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Fourier heat conduction as a strong kinetic effect in one-dimensional hard-core gases
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For a one-dimensional (1D) momentum conserving system, intensive studies have shown that generally its heat
current autocorrelation function (HCAF) tends to decay in a power-law manner and results in the breakdown of the
Fourier heat conduction law in the thermodynamic limit. This has been recognized to be a dominant hydrodynamic
effect. Here we show that, instead, the kinetic effect can be dominant in some cases and leads to the Fourier law
for finite-size systems. Usually the HCAF undergoes a fast decaying kinetic stage followed by a long slowly
decaying hydrodynamic tail. In a finite range of the system size, we find that whether the system follows the
Fourier law depends on whether the kinetic stage dominates. Our Rapid Communication is illustrated by the
1D hard-core gas models with which the HCAF is derived analytically and verified numerically by molecular
dynamics simulations.
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Driven by applications of nanomaterials, heat conduction
properties of low-dimensional materials have been a focus
topic in the past three decades [1–8]. Based on numerous
theoretical studies, it is concluded that, in general, the thermal
conductivity of a low-dimensional momentum conserving
system has a system-size-dependent abnormality in the ther-
modynamic limit [9–11]. This abnormality is attributed to
the hydrodynamic effect that induces the slow power-law
decay of the heat current autocorrelation function (HCAF)
[9,10]. However, real materials have a finite system size, hence
whether this abnormality applies to a finite system needs to be
carefully examined. Indeed, counterexamples, i.e., momentum
conserving systems but yet having a size-independent thermal
conductivity, have been found in simulations of finite systems
[11–14]. These counterexamples usually have asymmetric
interparticle interactions, including the Toda-like models [13],
the Lennard-Jones model [11,12,14], the Fermi-Pasta-Ulam-
α-β model [11], the diatomic gas model [15,16], the diatomic
Toda model [16], and so on. More importantly, so far the direct
experimental measurement results of the thermal conductivity
of low-dimensional materials are also divergent. For example,
for graphene, some studies confirm that its heat conduction
behavior is abnormal [17] but others support that it is normal
[18].

In the one-dimensional (1D) case, the heat conductivity,
denoted by κ , is related to the HCAF, denoted by C(t), by the
Green-Kubo formula,

κ = lim
tc→∞ lim

L→∞
1

kBT 2L

∫ tc

0
C(t)dt. (1)

Here kB is the Boltzmann constant, L and T are, respectively,
the size and the temperature of the system, C(t) ≡ 〈J (0)J (t)〉
with J (t) being the total heat current at time t , and 〈·〉
representing the equilibrium ensemble average. For a finite
system, Lepri et al. [3] suggest to drop the limits and truncate
the integral at tc = L/cs (cs is the sound speed) to calculate

the heat conductivity [3,11]. It leads to κ ∼ L1−α in the
thermodynamical limit given that C(t) tends to decay as ∼ t−α

as L → ∞.
In trying to understand the aforementioned counterex-

amples and the existing experimental results, Chen et al.
conjectured that the asymmetric interactions may practically
lead to a size-independent thermal conductivity in a certain
finite system-size range [11] because the hydrodynamic ap-
proach may not apply to systems of asymmetric interactions
in a transient but maybe long time period. In this transient
period, the HCAF may decay faster, but its contribution to the
thermal conductivity can dominate until that contributed by
the hydrodynamic power-law tail becomes comparable after
a sufficiently long time. Therefore, although the predicted
abnormality can be the case in the thermodynamics limit,
normal heat conduction following the Fourier law can still
be expected in a finite system-size range. This would have
significant practical implications because any real materials
are in fact finite.

It is thus important to establish a complete theory based on
which the kinetic effect can be evaluated and taken into account
as well. This is our motivation, and in this Rapid Communica-
tion, we will focus on the 1D diatomic gas [19], a paradigmatic
momentum conserving fluid model. The hard-core elastic
collision occurring when two neighboring particles meet can
be considered as an effective asymmetric interaction. It is worth
noting that there has been a long-term argumentation towards
the heat conduction property of this model. In 2001, Garrido
et al. presented the numerical evidence to show that this model
has a convergent thermal conductivity in the thermodynamic
limit [20]. This result was questioned by many other authors
[21–23] because of the clear power-law decaying tail in the
HCAF. Nevertheless, a recent numerical study showed that,
interestingly, when the two types of particles in the system
have close masses, the heat conductivity does not depend on
the system size in a certain system-size range [16]. Moreover, it
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is observed that the HCAF shows an exponential-like decay in
a transient stage and the time this transient stage lasts increases
rapidly as the mass ratio tends to 1. Therefore, the mass ratio
is a key parameter for the heat conduction property of this
model. In view of the subtlety of this issue and the limitation of
the numerical simulations, an analytical study is particularly
desired. In the following we will show that the idea of the
conventional kinetic approach can be borrowed for our aim
here.

