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Optimal sequential inference, or filtering, for the state of a deterministic dynamical system requires simulation
of the Frobenius-Perron operator, that can be formulated as the solution of a continuity equation. For low-
dimensional, smooth systems, the finite-volume numerical method provides a solution that conserves probability
and gives estimates that converge to the optimal continuous-time values, while a Courant-Friedrichs-Lewy-
type condition assures that intermediate discretized solutions remain positive density functions. This method is
demonstrated in an example of nonlinear filtering for the state of a simple pendulum, with comparison to results
using the unscented Kalman filter, and for a case where rank-deficient observations lead to multimodal probability
distributions.
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I. INTRODUCTION

Consider a nonterminating dynamical system that evolves
according to the differential equation

ẋ = f (x), (1)

where f is a known velocity field and x(t) is the state vector
of the system at time t . Given an initial condition, x(0) = x0,
Eq. (1) may be simulated, at least in concept, to determine the
future state x(t), t > 0, that we will write x(t ; x0) to explicitly
show the dependence on the initial condition. However, when
the initial state of the system x0 is unknown, or uncertain, the
future state x(t) is also uncertain.

At increasing discrete times tk , k = 1,2,3, . . ., the system
is observed, with observation zk at time tk providing noisy and
incomplete information about the state xk = x(tk). We assume
that the conditional distribution over the observed value zk ,
given the state vector xk ,

ρ(zk|xk), (2)

is known. Let Zt = {zk : tk � t} denote the set of observations
up to time t , and xt = x(t) for brevity.

This Rapid Communication is concerned with performing
sequential Bayesian inference for the unknown true state of the
continuous-time system xt at times t � 0, in which knowledge
of the state vector is improved upon through the multiple imper-
fect observations and knowledge of the dynamics. Uncertainty
in the state is modeled as a probability distribution over the
state and the formal solution corresponds to determining the
time-varying sequence of distributions

ρ(xt |Zt ) (3)

over the state at time t conditioned on all available measure-
ments to time t . We assume throughout that all distributions
have a probability density function (pdf), and will use the same
notation for the pdf as the distribution.
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While the focus of this Rapid Communication is on state
estimation, parameter estimation may also be performed within
this framework by augmenting the system equations (1) to
include uncertain parameters that do not evolve.

An approach that one often sees [1–4] is to discretize (1),
and treat the discrete-time problem [5]. When uncertainty in
f is included via “process noise” vk , the discrete-time system
and observation equations are written [3]

xk = fk(xk−1,vk), (4)

zk = hk(xk,nk), (5)

respectively, with functions fk and hk assumed known. Here,
nk is a realization from a (random) noise process that accounts
for observation errors. When the random processes vk and nk

are independently distributed from the current and previous
states, the system equation (4) defines a Markov process,
as does (1), while the observation equation (5) defines the
conditional probability (2).

We take a different approach here, which is to treat the
continuous-time problem in (1) and (2) directly, and to define
a family of numerical approximations that converge in distri-
bution to the continuous-time pdf’s (3).

This Rapid Communication is organized as follows. Recur-
sive Bayesian filtering is outlined in Sec. II, and then Sec. III
derives a continuity equation for probability flow implied by
the dynamical system. That partial differential equation (PDE)
is solved using the finite-volume method, outlined in Sec. IV.
Some specifics for filtering the state of a simple pendulum are
presented in Sec. V, with numerical results in Secs. VI and VII
for unimodal and multimodal distributions, respectively. We
conclude with a brief discussion in Sec. VIII.

II. RECURSIVE BAYESIAN FILTERING

The family of time-varying pdf’s (3) may be generated by
iterating two operations corresponding to Zt remaining con-
stant between measurements times, i.e., t ∈ (tk,tk+1), requiring
prediction of the pdf, and the change in Zt at measurement
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times tk that requires an update of the pdf [6]. Practical filtering
also requires an inference step to calculate summary statistics
over the pdf, though details are application specific.

