xe). Solving it allows
to obtain the temperature and magnetic field profiles and the
eigenvalues λT and λB . From the definition of Pe, Le, and xec,
their evolution in time can be easily described in terms of λT
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FIG. 2. Unmagnetized plasma implosion. (a) Temperature and
velocity self-similar profiles. (b) Stationary values for λB and Bc.
(c, d) Magnetic field self-similar profiles.

and λB :

d log Pe

dτ
= 7

2
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3

)
, (7)

d

dτ
(Le Pe10/7) = 0, (8)

d log xec

dτ
= 2 − λB − 5

2
λT . (9)

In order to gain insight into the physics of the implosion,
we first consider the case where the magnetization is very low
xec � 1. In this limit, Pc = 1, Eq. (5) is decoupled from (6)
and simplifies to

∂θ2/5

∂τ
− λT θ2/5 = θ4/5

Peη

∂

∂η

(
η
∂θ

∂η

)
. (10)

This equation has a stable stationary solution θs(η) [10–13],
corresponding to a self-similar implosion [Fig. 2(a)]. In this
self-similar state, PeλT = 3.48, and inserting this into Eq. (7),
we obtain that the Péclet number tends to a constant Pe =
Pes = 5.22 and λT = 2/3. Consequently the Lewis number
also tends to a constant whose value depends upon the initial
conditions: Le = Le0(Pe0/Pes)10/7. The velocity self-similar
profile is us(η) = −η + (1/Pes)θ

2/5
s dθs/dη. The temperature

at the center evolves as Tc ∼ R−2/3, while the hot spot mass
Mh = 2π

∫ r=R

r=0 nr dr increases as Mh ∼ R−2/3. Material from
the cold liner is ablated into the hot spot, cooling it down and
causing the temperature increase to be less than expected for
an ideal adiabatic compression of a gas (T ∼ R−4/3).

In the unmagnetized limit (xec � 1), Eq. (6) simplifies to
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− λBφ + δ

Peη

∂
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ηθ2/5 ∂θ
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φ

)

= 1

PeLeη

∂
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(
ηθ−3/5 ∂φ

∂η

)
, (11)

where the parameter δ = 1 − Pn(0) = −0.24 can be switched
to δ = 1 in order to artificially turn the Nernst term off

for comparison purposes. Once the temperature reaches the
self-similar state, the magnetic field also tends to a stationary
self-similar solution φ = φs(η; Le), and λB = λB(Le) gets
independent of time. The magnetic field at the center evolves as
Bc ∼ RλB−2, whereas the magnetic flux � = 2π

∫ r=R

r=0 Br dr

decreases as � ∼ RλB . The eigenvalue λB and the self-similar
profile φs are shown in Figs. 2(b), 2(c), and 2(d) as a function
of the Lewis number.

When the Lewis number is small, the parameter λB = 2,
the magnetic field at the center Bc attains a constant value,
and consequently the magnetic flux decreases as � ∼ R2.
However, for Le > 0.93 with Nernst and Le > 0.78 without,
λB < 2 and the magnetic field at the center increases in time.

When the Lewis number is large, diffusion can be neglected
in principle, and the magnetic field is convected by the plasma
motion and the Nernst velocity. If the latter is not taken
into account, the magnetic field is frozen into the plasma
and the mass ablated into the hot spot would squeeze it
inwards, steepening the B-field profile until diffusion becomes
important. An asymptotic analysis in this large Lewis number
and no Nernst limit shows that the self-similar profile is
φs(η) = exp (−PesLeη2/6), the field is not diffused through
the liner, λB → 0 and the magnetic flux is conserved. When
the Nernst term is taken into account, the Nernst convection
dominates and the magnetic field is advected outwards. It
penetrates into the ablated mass, and it is pushed against the
liner and dissipated in a thin layer where diffusion becomes
important. An asymptotic expansion for large Lewis numbers
shows that the thickness of the diffusion layer is O(1/

√
Le),

and the peak of the profile scales as Le1/5. The parameter λB →
−2δ/3 ≈ 0.16 and cannot be further reduced by increasing the
Lewis number, which indicates that the Nernst term plays a
crucial role in degrading the magnetic flux conservation during
the implosion even for a very conductive plasma.

According to Faraday-Lenz’s law, the magnetic field in the
hot spot is always compressed. The evolution of the magneti-
zation depends, however, on a balance between the collision
and cyclotron frequencies, Eq. (9). In the low magnetization
limit (ωeτe < 1,λT = 2/3), the collision frequency increases
more than the cyclotron frequency whenever λB < 1/3, hence
the magnetization decreases in time and the hot spot remains
unmagnetized during the whole implosion. This unmagnetized
regime represents an attractor of the complete system of
Eqs. (5)–(6) and will be denoted as a “superdiffusive regime.”
For λB > 1/3, which takes place for Le > Lecr = 7.10 with
Nernst and Le > 3.02 without, the collision frequency in-
creases less than the cyclotron frequency, the hot spot gets
magnetized, and the hydrodynamic profiles are consequently
modified.

