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We introduce and apply an efficient method for the precise simulation of stochastic dynamical processes on
locally treelike graphs. Networks with cycles are treated in the framework of the cavity method. Such models
correspond, for example, to spin-glass systems, Boolean networks, neural networks, or other technological,
biological, and social networks. Building upon ideas from quantum many-body theory, our approach is based
on a matrix product approximation of the so-called edge messages—conditional probabilities of vertex variable
trajectories. Computation costs and accuracy can be tuned by controlling the matrix dimensions of the matrix
product edge messages (MPEM) in truncations. In contrast to Monte Carlo simulations, the algorithm has a better
error scaling and works for both single instances as well as the thermodynamic limit. We employ it to examine
prototypical nonequilibrium Glauber dynamics in the kinetic Ising model. Because of the absence of cancellation
effects, observables with small expectation values can be evaluated accurately, allowing for the study of decay
processes and temporal correlations.
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I. INTRODUCTION

In recent years, we have seen increased efforts by statistical
physicists to tackle stochastic dynamical processes in networks
in order to study various phenomena [1,2] such as ordering
processes, the spreading of epidemics and opinions, synchro-
nization, collective behavior in social networks, stability under
perturbations, and avalanche dynamics.

A drastic simplification can be achieved when short cycles
in the network, defined by interaction terms, are very rare. This
is the case for locally treelike graphs such as random regular
graphs, Erdős-Rény graphs, and Gilbert graphs. For such
random graphs with N vertices, almost all cycles have length
� log N such that their effect is negligible in the thermody-
namic limit [3]. For static problems, this has been exploited in
the so-called cavity method [4], where conditional nearest-
neighbor probabilities are computed iteratively within the
Bethe-Peierls approximation. The method was very success-
fully applied to study, for example, equilibrium properties of
spin glasses [4], computationally hard satisfiability problems
[5,6], and random matrix ensembles [7].

This big success has motivated the generalization of the
cavity method to dynamical problems [8,9], which is known
as the dynamic cavity method or dynamic belief propagation.
Unfortunately, the number of possible trajectories and, hence,
the computational complexity increase exponentially in time.
Applications have hence been restricted to either very short
times [8,10], oriented graphs [8], or unidirectional dynamics
with local absorbing states [9,11–13]. In the latter case, one can
exploit that vertex trajectories can be parametrized by a few
switching times. The problem is to find good approximations
to the exact solution of the dynamic cavity equations with
polynomial computations costs. Simple approaches are to

neglect temporal correlations completely as in the one-step
method [8,14–16] or to retain only some �t = 1 correlations as
in the one-step Markov ansatz [17]. While this can be expected
to work well for stationary states at high temperatures, such ap-
proximations are usually quite severe for short to intermediate
times or low temperatures. Also, for dense networks, where the
cavity method is not applicable, approximation schemes like
the cluster variational method [18–20] or perturbative schemes
[15,21,22] have been developed.

In this paper, we present an efficient algorithm for precise
solutions of the parallel dynamic cavity equations for generic
(locally treelike) graphs and generic bidirectional dynamics.
The main feature is the reduction of the computational com-
plexity from exponential to polynomial in the duration of the
dynamical process. The central objects in the dynamic cavity
method are conditional probabilities for vertex trajectories of
nearest neighbors—the so-called edge messages. As tempo-
ral correlations are decaying in time and/or time difference
|t − t ′|, we exploit that the edge messages can be approximated
by matrix products; i.e., there is one matrix for every edge,
edge state, and time step, encoding the temporal correlations
in the corresponding part of the evolution. It turns out that
the dimensions of these matrices do not have to be increased
exponentially in time. One can obtain quasiexact results with
relatively small matrix dimensions. Computation costs and
accuracy can be tuned by controlling the dimensions through
controlled truncations. The idea of exploiting the decay of
temporal correlations to approximate edge messages in matrix
product form is in analogy with the use of matrix product states
[23–27] for the simulation of strongly correlated, mostly one-
dimensional, quantum many-body systems. These have been
used very successfully in algorithms like the density-matrix
renormalization group [28,29] to study, for example, quantum
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ground-state properties, often with machine precision [30].
Besides lifting the restrictions of the aforementioned ap-
proaches, the matrix product edge-message (MPEM) algo-
rithm can also outperform Monte Carlo simulations (MC)
of the dynamics in important respects. In particular, besides
allowing for the simulation of single instances, alternatively,
one can work directly in the thermodynamic limit. Perhaps
more importantly, it has a favorable error scaling. While
statistical errors in MC decay very slowly with the number
of samples Ns as 1/