The prediction step may be derived from the (conditional)
Chapman-Kolmogorov equation that, for �t � 0,

ρ(xt+�t |Zt ) =
∫

ρ(xt+�t |xt ,Zt )ρ(xt |Zt )dxt

=
∫

δ(xt+�t − x(�t ; xt ))ρ(xt |Zt )dxt , (6)

where δ is the Dirac delta, and we have used the determin-
istic solution to the autonomous system (1). Straightforward
generalizations of (6) can be written for stochastic and nonau-
tonomous system equations. Note that (6) defines a linear
operator on the space of probability distributions

S�t : ρ(xt |Zt ) �→ ρ(xt+�t |Zt ), (7)

that is the element of the continuous semigroup of Frobenius-
Perron (F-P) operators, associated with the system (1) [7],
indexed by the time increment �t .

The update step is simply Bayes rule written at observation
time tk [1,2,6],

ρ(xk|Zk) = ρ(zk|xk)ρ(xk|Zk−1)

ρ(zk|Zk−1)
, (8)

in which Zk = Ztk , and conditional independence of zk and
Zk−1 given xk has been used.

The recursive Bayesian solution for discrete time then
consists of repeatedly applying the prediction step Stk+1−tk :
ρ(xk|Zk) �→ ρ(xk+1|Zk) and the update step (8) at time tk+1,
initialized at the distribution over x0 that we assume is known,
or can be adequately modeled. F-P operators indexed by
continuous-time increments �t ∈ (0,tk+1 − tk) allow infer-
ence for the state in continuous time, i.e., continuous-time
Bayesian filtering.

It interesting to note that steps (6) and (8) determine
the distributions in (3) for times t ′ > t from the distribution
ρ(xt |Zt ) and subsequent measurements zl for tl > t , only.
Hence, it is only necessary to determine the xt dependence
of the distribution ρ(xt |Zt ) at each t , and the measurements
Zt play no further role.

Sequential inference methods on dynamical systems dif-
fer in four main aspects: assumptions about the dynamical
system (1), representation of the pdf’s (3), simulating the
F-P operator (7), and evaluating the Bayes rule update (8).
Algorithms that implement these aspects essentially exactly are
called “optimal,” whereas appreciably approximate methods
are termed “suboptimal” [3]. While the prediction and update
equations for optimal Bayesian filters in both discrete time
and continuous time have been known for half a century [6],
implementation of optimal nonlinear filtering still presents
challenges.

Perhaps the best known and most successful filter is the
Kalman filter that is optimal for the discrete-time linear-
Gaussian case, i.e., when functions fk and hk in (4) and (5) are
linear and all distributions are Gaussian. The need for filters
that can operate with nonlinear dynamics and more general
distributions has led to many variants of the Kalman filter, such
as the many varieties of the extended Kalman filter (EKF) that
linearize the dynamics at each discrete time [8]. The unscented

Kalman filter (UKF), based on the unscented transform [8,9],
requires only that the pdf’s remain close to Gaussian.

The filter presented here is an example of a grid-based
method [3], that represents the pdf (3) over a grid of points, or
mesh, and implements numerical prediction and update steps
using that representation. The present filter approximates the
continuous-space (and continuous-time) problem, to exploit
the smoothness of functions and dynamics. As we show here,
fixed-mesh filters can provide practical optimal filtering in
low-dimensional settings.

III. CONTINUITY EQUATION

A partial differential equation (PDE) form of the F-P oper-
ator (7) may be derived directly from (6) (see, e.g., Ref. [6]),
though it is instructive to derive this PDE using just elementary
principles, as follows. Consider a time-varying probability
density ρ(x; t) over the state of a system that evolves as (1),
with an initial value

ρ(x; 0) = ρ0(x), (9)

and consider an infinitesimal volume in state space dx at
location x and time t . Probability mass is conserved during
evolution of the system, so it is natural to define a flux of
probability mass equal to ρ(x; t) f (x). For smooth ρ and
f , the rate of probability mass entering the element is then
−∇ · [ρ(x; t) f (x)]|dx|. Since the volume of the element |dx|
is not changing, the probability density function evolves as

ρ̇ = −∇ · (ρ f ), (10)

which is the continuity equation, well known in many branches
of physics. A derivation of (10) via the adjoint (Koopman)
operator is given in Ref. [7].

The F-P operator (7) then corresponds to solving the initial
value problem (IVP) (9) and (10) with ρ0(x) = ρ(xt |Zt ) to
evaluate ρ(x; �t) = ρ(xt+�t |Zt ).