First of all, suppose that our model consists of N particles
with alternative masses μ1 and μ2 queueing on a line. We
assume that μ1 > μ2 and define r = μ1/μ2 as the mass ratio.
Let mi and vi be the mass and velocity of the ith particle; after
a collision, the velocities of the two neighboring particles, say
the ith and the (i + 1)-th, change into

vi(t + 1) = mi − mi+1

mi + mi+1
vi(t) + 2mi+1

mi + mi+1
vi+1(t),

(2)

vi+1(t + 1) = mi+1 − mi

mi + mi+1
vi+1(t) + 2mi

mi + mi+1
vi(t),

where the time t is measured as the number of collisions. Note
that this dynamics keeps the total momentum and energy of
the system.

In the kinetic theory, for characterizing the Brownian
motion, one traces a tagged particle and studies the decay of
its velocity autocorrelation function. In our model a particle is
always bounded by its two neighbors. Hence, instead of tracing
a tag particle, we record the energy the tagged particle carries
initially, which we term as the “tagged energy,” and investigate
how it spreads over the system. Note that during a collision,
the energy carried by a particle will separate into two parts;
one part remains on itself, whereas another part transfers to
the other particle. If the two particles have close masses, then
the transferred part will hold a large proportion. For the sake
of convenience, in the following we term this transferred part
of energy as the dominant energy since it dominates the decay
behavior of the HCAF before the hydrodynamic process takes
over. Similarly, we term the particle that carries the dominant
energy as the dominant carrier. (At a given time there is only
one dominant carrier.) Then the tagged energy can be traced by
following the ensuing dominant energy sequence and in turn
by tracing the dominant carriers. This is the key technique we
adopt for our analytical treatment, which can be seen as an
extension of the conventional kinetic approach.

As an example, let us take the ith particle as the tagged
particle and assume its first collision happens with the (i +
1)-th particle. According to Eq. (2), after the collision its
initial velocity vi(0) separates into two parts, the remaining
part mi−mi+1

mi+mi+1
vi(0) and the transferred part 2mi

mi+mi+1
vi(0). For

m1 ≈ m2, the remaining part will be much smaller than the
transferred part, and the (i + 1)-th particle thus carries the dom-
inant energy and becomes the dominant carrier. As the velocity
component 2mi

mi+mi+1
vi(0) in vi+1(1) comes from vi(0), it corre-

lates with vi(0). Similarly, when the next collision happens
between the (i + 1)-th particle and one of its neighbors [no
matter the ith particle or the (i + 2)-th particle as they have
the same masses], the transferred velocity that contains vi(0)
is 4mimi+1

(mi+mi+1)2 vi(0) = 4r
(1+r)2 vi(0). It is thus straightforward that,

after 2P collisions, the portion of vi(0) that transfers to the

dominant carrier is

vi(0)

[
4mimi+1

(mi + mi+1)2

]P

= vi(0)

[
4r

(1 + r)2

]P

. (3)

Now let us consider the HCAF. The total energy current
is defined as J (t) ≡ ∑N

q jq(t), where jq(t) ≡ 1
2mqv

3
q(t) is the

local current on the qth particle. Still taking the ith particle as
the tagged particle, we have [3,13]

〈J (t)J (0)〉 = N

N∑
q

〈jq(t)ji(0)〉. (4)

Suppose that at time t = 2P the dominate carrier is the kth
particle and tF is the average time for the dominant energy
transferring from one dominant carrier to the next; for r → 1,
we have jq (t)ji(0) 	= 0 for q = k, and the other jq (t)ji(0) terms
are negligible. This gives that

C(t) = N

[
64r3

(r + 1)6

]t/(2tF )

〈ji(0)jk(0)〉, (5)

which can be rewritten as

C(t) = C(0)e−(t/τ ), (6)

with

τ = −2tF

[
ln

(
64r3

(r + 1)6

)]−1

. (7)

Equations (6) and (7) are our main result, which indicate
that the HCAF decays exponentially in the kinetic stage. The
physics picture behind Eq. (6) is indeed similar to that of the
Brownian motion. In our case, the tagged particle is bounded,
but its energy is dispersed due to the interactions with and
among the surrounding particles, resulting in an exponen-
tially decaying energy current autocorrelation function. In our
model, the dominant carrier changes from one to another.
During this process, the tagged energy keeps losing so that the
HCAF, dominated by the remaining energy of the dominant
carrier, decays exponentially. Therefore, our treatment is the
same in spirit as the conventional kinetic approach. The
parameter to be determined is tF . As is generally accepted
that the energy is transported by the sound modes [24,25], it
is reasonable to assume that the energy is transferred at the
sound speed as well, and therefore we have tF = a

cs
, where

a is the average distance between two neighboring particles
(throughout this Rapid Communication we set a = 1 so that
N = L). Note that an improved estimation of tF should take
into consideration the local energy density.