√
Ns , MPEM yields also observables with

absolutely small expectation values with very good accuracy
which is essential for the study of decay processes and temporal
correlations. As a first application, we solve the prototypical
example for nonequilibrium dynamics on networks—Glauber
dynamics of the kinetic Ising model [31]—and study the equi-
libration of the magnetization as well as temporal correlations.

II. THE DYNAMIC CAVITY METHOD

Let σ t
i denote the state of vertex i at time step t , and σ t :=

(σ t
1,σ

t
2, . . . ) the state of the full system at time t . Given the state

probabilities P (σ t ) for time t , we evolve to the next time step,
P (σ t+1) = ∑

σ t W (σ t+1|σ t )P (σ t ), by applying the stochastic
transition matrix W . As vertex i interacts only with its nearest
neighbors j ∈ ∂i, the probability for σ t+1

i only depends on the
states σ t

j of these vertices at the previous time step such that
the global transition matrix W is a product of local transition
matrices wi ,

W (σ t+1|σ t ) =
∏

i

wi

(
σ t+1

i

∣∣σ t
∂i

)
. (1)

Here
∑

σi
wi(σi |σ ′

∂i) = 1, and σ t
∂i is the state of the nearest

neighbors of vertex i at time t . In the cavity method [4,8,9], one
neglects cycles of the (locally treelike) graph according to the
Bethe-Peierls approximation to reduce this computationally
complex evolution to the dynamic cavity equation [8,9]

μi→j

(
σ̄ t+1

i

∣∣σ̄ t
j

) =
∑

{σ̄ t
k }k∈∂i\{j}

pi

(
σ 0

i

)[ t∏
s=0

wi

(
σ s+1

i

∣∣σ s
∂i

)]

×
⎡
⎣ ∏

k∈∂i\{j}
μk→i

(
σ̄ t

k

∣∣σ̄ t−1
i

)⎤⎦ (2)

which only involves the so-called edge messages μ for the
edges of a single vertex i. For simplicity, we have assumed that
vertices are uncorrelated in the initial state such that P (σ 0) =∏

i pi(σ 0
i ). The edge messages μi→j (σ̄ t

i |σ̄ t−1
j ) in the dynamic

cavity equation (2) are conditional probabilities for the trajecto-
ries σ̄ t

i := (σ 0
i ,σ 1

i , . . . ,σ t
i ) and σ̄ t−1

j on edge (i,j ). Specifically,
if we consider a tree graph and remove all descendants of vertex

FIG. 1. Part of a locally treelike interaction graph with vertex
degrees z = 3.

j as indicated in Fig. 1 by the dashed line, μi→j (σ̄ t
i |σ̄ t−1

j )
denotes the conditional probability of a trajectory σ̄ t

i on vertex
i, given the trajectory σ̄ t−1

j on vertex j . From messages, one
can obtain marginal probabilities of site trajectories to evaluate
observables of interest. Equation (2) constructs μi→j (σ̄ t+1

i |σ̄ t
j )

out of the edge messages μk→i(σ̄ t
k |σ̄ t−1

i ) of the previous time
step. This is exact for tree graphs and covers locally treelike
graphs in the Bethe-Peierls approximation. Although we have
gained a lot in the sense that the computational complexity
is now linear in the system size, it is still exponential in
time t , if we were to encode the edge messages without any
approximation.