We consider now a strong magnetization limit, xec � 1.
The plasma is magnetically insulated at the center, and the
continuity and induction equations (5) and (6) give λT = 0,
λB = 0. The central temperature and magnetic field undergo
an ideal adiabatic compression: Tc ∼ R−4/3, Bc ∼ R−2. The
Péclet number evolves as Pe ∼ R7/3, and consequently Le ∼
R−10/3. In this limit, Eq. (9) establishes that the magnetization
keeps increasing in time as xec ∼ R−2, hence this regime
represents another attractor, which will be denoted as a “mag-
netized regime.” According to Eq. (4), the pressure ratio β

decreases in this limit as β ∼ R2/3. Therefore, pressure ratios
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FIG. 3. (a), (b) Magnetized implosion profiles. Initial parameters:
Pe0 = 50, Le0 = 100, xec0 = 1.5, θ0(η) = cos (πη6/2), φ0(η) = 1.
From light to darker gray: τ = 0, 1, 2, τf = log(30) ≈ 3.4, 5.
(c) Normalized hot spot mass in implosions with the same initial
parameters but different initial magnetization. (d) Normalized final
magnetic flux remaining in the hot spot in implosions with different
initial magnetization.

of order unity and below could be attained by the end of the
implosion. Consequently, for these results to be valid in the
magnetized regime for a suffciently long time, β has to be large
initially, which is typically the case in MagLIF (β0 ∼ several
hundred).

In Figs. 3(a) and 3(b), the temporal evolution of the temper-
ature and magnetic field profiles of a magnetized implosion are
shown. The initial state corresponds to a characteristic MagLIF
parameter range: Pe0 = 50, Le0 = 100, and xec0 = 1.5, which
gives β0 = 361, and we choose θ0(η) = cos (πη6/2), φ0(η) =
1. In this case study, the magnetization increases in time and
the magnetized regime is reached. The temperature profile
presents two distinguishable regions. Close to the liner, where
the temperature is low and the plasma is unmagnetized, cold
material is ablated through the ablation front. It penetrates
into the hot spot until it reaches the magnetically insulated
region, where Pc ≈ 0 and uc ≈ 0. More and more layers of
cold material are accumulated at the outer part of the hot spot,
cooling it down and forming an ablation front like structure
that separates the hot highly magnetized plasma from the cold
less magnetized plasma.

The Nernst term is confined within the unmagnetized
region. Close to the liner, where 1 − Pn < 0, the magnetic
field is pushed towards it and dissipated in a thin layer. Deeper
into the hot spot, the Nernst term is drastically reduced, and the
advection direction is inverted: 1 − Pn > 0. The magnetic field
is convected by the plasma motion inwards and accumulates
at the border of the highly magnetized region. Consequently
the magnetic field in the less magnetized region is expelled
out both to the liner and to the hot plasma. The magnetic
field dissipated at the liner cannot thereby be replaced and
the normalized B-field in the cold region decreases. During
this process, the width of the diffusion layer is maintained, but

FIG. 4. Parameter frontier for superdiffusive and magnetized
implosion regimes. The dashed line corresponds to Le0Pe10/7

0 = 75.
The crosses indicate the position in the chart of the three schemes in
Table I.

the magnetic field peak is reduced until the layer eventually
vanishes and the magnetic flux losses are thereon suppressed.

The magnetization decreases mass ablation and improves
magnetic flux conservation. In the magnetized regime, the hot
spot mass also scales asymptotically as Mh ∼ R−2/3, but the
constant of proportionality is reduced [Fig. 3(c)]. As previously
commented, the diffusion layer tends to vanish in this limit, the
magnetic flux losses are drastically reduced, and the magnetic
flux in the hot spot reaches a constant value �f dependent
upon the initial state, shown in Fig. 3(d).

Whether an implosion falls into the superdiffusive or
magnetized regime depends on the initial Péclet, Lewis, and
Hall parameter. In Fig. 4 the boundary between both regimes
is plotted in a Pe0-Le0 map for different xec0. For a small
initial magnetization, the border corresponds to Le0Pe10/7

0 =
LecrPe10/7

s ≈ 75, which falls back to lower values of Le0 and
Pe0 when the initial magnetization is increased.

According to the results previously derived, in the design
of magnetized inertial fusion implosions it is important to be
placed in the “magnetized regime” part of the chart plotted
in Fig. 4. This can be ensured if the implosion design point
satisfies

Le0Pe10/7
0 = 386

(
T0

1 eV

)3/7(
ρ0

1 mg/cm3

)3/7

×
(

R0

1 cm

)10/7(
Vi

1 cm/μs

)10/7

> 75, (12)

where R0 and ρ0 are the initial radius and fuel density. In
Table I three different schemes have been analyzed, and
their position is shown in Fig. 4. Both the pulsed power
MagLIF and laser-driven magnetized liner implosions tested at
Laboratory for Laser Energetics satisfy well this requirement,
but the low-density, low-implosion-velocity regime explored
by Lindemuth and Kirkpatrick [2] in spherical geometry may
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TABLE I. Characteristic initial values of the magnethydrody-
namic variables for three different magnetized inertial fusion schemes.
MagLIF corresponds to Ref. [7], OMEGA corresponds to the laser-
driven magnetized liner inertial fusion studied at the LLE (OMEGA
laser) in Refs. [17,18], and MTF corresponds to the magnetized target
fusion regime explored in spherical geometry in Ref. [2].

MagLIF OMEGA MTF

T0 (eV) 300 200 50
ρ0 (mg/cm3) 3 2.7 0.005
R0 (cm) 0.2 0.03 0.5
Vi (cm/μs) 10 18.8 1
Pe0 53 37 2
Le0 67 15 31
Le0Pe10/7

0 20.000 2.500 80

need to be adjusted for cylindrical geometry since it lies close
to the threshold.

To conclude, the existence of two regimes, superdiffusive
and magnetized, has been proved in a hot spot model of mag-
netized cylindrical implosions. Scaling laws for temperature,
magnetic field, mass ablation, and magnetic flux losses for
every regime have been derived. The Nernst term convects
the magnetic field outwards and enhances diffusion, degrading
thereby the magnetic flux conservation even for a highly
conductive plasma. In the magnetized regime, the core of the
hot spot gets magnetically insulated, and the effect of the
Nernst term is reduced since it is confined to the outer part
of the hot spot close to the liner.
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