The continuity equation (10) is a linear advection equation.
When the state equation has additive stochastic forcing, evo-
lution of the pdf is governed by a linear advection-diffusion
(Fokker-Planck) equation [7].

The filter we develop here uses an efficient numerical solver,
developed precisely for conservation laws, such as (10), that
we describe next.

IV. FINITE-VOLUME METHOD

The finite-volume method (FVM) [10] discretizes the con-
tinuity equation (10) in its integral form,

∂

∂t

∫
K

ρ dx +
∮

∂K

ρ( f · n̂)dS = 0, (11)

that holds for each volume K in state space. Here, n̂ is the unit
outwards facing normal vector on the boundary ∂K , and dS is
the surface area element.

Denote state space by X, and define a mesh T of X, that is
a family of disjoint regions such that X = ∪K∈T K . Each such
region K is called a “cell,” or control volume, in the FVM.
We write L ∼ K if cells L and K share a common interface,
denoted EKL, that we assume is a subset of a hyperplane.
Denote by n̂KL the unit normal on EKL directed from K to L.

010201-2



OPTIMAL NONLINEAR FILTERING USING THE FINITE- … PHYSICAL REVIEW E 97, 010201(R) (2018)

The FVM we use evaluates a numerical approximation to
the solution of the IVP (9) and (10) in the following way. At
each time t the pdf’s (3) are represented by piecewise constant
functions, constant on each cell K . Define the initial vector P0

of cell values by

P0
K = 1

|K|
∫

K

ρ0(x)dx, (12)

then for m = 0,1, . . . ,r compute Pm+1 as [11]

Pm+1
K − Pm

K

�t
+ 1

|K|
∑
L∼K

fKL Pm
KL = 0, (13)

where

fKL =
∫

EKL

f · n̂KL dS (14)

gives the normal velocity on the interface between cells K and
L, and Pm

KL denotes the first-order upwinding scheme

Pm
KL =

{
Pm

K, if fKL � 0,

Pm
L, if fKL < 0.

(15)

In matrix form, this is

Pm+1 = (I − �t A)Pm, (16)

where I is the identity matrix and A is a sparse ma-
trix defined by (13)–(15). Since fKL = −fLK , the FVM
conserves probability at each step, i.e.,

∑
K |K|Pm+1

K =∑
K |K|Pm

K . The FVM step (13) also preserves positivity
when the time step �t is small enough that the matrix I −
�t A has all non-negative entries. For regular cubic meshes
[12] with edge length h in d dimensions that requirement
may be written as the Courant-Friedrichs-Lewy (CFL)-type
condition

�t � min
K

hd∑
L∼K max (0,fKL)

. (17)

The F-P operator (7) is simulated by discretizing ρ(xt |Zt )
using (12), then iterating (13). Thus, our numerical discrete-
time F-P operator is the matrix

Stk+1−tk = (I − �t A)r , (18)

where r is the largest integer with r�t = tk − tk−1 that sat-
isfies (17). Weak convergence of the FVM means that the
piecewise-constant pdf defined by cell values Pm converges
in distribution to the true pdf (3) as the mesh is refined and the
time step decreases [13], and expectations over the discrete
pdf converge to the correct continuous-time continuous-space
values.

V. FILTERING THE STATE OF A PENDULUM

Let θ and ω be the angular displacement (from the vertical,
downwards) and angular velocity, respectively, of a simple
pendulum. The dynamics is described by (1) with the state

x = (θ,ω) and the velocity field

f (θ,ω) =
(
ω, − g

l
sin(θ )

)
, (19)

where g is the acceleration due to gravity, l the length of the
pendulum.

Phase space is the region (θ,ω) ∈ S1 × R. For computa-
tional purposes, the range of ω is restricted to (−ωmax,ωmax)
chosen so that the pdf’s are always numerically zero at these
boundaries. We set f · n̂ = 0 on the ω boundaries to ensure
conservation of probability.