III. CANONICAL FORM OF AN MPEM

To circumvent this exponential increase of computation
costs, we can exploit the decay of temporal correlations and
approximate the exact edge message by a matrix product

μi→j

(
σ̄ t

i

∣∣σ̄ t−1
j

) = A
(0)
i→j

(
σ 0

j

)[t−1∏
s=1

A
(s)
i→j

(
σ s−1

i

∣∣σ s
j

)]

×A
(t)
i→j

(
σ t−1

i

)
A

(t+1)
i→j

(
σ t

i

)
. (3)

The particular choice of assigning vertex variables {σ s
i } and

{σ s
j } to the Ms × Ms+1 matrices A

(s)
i→j (σ s−1

i |σ s
j ) occurring in

the matrix product (3) is advantageous for the implementation
of the recursion relation (2) for MPEMs, as will become clear
in the following. In order for the matrix product to yield a
scalar, we set M0 = Mt+2 = 1.

IV. MPEM EVOLUTION

The time evolution starts at t = 0 with μi→j (σ 0
i ) = pi(σ 0

i ).
Using the dynamic cavity equation (2), we iteratively build
matrix product approximations for edge messages for time t +
1 from those for time t . It is simple to insert the matrix product
ansatz (3) for the edge messages in the dynamic cavity equation
but not trivial to bring the resulting edge message again into the
canonical MPEM form as required for the subsequent evolution
step. The specific assignment of the vertex variables to matrices
in Eq. (3) has been chosen such that all contractions (products
and sums over vertex variables) occurring in the cavity equation
are time-local in the sense that, given MPEMs μk→i(σ̄ t

k |σ̄ t−1
i )

in canonical form for all neighbors k ∈ ∂i \ {j}, the resulting
μi→j (σ̄ t+1

k |σ̄ t
i ) can be written in (noncanonical) matrix product

form as

μi→j

(
σ̄ t+1

i

∣∣σ̄ t
j

) = C
(0)
i→j

(
σ 0

i

)[t+1∏
s=1

C
(s)
i→j

(
σ s

i

∣∣σ s−1
j

)]
. (4)

As depicted in Fig. 2(b), the tensors C
(s)
i→j for 1 � s � t are

obtained by contracting the local transition matrix wi (σ s
i |σ s−1

∂i )
with tensors A

(s)
k→i from the time-t MPEMs. This contraction

entails a sum over the z − 1 common indices σ s−1
k , where

z = |∂i| is the vertex degree. Assuming for the simplicity of
notation that the matrix dimensions Ms for all time-t MPEMs
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(a)

μi→j(σ̄
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(0)
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(c)

P (σt
i , σ

t
j) =

A
(0)
j→i A

(1)
j→i A

(2)
j→i A

(t−1)
j→i A

(t)
j→i A

(t+1)
j→i

A
(0)
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(1)
i→j A

(2)
i→j A

(t−1)
i→j A

(t)
i→j A

(t+1)
i→j

σt
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σt
i

(b)

C
(s)
i→j =

σs
i σs−1

j

a b wi

σs
i σs−1

j

A
(s)
k1→i

σs−1
k1

σs
i

a1 b1 A
(s)
kz−1→i

σs−1
kz−1

σs
i

az−1 bz−1

FIG. 2. (a) Graphical representation of a matrix product edge message in canonical form (3). Connecting lines indicate summations over
indices. (b) For each time step (2), tensors of the evolved matrix product μi→j (σ̄ t+1

i |σ̄ t
j ) in Eq. (4) are built by contracting the local transition matrix

wi with MPEM tensors of messages μk→i , incident to vertex i, where k ∈ ∂i \ {j} = {k1, . . . ,kz−1}, and a := (a1, . . . ,az−1). (c) Evaluation of
probabilities P (σ t

i ,σ
t
j ) as in Eq. (6).

