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Finite volume method for self-consistent field theory of polymers:
Material conservation and application
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For the purpose of checking material conservation of various numerical algorithms used in the self-consistent-
field theory (SCFT) of polymeric systems, we develop an algebraic method using matrix and bra-ket notation,
which traces the Hermiticity of the product of the volume and evolution matrices. Algebraic tests for material
conservation reveal that the popular pseudospectral method in the Cartesian grid conserves material perfectly,
while the finite-volume method (FVM) is the proper tool when real-space SCFT with the Crank-Nicolson method
is adopted in orthogonal coordinate systems. We also find that alternating direction implicit methods combined
with the FVM exhibit small mass errors in the SCFT calculation. By introducing fractional cells in the FVM
formulation, accurate SCFT calculations are performed for systems with irregular geometries and the results are
consistent with previous experimental and theoretical works.
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I. INTRODUCTION

The self-consistent-field theory (SCFT) is one of the
most successful theories explaining statistical behavior of
polymers and it has been especially powerful in predicting the
nanostructures created by heterogeneous polymers [1–3]. In
the SCFT, the statistics of polymers in the equilibrium state is
described by partition functions of polymer chains residing
in a self-consistently determined mean field. The partition
functions are known to satisfy a partial differential equation in
the form of a modified diffusion equation with the given initial
conditions; thus, the typical way to obtain partition functions
is to solve these partial differential equations.

In most practical polymer problems, the differential equa-
tion is impossible to solve analytically and one naturally
adopts some numerical methods to find the solution. There are
various numerical schemes developed to obtain the numerical
solution of the modified diffusion equation. Among them,
the pseudospectral method [4–10] and real-space method
[10–20] are widely used for the accurate modeling of poly-
meric systems. The pseudospectral method, introduced by
Rasmussen and Kalosakas [4] in this community, is proven to
be highly efficient. It introduces operator splitting to separate
the Laplacian part and the Laplacian is calculated in the Fourier
space. After adopting numerical libraries for the Fourier and
inverse Fourier transforms, the pseudospectral method is very
intuitive and easy to implement.

For the real-space method, the finite-difference method
(FDM) is the standard technique for solving the partial
differential equations [16–18]. Its actual implementation
may require additional effort, but it is at least intuitively
structured and this method is unconditionally stable when
the Crank-Nicolson method [21] is adopted. The Crank-
Nicolson method, however, requires the solution of a banded
matrix equation, which demands high computational costs.
An attractive approximation of the Crank-Nicolson method is
the alternating direction implicit (ADI) method, which only
uses tridiagonal matrix equations and is also unconditionally
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stable. One additional advantage of the real-space method is
that parallelization of the algorithm is very simple and efficient.

It has long been known that both the pseudospectral and
real-space methods are plagued with the problem that they
often fail to accurately conserve material, especially when
curved coordinates are adopted. Like many other physical
systems with real materials, violation of the conservation law
in the process of numerical computation is one of the major
concerns in the SCFT calculation. This problem is especially
crucial for heterogeneous polymer systems with various
possible phases. Because the field energy is proportional to
the segment density, material error can cause a free energy
error of similar order of magnitude. The free energy difference
per chain between competing phases is usually small, so
10−3kBT of energy difference is often enough to disrupt the
stability of a phase. This may be the order of the typical
mass conservation error of a numerical scheme, depending
on the parameter values and discretization methods; thus,
for the accurate determination of the selected phase and
phase boundaries, developing numerical methods with low
material error is crucial [10,18]. Recently, Vorselaars et al.
[19] introduced a hybrid of pseudospectral and real-space
methods for a problem in the spherical coordinate system, and
the finite-volume method (FVM) was adopted for the purpose
of achieving better material conservation. However, only the
r direction was discretized by the finite-volume approach
in that work, and the utility of the FVM and its precise
effect on the material conservation were not systematically
tested.

Because of the presence of the potential fields and the fact
that two partial partition functions work together to determine
the segment density, the analysis of material conservation is
quite complicated for the case of the SCFT. Conditions for the
material conservation in the numerical implementation of the
SCFT are not well established and the free energy convergence
behavior is not fully understood, but there exist a few previous
reports which analyze the mass error and free energy for the
specific numerical methods they adopted [8,15,19,22].

In this paper we develop discretization methods of the
modified diffusion equation using the FVM and we will pursue
the mechanism of material conservation in the SCFT by an
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algebraic analysis. Later, our numerical scheme will be used to
solve a few interesting problems known to the polymer theory
community. This paper is organized as follows. A standard
SCFT is introduced in Sec. II and the formulation of our FVM
follows in Sec. III. In Sec. IV we derive algebraic conditions
for the material conservation of the numerical SCFT and a
few popular numerical methods are tested using them. Our
SCFT adopting the FVM is used to solve two problems with
irregular geometries in Sec. V. We provide a brief discussion
and summary in Sec. VI.