We discretize the region (−π,π ] × (−ωmax,ωmax) ⊂ R2

with a uniform square mesh of n × n cells of width �θ = �ω

(t scaled accordingly), with the (i,j ) cell having center (θi,ωj ).
The normal velocity (14) between neighboring cells with
different θ values is

f(i,j )(i+1,j ) =
∫ ωj + 1

2 �ω

ωj − 1
2 �ω

ω dω

(index i is evaluated modulo n), while for neighboring cells
with different ω values,

f(i,j )(i,j+1) = −g

l

∫ θi+ 1
2 �θ

θi− 1
2 �θ

sin θ dθ.

Together with the Bayes update (8), this defines the recur-
sive Bayesian filter that we call the finite-volume filter (FVF).
In the following numerical examples, we set the constants g,
m, and l to be unity, for simplicity.

VI. RESULTS FOR FVF AND UKF

In this section we present filtering for the state of the simple
pendulum from noisy observations of the state, comparing
results for the FVF with the UKF as presented in Ref. [9].
Initial and noise distributions are Gaussian and pdf’s over state
remain unimodal, hence the UKF is applicable. We compare
the filters for various initial positions, observation frequencies,
and noise variance.

The “true” path of the pendulum was computed with
initial position and velocity (θ0,0) using a Runge-Kutta 4-
5 to solve Eq. (1). Noisy observations were simulated by
adding Gaussian noise to the true state at evenly spaced
discrete observation times giving the observation model zk =
I xk + nk at times tk , where nk

iid∼ N (0,σ 2
z I), and likelihood

function

ρ(zk|xk) ∝ exp

{
−‖zk − xk‖2

2σ 2
z

}
.

The FVF was implemented with n = 200 intervals in each
angular displacement and angular velocity, chosen so that
run times of the FVF and UKF are approximately the same
[14]. Both UKF and FVF used the same observations and
initial Gaussian N ((θ0,0),σ 2

0 I) with σ0 = 0.4. We found it
necessary to introduce added Gaussian process noise in the
UKF to prevent prediction drifting from the true solution,
while not overweighting observations. This process noise is
required to compensate for the approximations to pdf’s used
by the UKF. We found a standard deviation of 0.01 provided
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FIG. 1. Filter results for θ0 = 0.2π with 30 observations per 2π

time, with σz = 0.2. Each UKF (upper pair) and FVF (lower pair)
shows a true and filtered angular displacement θ and angular velocity
ω. Predicted mean (blue solid), 95% region (shaded), observations
(red crosses), and true solution (black dashed).

the best qualitative results, and was used in all examples
here.

Figure 1 shows summary results for the case θ0 = 0.2π

with 30 observations per 2π . This small-angle and frequent
observations setting has dynamics that is close to linear, so
pdf’s remain close to Gaussian and the UKF is close to optimal.
As can be seen in Fig. 1, both UKF and FVF perform well in
this example, with both tracking the state of the pendulum.

We also computed the filtering for a very long time se-
ries (not shown), and computed the root-mean-square error
(RMSE) in each of the state variables, asymptotic in time.
These values are presented in Table I, and provide a quantitative
comparison of the UKF and FVF (n = 200) filters. The first
column of Table I shows that the UKF achieves about half the
RMSE of the FVF with n = 200, and therefore the UKF is
preferable in this setting.

TABLE I. Asymptotic RMSE in (θ,ω) for the filtering examples
shown in Figs. 1– 3.

As Fig. 1 As Fig. 2 As Fig. 3

UKF (0.030,0.027) (0.13,0.088) (0.051,0.038)
FVF (n = 200) (0.069,0.064) (0.15,0.11) (0.035,0.028)

FIG. 2. Filter results for θ0 = 0.9π with five observations per 2π

time, having σz = 0.2. Equivalent plots to Fig. 1.

The mesh size used in the FVM is 2π/200 = 0.0314 and
this “pixel” resolution gives a lower bound on error when the
support of the pdf does not cover many pixels. Since the FVM
is convergent as n → ∞, the FVF will approach optimal with
increasing n [13], with RMSE that will decrease to that of the
UKF, or smaller, though at greatly increased computational
cost.

Figure 2 shows filtering for larger angles with θ0 = 0.9π ,
and only five observations per 2π time. Again, both UKF and
FVF perform well. The second column of Table I shows that
the UKF has the smaller RMSE. Even though the dynamics
is more nonlinear than the previous example, the relatively
small noise level ensures that pdf’s remain compact and the
Gaussian assumption of the UKF performs a little better than
the piecewise-constant approximation of the FVF with n =
200.