are identical, the resulting matrices

C
(s)
i→j

(
σ s

i

∣∣σ s−1
j

) =
∑
σ s−1

∂i\{j}

wi

(
σ s

i

∣∣σ s−1
∂i

)

×
⎡
⎣ ⊗

k∈∂i\{j}
A

(s)
k→i

(
σ s−1

k

∣∣σ s
i

)⎤⎦ (5)

have left and right indices of dimensions M̄s = (Ms)z−1

and M̄s+1 = (Ms+1)z−1, respectively. The contraction
for tensor C(t+1) is very similar and C

(0)
i→j (σ 0

i ) =
pi(σ 0

i )[
⊗

k∈∂i\{j}A
(0)
k→i(σ

0
i )].

V. MPEM TRUNCATION

In preparation for the next time step, we need to bring
the evolved edge message (4) back into canonical form (3).
Furthermore, we need to introduce a controlled approximation
that reduces the matrix dimensions because they would oth-
erwise grow exponentially in time. Both a reordering of the
vertex variables σ s

i and σ s
j in the matrix product (4) and a

controlled truncation of matrix dimensions can be achieved
by sweeping through the matrix product and doing certain
singular value decompositions (SVD) [32] of the tensors C(s).
The generic idea behind the truncation of a matrix product
γ (n) := A

n0
0 A

n1
1 . . . A

nt

t with matrix dimensions {Ms} is to
part the variables n into two groups nL := (n0, . . . ,nr−1) and
nR := (nr, . . . ,nt ) such that �nL,nR

:= γ (n) can be interpreted
as a matrix. Its singular value decomposition has the form
�nL,nR

= ∑Mr

k=1 YnL,kλkZk,nR
with isometric matrices Y and Z.

Retaining only the M ′
r � Mr largest singular values λk , we ob-

tain a controlled approximation γtrunc(n) of the original matrix
product γ (n) with 2-norm distance ‖γ − γtrunc‖2 = ∑

k>M ′
r
λ2

k

and decreased matrix dimension M ′
r at the (temporal) bond

(r − 1,r).
Following this principle, the truncation of all matrix di-

mensions of the time-evolved MPEM (4) can be done by
sequential SVDs of tensors in the matrix product. In a first
sweep, starting with a decomposition of the rightmost ten-

sor C
(t+1)
i→j (σ t+1

i |σ t
j )

SVD=: U (t+1)�(t+1)C̃
(t+1)
i→j (σ t+1

i |σ t
j ) and pro-

gressing iteratively to the left with

C
(s)
i→j

(
σ s

i

∣∣σ s−1
j

)
U (s+1)�(s+1) SVD=: U (s)�(s)C̃

(s)
i→j

(
σ s

i

∣∣σ s−1
j

)
,

the new tensors C̃ are isometries. In a second sweep from
left to right, matrix dimensions can be truncated from M̄s

to something smaller in an SVD. In two further sweeps, the
indices {σ s

i } and {σ s
j } of the vertex variables can be rearranged

to get back to the canonical form (3). After executing these
steps for all edge messages, the next evolution step from t + 1
to t + 2 can follow. More details of this procedure are described
in the appendices.

VI. EVALUATION OF OBSERVABLES

The joint probability of trajectories σ̄ t
i and σ̄ t−1

j for the
vertices of an edge (i,j ) is given by the product of the
two corresponding edge messages. After marginalization, one
obtains, for example, the probability for the edge state (σ t

i ,σ
t
j )

at time t as

P
(
σ t

i ,σ
t
j

) =
∑

σ̄ t−1
i ,σ̄ t−1

j

μi→j

(
σ̄ t

i

∣∣σ̄ t−1
j

)
μj→i

(
σ̄ t

j

∣∣σ̄ t−1
i

)
. (6)

In the MPEM approach, this can be evaluated efficiently, as
indicated in Fig. 2(c), by executing the contractions sequen-
tially from left (s = 0) to right (s = t − 1). Similarly, one can
for example also compute temporal correlators 〈σ t

i σ
s
i 〉 from

probabilities P (σ t
i ,σ

s
i ).