II. SELF-CONSISTENT-FIELD THEORY

In this section we make a brief introduction of the standard
SCFT of infinitely flexible Gaussian chains. In this model
the path of a chain labeled by i is represented by a curve
ri(s), where s ∈ [0,1] is a continuous parameter following
the backbone of the chain. For the given distribution of
chains, the spatial segment density is obtained by φ̂(r) =
(N/ρ0)

∑
i

∫ 1
0 ds δ(r − ri(s)), where N is the polymerization

index and ρ−1
0 is the segment volume.

The SCFT is a mean field theory in which the original many-
body problem is reduced to a one-body problem in a mean
field; all the interactions between segments are represented
by a mean potential field w(r), which is determined by the
ensemble average of the segment concentration φ(r) ≡ 〈φ̂(r)〉.
As a prototypical case, the algebraic description of the SCFT
for a system with identical np homopolymers is described
below without a formal derivation.

The partial partition function for the first sN segments of a
chain satisfies the modified diffusion equation

∂

∂s
q(r,s) =

[
a2N

6
∇2 − w(r)

]
q(r,s), (1)

with the initial condition q(r,0) = 1. The complementary
partial partition function for the last (1 − s)N segments is
obtained by

− ∂

∂s
q†(r,s) =

[
a2N

6
∇2 − w(r)

]
q†(r,s). (2)

Note that the sign of the left-hand side is reversed because
the function is evaluated from the s = 1 end with an initial
condition q†(r,1) = 1.

The ensemble-average density of sN th segment at position
r, φ(r,s) must be proportional to the product of the two partial
partition functions and the total density at position r is the sum
of contributions from all segments. Thus,

φ(r,s) = Vtot

Q
q(r,s)q†(r,s), (3)

φ(r) =
∫ 1

0
ds φ(r,s), (4)

where Vtot = Nnp/ρ0 is the total volume occupied by the
polymer chains and the total partition function Q is defined as

Q[w] =
∫

dr q(r,s)q†(r,s). (5)

Note that even though Q is in principle independent of
the choice of s for this integration, there exists a subtle

issue regarding its dependence on s in its actual numerical
calculation as we discuss later. The free energy of the
homopolymer system for the given mean potential field
w(r) is

F

npkBT
= − ln

Q[w]

Vtot
− 1

Vtot

∫
dr w(r)φ(r). (6)

The self-consistency equations that the functions must
satisfy depend on the physical situation one considers. For
the case of the incompressible homopolymer melt, w(r) must
be iteratively updated until the output segment concentration
satisfies the condition φ(r) = 1.

III. FINITE-VOLUME METHOD

The algebraic equations in the preceding section provide
the exact mean field solution. However, only numerical
solutions are available for most practical polymer problems
and various errors are associated with the choice of the
numerical scheme. One simple and typical choice is the FDM
in which the space is discretized into grid points and all the
differentiations are approximated by finite differences at the
grid points. Unfortunately, the FDM often suffers in the precise
conservation of the diffusing material when solving a diffusion
problem in curved coordinates such as the cylindrical and
spherical coordinate systems.

In solving the diffusion-type differential equations, one
attractive alternative of the FDM is the FVM. Even though its
final numerical formulation is very similar to that of the FDM,
the FVM is conceptually different from the FDM in that it
is based on the idea of flux conservation as explained below.
For the rest of this section, we will explain our discretization
scheme of the modified diffusion equation in the orthogonal
coordinate systems using the FVM. Note that other types of
FVMs are in principle available, but we claim that the method
we introduce here is the best choice for the SCFT calculation
in terms of simplicity and accuracy, as we explain in later
sections.

The FVM is a method developed to solve partial differential
equations while conserving important physical quantities
using the idea of flux conservation. Integrating the differential
equation in a small finite volume, the so-called grid cell, the
integral can be converted to the difference of two functions
by fundamental theorem of calculus in one dimension and the
difference of two surface integrals using divergence theorem in
higher dimensions. The resulting equation can be interpreted
by using the concept of flux. Even though one makes an
approximation for the function value on the cell surface, the
FVM is always built to guarantee that the flux loss of one cell
is equal to the gain in adjacent cells [23,24]. When solving
a normal diffusion equation, this formulation guarantees the
conservation of material, which is an important challenge in
its numerical implementation.