By substituting (6) into the Green-Kubo formula (1), we
can obtain the thermal conductivity due to the kinetic effect
exclusively,

κk = τ

kBT 2
C(0). (8)

When the hydrodynamic contribution is negligible in a finite
system, we have κ ≈ κk . In fact, as the dominant energy keeps
losing [see Eq. (3)], the energy transferred to other particles
cannot be neglected after a sufficiently long time. This part
of the energy evolves following the hydrodynamics and can be
captured by the hydrodynamics approaches [10]. The decaying
behavior of the HCAF induced by the hydrodynamics process

010103-2



FOURIER HEAT CONDUCTION AS A STRONG KINETIC … PHYSICAL REVIEW E 97, 010103(R) (2018)

FIG. 1. The heat current autocorrelation function of the 1D
diatomic gas model at various mass ratios. The solid lines are for
simulation results, and the dashed lines of the same color are for the
corresponding analytical predictions [Eq. (6)] based on our extended
kinetic theory. In simulations, the system size is set to be N = 50 000.
Here and in all other figures, kB = 1, T = 1, and μ2 = 1. From left to
right, the pink, blue, green, and red lines are for r = 1.50, 1.30, 1.13,
and 1.10, respectively.

has been worked out [9,10,26], which reads CH (t) = ct−(2/3) in
the thermodynamic limit. The parameter c is the amplitude of
the power-law tail. Roughly, we can identify the time, denoted
by t1, that separates the kinetic and the hydrodynamic stages by

C(0)e−(t1/τ ) = ct
−(2/3)
1 . (9)

For t < t1, the kinetic effect dominates. Because as r → 1,
both τ and t1 increase [see Eqs. (7) and (13)], the kinetic region
can last so long to allow the HCAF to decay for orders in
the amplitude (see Fig. 1 for r = 1.1 as an example). On the
other hand, for t > t1, the hydrodynamic effect begins to take
over, but its contribution to the heat conductivity will not be
comparable before another time scale, denoted by t2, that can
be estimated by

κH = c

∫ t2

t1

t2/3dt. (10)

Namely, for t > t2, we have κH > κk . The time scales t1
and t2 thus suggest two characteristic system sizes L1 = cst1
and L2 = cst2: For L1 < L < L2 we can expect that the heat
conductivity is, in effect, independent of the system size. This
is consistent with the previous numerical study [16] (see also
Fig. 2 for r = 1.1 as an example).

Our method can also be adopted to study other 1D hard-core
gas models. An immediate application is to the model with
periodically repeating unit of one heavy particle of mass μ1

and Z − 1 light particles of mass μ2. In this model, when two
light particles collide, they simply exchange their velocities.
Hence the dominant energy is transferred along the Z − 1 light
particles ballistically without any decay until the collision with
a heavy particle occurs. As a result, the time tF should be Z − 1
times of that in the alternative diatomic gas, i.e., tF = (Z−1)a

cs
.

Hence Eqs. (6) and (7) do not change except that the value of
tF in (7) should be replaced.

FIG. 2. The heat conductivity of the 1D diatomic gas model as
a function of the system size at various mass ratios. The solid lines
are for the results based on the Green-Kubo formula by integrating
the heat current autocorrelation function numerically obtained. The
horizontal dashed lines of the same color are for the corresponding
result κk [Eq. (8)] due to the pure kinetic effect. From bottom to top,
the pink, blue, green, and red lines are for r = 1.50, 1.30, 1.13, and
1.10, respectively.

Our method can be applied to models with random masses
as well. Let us first consider the random diatomic gas model
where a particle has a probability of 1/2 to adjoin the same
type of particles. The isotactic clusters formed have an average
length of 〈b〉 = ∑+∞

i=0
1
2

i
a = 2a, which implies that on average

tF = 2a
cs

. So again we only need replace the value of tF in
Eq. (7). For the more general model where all the particles
have random but close masses, on average after a collision the
HCAF is

〈J (tF )J (0)〉 = 8

〈
m2

i mi+1

(mi + mi+1)3

〉
C(0), (11)

FIG. 3. The numerical simulation results of the spatiotemporal
correlation functions of heat current density fluctuations of the 1D
diatomic model with r = 1.3 at t = 10 (the blue solid line) and t = 30
(the red dashed line), respectively. By tracing the sound mode peaks
the sound speed is measured numerically.
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FIG. 4. Comparison of the time scale t1 in the 1D diatomic gas
model that separates the kinetic and hydrodynamic processes obtained
by Eq. (9) analytically (the red crisscrosses) and by simulations (the
blue bullets).