VII. NONEQUILIBRIUM GLAUBER-ISING DYNAMICS

We have used the described MPEM algorithm to study
Glauber dynamics of the kinetic Ising model, introduced
in Glauber’s seminal paper Ref. [31]. Figure 3 displays
the results in comparison to MC simulations and to the
one-step Markov approximation [17]. Specifically, we have
Ising spins interacting ferromagnetically on z = 3 random
regular graphs, with local transition matrices wi(σ

t+1
i |σ t

∂i) =
exp(β

∑
j∈∂i σ t+1

i σ t
j )/Z. In the initial state, all spins have

magnetization 〈σ 0
i 〉 = 1/2, i.e., pi(↑) = 3/4. Besides being

applicable for single instances of finite graphs, the MPEM
approach gives also direct access to the thermodynamic limit.
For disordered systems, this can be done in a population
dynamics scheme. The homogeneous case, considered here,
is particularly simple as all edges of the graph are equivalent
in the thermodynamic limit. Hence, one can work with a single
MPEM.
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FIG. 3. (a) Magnetization and (b) connected temporal correlations for Glauber dynamics on z = 3 random regular graphs of different sizes
for MC and in the thermodynamic limit for the MPEM and one-step Markov approaches. Because of odd-even effects in the dynamics, only
even time steps are shown. For MC (with Ns samples), the errors of the magnetization [lower panels in (a)] are quantified by the standard
deviation of the magnetization, i.e., under ignorance of remaining finite-size effects. For MPEM and one-step Markov, errors are quantified by
the deviation from the result of the most accurate (quasi-exact) MPEM simulation (truncation threshold λtrunc = 10−6 for β = 1 and λtrunc = 10−7

for β = 1/4). In plot (b), the three MPEM curves for λtrunc = 10−4,10−5,10−6 overlap up to time t = 24.

Figure 3(a) shows the equilibration of the magnetization.
In the ferromagnetic phase (β = 1), it approaches a finite
equilibrium value, whereas it decays exponentially to zero
in the paramagnetic phase (β = 1/4). As shown for β = 1,
MC simulations contain finite-size effects which become small
for the system with 2048 sites. MC errors decrease slowly
when increasing the number of samples Ns as 1/

√
Ns . This is

problematic for observables with small absolute values where
cancellation effects make it difficult to obtain a precise esti-
mate. This is, e.g., apparent in the magnetization decay for β =
1/4 which, in contrast, is very accurately captured with MPEM.
In these simulations, we control the MPEM accuracy by
keeping only singular values λk above a threshold, specified by
λk/(

∑
k′ λ

2
k′)1/2 > λtrunc. Decreasing λtrunc, increases accuracy

and computation costs. The one-step Markov approximation
[17] is not suited to handle temporal correlations. At long times
it performs well for β = 1/4 and fairly good for β = 1, but
deviates rather strongly at earlier times.

Figure 3(b) shows the connected temporal correlation func-
tion 〈σ t

i σ
s
i 〉 − 〈σ t

i 〉〈σ s
i 〉 for the ferromagnetic regime β = 1 as

a function of t − s for several times t . After an initial exponen-
tial decay in t − s to a value that decreases exponentially with
t , the correlator continues to drop but now much more slowly,
becoming almost constant. Its decay behavior can be difficult to
impossible to capture with MC. In the example, MC deviations
are often orders of magnitude above those of the numerically
cheaper MPEM simulations. MC data for t > 32 have been
suppressed due to very big errors.

This decay of temporal correlations is also reflected in the
matrix dimensions {Ms} in MPEMs μi→j (σ̄ t

i |σ̄ t−1
j ) of prede-

fined approximation accuracy. We observe that M := maxs Ms

increases rapidly at small times t but then converges to a value
that depends on the system parameters and the truncation
threshold λtrunc. As every iteration t → t + 1 requires a few
sweeps through matrix products of length t , this implies

that computation costs are O(t2), i.e., quadratic instead of
exponential in t .