Figure 3 shows both filters running with a stationary
pendulum, vertically down, with 50 observations having σz =
0.4. This is a case with larger observation noise, and we
see that the UKF does not perform as well as the FVF
(n = 200). Figure 3 (upper) shows that the predicted mean
provided by the UKF continues to jump around the true
value in both state variables, and the 95% bounds repeatedly
do not include the true value. In contrast, Fig. 3 (lower)
shows the FVF consistently predicting the correct value, with
95% bounds that include the true value. The third column
of Table I confirms that the FVF has smaller RMSE than
the UKF, and so it is to be preferred in this larger-noise
setting.
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FIG. 3. Filter results for θ0 = 0 with 50 observations per 2π time,
having σz = 0.4. Equivalent plots to Fig. 1.

VII. FILTERING WITH MULTIMODAL pdf’s

We now give an example of filtering for the state of the
simple pendulum where observations are made of the tension
force in the string. Since tension is uninformative about the
sign of angular displacement and velocity, these observations
lead to multimodal filtering distributions. The UKF, or any
extension to the Kalman filter that assumes Gaussian pdf’s, is
unable to accurately represent these multimodal distributions.
However, the FVF remains applicable, and optimal for large
enough n.

The tension force on a pendulum is

F (x) = mlω2 + mg cos(θ ). (20)

We simulated measurements by simulating the motion of
the pendulum with initial position (θ0,ω0) = (0.2π,0), then
recording eight values of the tension, per 2π time, with added
Gaussian noise of standard deviation σ = 0.2.

The FVF with n = 200 was initialized with the Gaussian
distribution N ((0,0),σ 2

0 I) with σ0 = 0.8. Figure 4 shows four
snapshots of the filtered probability density over phase space
produced by the FVF.

Since the filtering pdf’s are symmetric about the origin, the
UKF will approximate all these distributions by zero-mean
Gaussians and estimate the state as identically zero, for all
time. Clearly, this is uninformative.

In contrast, the FVF has localized the true state after
3π time (about 1.5 periods), albeit with ambiguity in sign.
Properties of the system that do not depend on the sign
of the state, such as the period, can then be accurately
estimated.

FIG. 4. Initial (t = 0) and filtered pdf’s in phase space after
measurements at times t = π/4, π , and 3π (left to right, top to
bottom).

VIII. CONCLUDING REMARKS

This Rapid Communication presents a method for perform-
ing sequential inference on dynamical systems that is both op-
timal and practical. We have shown that the Frobenius-Perron
operator can be simulated by solving the continuity equation
for probability using a finite-volume method. Computed exam-
ples showed that the FVF is preferable to the UKF in a nonlinear
system with large noise or rank-deficient observations.

A few earlier works have implemented filters by also
forming and integrating the continuity equation. An alternating
direction iterative solver was used in Ref. [15], Ref. [16] solved
along characteristics, while Ref. [17] estimated the matrix form
of the discrete integrator using Monte Carlo simulations. The
FVF developed here has a clear advantage over the methods
in Refs. [15,16] by guaranteeing the Markov property, hence
intermediate results are valid probability distributions, and is
provably convergent [13], implying that estimates over discrete
filtering pdf’s converge to the correct continuous-time values,
as discretization is refined. In contrast, computed examples in
Refs. [15,16] show resulting numerical problems in examples
that were not carefully chosen. The method in Ref. [17]
guarantees a Markov operator, however, the FVF provides
a much more efficient, deterministic route to evaluating the
required transition matrix.

We developed the FVF as a “reference” filter for our ongoing
work in dynamic weighing, for which we wish to accurately
determine the weight of an object from force measurements
on the moving object, and motion modeling. The example
in Sec. VII is a stylized version of that problem. We were
pleasantly surprised to find that the FVF easily fits into the
computational capability of current desktop or embedded
computers, for systems with few parameters.
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We agree with Daum [18] that recent adaptive and adjoint
meshing methods [19] could alleviate the growth of cost with
dimension of the FVF, while maintaining the computational
benefits of exploiting smoothness.
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