where 〈 m2
i mi+1

(mi+mi+1)3 〉 is determined by the mass distribution.
Suppose after time t the dominant carrier experiences P

collisions, i.e., t = P tF , we have that the HCAF in the transient
kinetic process also follows Eqs. (6) and (7) with

τ = −tF

[
ln

(
m2

i mi+1

(mi + mi+1)3

)]−1

. (12)

Now we put our analytical results into numerical check with
the 1D diatomic gas model. As how to calculate analytically
the sound speed of this model is still an open problem, we
evaluate the sound speed by the aid of numerical simulations
as well [27–29]. (Note that recently the sound speed for non-
linear 1D lattices with analytical interactions has been derived
analytically [9], but, however, it does not apply to 1D fluid
models.) In doing so, we measure the sound speed by tracing
the motion of the sound mode peaks in the spatiotemporal
correlation function of the heat current density fluctuations
[29] (see Fig. 3). For 1.1 � r � 1.5, we find that cs ≈ 2.3. For
the HCAF, in our simulations, a system consisting of 50 000
particles with a periodic boundary condition is considered. The
numerical results and the analytical results are compared in

Fig. 1 for various mass ratios. We can see that the predicted
HCAF based on the kinetic effect agrees with the simulation
result very well in the transient time region t < t1. In Fig. 2 we
plot the corresponding thermal conductivity calculated by the
Green-Kubo formula as a function of the system size where, for
a given system size L, κ is measured by integrating C(t) up to
the truncated time tc = L/cs . It shows that the kinetic approach
does allow us to predict the system-size-independent range of
κ , which increases as r → 1. For larger r this range disappears,
although a crossover can be identified. The prediction fails
for larger r since the hydrodynamic effect begins to play
a significant role before the HCAF decays to a sufficiently
small value. For example, for r = 1.3, the hydrodynamic
contribution becomes dominant rapidly, and the power-law
divergence of κ ∼ L1/3 can be recognized for t > 103 (see
Fig. 2).

Next, we check the time scale t1. To evaluate it by Eq. (9),
in principle, we need to know the value of the parameter
c. However, this parameter has not been solved yet by the
hydrodynamic approach. (Note that the analytical approach
developed by Mendl and Spohn [9] applies only to 1D lattices
with analytical interactions.) Fortunately, we notice that t1 does
not depend on c sensitively. In fact, Eq. (9) can be rewritten as
t1
τ

+ ln ( c
C(0) ) = 2

3 ln(t1). As for r → 1, t1 is large, whereas the

term ln ( c
C(0) ) is negligible since c

C(0) ∼ 10−1 [26], we therefore
can solve the following equation:

t1

ln(t1)
= 2

3
τ (13)

to estimate t1. The result is shown in Fig. 4. One can see
that it agrees very well with that obtained by simulations.
(In simulations, t1 is identified to be the convex-concave
transition point of the HCAF.) From Fig. 4, it is seen that,
for r > 1.5, t1 drops to the order of 1, suggesting that the
hydrodynamic region covers almost the entire time region. This
is also consistent with previous numerical studies that claim
the abnormal heat conduction with r > 1.5.

Finally, we present the results for other variant 1D hard-core
gas models. In Figs. 5(a)–5(c), we compare the analytically
predicted and the simulated HCAF for, respectively, the peri-
odic model with repeating units of μ1 − μ2 − μ2, the random
diatom model with binary isotactic clusters of μ1 and μ2, and

FIG. 5. The heat current autocorrelation function for three variant 1D gas models. (a) Periodic diatom model with repeating μ1 − μ2 −
μ2 units. (b) Random diatomic gas model. In (a) and (b), μ1 = 1.2 and μ2 = 1. (c) Random gas model with the particle masses uniformly
distributed between 1 and 1.4. In all the panels, the red dashed lines are for the theoretical prediction given by Eq. (6), and the blue solid lines
are for the simulation result.
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the random mass model with uniformly distributed masses
mi ∈ (1,1.4). In all three cases, the analytical results fit the
simulation results very well in the kinetic region t < t1.

To summarize, by introducing and tracing the tagged energy,
we extend the kinetic approach to characterize the HCAF
in the time region where the kinetic effect dominates. The
system-size-independent heat conductivity observed in previ-
ous studies, including its value and the system-size range, is

predicted quantitatively. Our Rapid Communication indicates
that a full description of the HCAF should incorporate both
the kinetic and the hydrodynamic effects. Our method may be
applicable to other momentum conserving systems.

This work was partially supported by the Natural Science
Foundation of China under Grants No. 11275179 and No.
11535011.
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