VIII. DISCUSSION

The described MPEM algorithm, based on matrix product
approximations of edge messages allows for an efficient and
accurate solution of the dynamic cavity equations. Besides
lifting restrictions of earlier approaches for the simulation of
stochastic nonequilibrium dynamics in networks, mentioned
in the introduction, it gives direct access to the thermody-
namic limit, and its error scaling is favorable to that of MC
simulations. It allowed us to obtain quasiexact solutions of
the cavity equations for Glauber-Ising dynamics. We think
that this approach is a very valuable tool, particularly as it
yields temporal correlations and other decaying observables
with unprecedented accuracy as demonstrated in the example.
It hence gives access to low-probability events. This opens a
door for the study of diverse dynamic processes and inference
or dynamic optimization problems for physical, technological,
biological, and social networks.
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APPENDIX A: TRUNCATING MATRIX PRODUCTS

Let us explain the notion of truncations at the example of a
matrix product

γ (n) := A
n0
0 A

n1
1 . . . A

nt

t , (A1)

010104-4



MATRIX PRODUCT ALGORITHM FOR STOCHASTIC … PHYSICAL REVIEW E 97, 010104(R) (2018)

where Ans
s is an Ms × Ms+1 matrix and M0 = Mt+1 = 1.

Our goal is to reduce in a controlled way, e.g., the left
matrix dimension Mr of Anr

r . First, let us part the variables n
into two groups nL := (n0, . . . ,nr−1) and nR := (nr, . . . ,nt ).
For the truncation, we suggest employing a singular value
decomposition (SVD) [32] of the matrix product such that

γ (n) =: �nL,nR

SVD=
Mr∑
k=1

YnL,kλkZk,nR
. (A2)

Y and Z are isometric matrices; i.e., they obey

Y †Y = 1 and ZZ† = 1. (A3)

Now, truncating some of the singular values λ1 � λ2 � · · · �
λMr

� 0, such that only the M ′
r largest are retained, we obtain

the controlled approximation

γtrunc(n) :=
∑
k�M ′

r

YnL,kλkZk,nR

with error ‖γ − γtrunc‖2 =
∑
k>M ′

r

λ2
k. (A4)

Note that this truncation scheme yields the minimum possible
norm loss ‖�γ ‖ ≡ [

∑
n �γ 2(n)]1/2 for the given new matrix

dimension M ′
r .

While it is very desirable to discard unimportant informa-
tion and control the growth of computation cost through such
truncations, the SVD (A2) appears to be an insurmountable
task. Assuming that each variable ns can take d different
values and that 2r � t + 1, the cost for the SVD would scale
exponentially in time likedt+r+1. This is because the SVD of an
M × N matrix with M � N has a computation cost O(M2N )
[32]. However, the beauty of matrix products is that such an
SVD can in fact be done sequentially with linear costs of order
tdM3 as follows. Here, M := maxs Ms is the maximum matrix
dimension in Eq. (A1).

First, we do an exact transformation of the matrix prod-
uct (A1) to bring it to the orthonormalized form

γ (n) = Y
n0
0 . . . Y

nr−1
r−1 Ãnr

r Z
nr+1
r+1 . . . Z

nt

t , (A5)

where tensors Ys and Zs obey the left and right orthonormality
constraints∑

n

(
Yn

s

)†
Yn

s = 1 and
∑

n

Zn
s

(
Zn

s

)† = 1, (A6)

respectively. This is achieved through a sequence of SVDs. It
starts with the SVD A

n0
0 =: Y

n0
0 �0V0, where �0 is a diagonal

matrix containing the singular values, V0 is isometric according
to V0V

†
0 = 1, and Y0 obeys Eq. (A6). The sweep continues with

the SVD �0V0A
n1
1 =: Y

n1
1 �1V1 and so on until the computa-

tion of Yr−1. Analogously, we do a second sequence of SVDs
starting from the right with A

nt

t =: Ut�tZ
nt

t , where Z
nt

t obeys

Eq. (A6), and continue with A
nt−1
t−1 Ut�t =: Ut−1�t−1Z

nt−1
t−1 and

so on until Zr+1 has been computed with A
nr+1
r+1 Ur+2�r+2 =:

Ur+1�r+1Z
nr+1
r+1 . Finally, we define the central tensor as Ãnr

r :=
�r−1Vr−1A

nr
r Ur+1�r+1, and we have thus determined all

matrices in Eq. (A5). After this preparation, we can do the
actual truncation, based on the SVD Ãnr

r =: Ur�Znr
r with the

same singular values λ1 � · · · � λMr
as in Eq. (A2). With

the Mr × M ′
r matrix [�trunc]kk′ := δkk′λk , the truncated matrix

product (A4) takes the form

γtrunc(n) = Y
n0
0 . . . Y

nr−2
r−2

(
Y

nr−1
r−1 Ur�trunc

)
Znr

r . . . Z
nt

t .

APPENDIX B: PROCESSING EVOLVED MPEMS

In the evolution step described in the main text, matrix
dimensions are increased to M̄s and the evolved edge message
(4) is in a noncanonical form. Here we discuss how to apply the
truncation as described in Appendix A to compress the evolved
MPEM and bring it back to canonical form (3).

In a first sweep from right (s = t + 1) to left (s = 0), using
SVDs, we can sequentially impose the right orthonormality
constraints [see Eq. (A6)] on the C tensors. In a subsequent
sweep from left to right, again based on SVDs, at each step,
the MPEM is in orthonormalized form [see Eq. (A5)] and we
can now truncate the tensors to decrease bond dimensions from
M̄s to something smaller. According to the triangle inequality,
the norm distance of the original edge message μi→j (σ̄ t+1

i |σ̄ t
j )

and the resulting truncated MPEM are bounded from above by
the sum of errors (A4) of the individual truncations.

What remains is to reorder the indices {σ s
i } and {σ s

j } of the
vertex variables. In a sweep from right to left, we go from the
noncanonical variable assignment (σ 0

i )(σ 1
i |σ 0

j ) . . . (σ t+1
i |σ t

j )
in the truncated and orthonormalized version
C̃

(0)
i→j (σ 0

i )
∏t+1

s=1 C̃
(s)
i→j (σ s

i |σ s−1
j ) of the MPEM (4) to the assign-

ment (σ 0
i σ 0

j ) . . . (σ t
i |σ t

j )(σ t+1
i ), yielding the matrix product

μi→j

(
σ̄ t+1

i

∣∣σ̄ t
j

) trunc≈
[

t∏
s=0

D
(s)
i→j

(
σ s

i

∣∣σ s
j

)]
D

(t+1)
i→j

(
σ t+1

i

)
.

At the right boundary, we start with an SVD and controlled
truncation C̃

(t+1)
i→j (σ t+1

i |σ t
j ) ≈: U (t+1)(σ t

j )�(t+1)
trunc D

(t+1)
i→j (σ t+1

i ),
and continue with

C̃
(t)
i→j

(
σ t

i

∣∣σ t−1
j

)
U (t+1)

(
σ t

j

)
�

(t+1)
trunc

≈: U (t)
(
σ t−1

j

)
�

(t)
truncD

(t)
i→j

(
σ t

i

∣∣σ t
j

)
and so on until ending at s = 0. In an analogous final sweep
from left to right, we change to the canonical variable
assignment (σ 0

j )(σ 0
i |σ 1

j ) . . . (σ t−1
i |σ t

j )(σ t
i )(σ t+1

i ) as in Eq. (3).
After executing these steps for all edge messages, the next
evolution step from t + 1 to t + 2 can follow.
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