For the description of our numerical scheme, we introduce
a generic orthogonal coordinate system (x1,x2,x3), with
unit vectors ê1, ê2, and ê3. Its scale factors are given as
(h1,h2,h3). The vector r = (x1,x2,x3) represents a position
in this coordinate system and we will often use an integer- or
half-integer-valued vector i = (i,j,k) to specify a discrete grid
point; this position is often referred to as ri. The number of
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grid points in each direction is I , J , and K , so the possible
ranges of i, j , and k are [ 1

2 ,I + 1
2 ], [ 1

2 ,J + 1
2 ], and [ 1

2 ,K + 1
2 ],

respectively, considering that the surface is 1
2 grid away from

the center of the cell. In order to describe an arbitrary direction,
the index d is often used and sometimes the index is raised.
For example, êd can represent any of êr , êθ , and êϕ for the
spherical coordinate system. Also, i ± êd are used to represent
an increment or decrement of the integer vector i in the êd

direction by one step. For example, i ± ê1 imply new integer
valued vectors (i ± 1,j,k) and i ± ê2 imply (i,j ± 1,k).

By defining Ci as the grid cell determined by the inter-
val x1 ∈ [x1,i−1/2,x1,i+1/2], x2 ∈ [x2,j−1/2,x2,j+1/2], and x3 ∈
[x3,k−1/2,x3,k+1/2], its volume is given as

�Vi ≡
∫

Ci

dV =
∫ x3,k+1/2

x3,k−1/2

∫ x2,j+1/2

x2,j−1/2

∫ x1,i+1/2

x1,i−1/2

h1h2h3dx1dx2dx3,

(7)

where xd,i represents the xd position specified by the integer or
half-integer i. For the case of equal grid spacing �xd , one can
consider xd,i = xd,1 + (i − 1)�xd . With this volume segment
definition, an integral is naturally converted to a discrete sum
weighted by the cell volume∫

f (r)dr →
∑

i

fi�Vi, (8)

which will be our standard method of integration for the rest
of this paper.

In the current finite-volume method, we sequentially eval-
uate the modified diffusion equation (1) after dividing the
s direction into equal intervals �s. Starting from the s = 0
end, after n evaluations, q(r,sn) is obtained with sn = n�s.
The purpose of the next FVM evaluation is to find q(r,sn+1)
and it starts from integrating the original modified diffusion
equation (1) by

∫
Ci

dV at the given s = sn value. The next step
is to convert the volume integral of the Laplacian term to a
surface integral using the divergence theorem. The result of
the surface integral can be expressed as∫

Ai

∇q(r,sn) · dA =
∑

d=1,2,3

[
Fd

i+(1/2)êd
− Fd

i−(1/2)êd

]
, (9)

where Ai is the ith cell surface and Fd
i±(1/2)êd

are the fluxes of
∇q(r,sn) crossing the two cell surfaces perpendicular to the
unit vector êd . The gradient of q(r,sn),

∇q(r,sn) = 1

h1

∂q(r,sn)

∂x1
ê1 + 1

h2

∂q(r,sn)

∂x2
ê2 + 1

h3

∂q(r,sn)

∂x3
ê3,

(10)

can be approximated by using the difference of qn
i ≡ 〈q(r,sn)〉i

between adjacent cells, where 〈 〉i implies the volume average
within the cell Ci. Applying this, the fluxes are now approxi-
mated as

Fd
i±(1/2)êd

∼= ±�Ad
i±(1/2)êd

qn
i±êd

− qn
i

hd±
i �xd

, (11)

where �Ad
i±(1/2)êd

are the areas of the two cell surfaces
perpendicular to the vector êd and hd±

i are the values of the
scale factor hd at the midpoint of each surface. Using this

expression, the discrete Laplacian operator in each direction
becomes

δ2
dq

n
i = Bd+

i

(
qn

i+êd
− qn

i

) − Bd−
i

(
qn

i − qn
i−êd

)
, (12a)

Bd±
i ≡ �Ad

i±(1/2)êd

hd±
i �xd�Vi

. (12b)

The top surface of the cell Ci defined by �Ad
i+(1/2)êd

is
equal to the bottom surface of the cell Ci+êd

expressed as
�Ad

(i+êd )−(1/2)êd
and the midpoint of the top surface of the cell

Ci is also equal to that of the bottom surface of the cell Ci+êd
.

This implies that hd+
i = hd−

i+êd
and the following equation can

be confirmed:

Bd+
i �Vi = Bd−

i+êd
�Vi+êd

. (13)

This is one of the most important characteristics of the FVM
we implement here and it provides an essential tool in the
material conservation analysis in later sections. Note that this
equation is only occasionally satisfied for the FDM. When
the standard three-point FDM is used, Eq. (13) is satisfied
in the Cartesian coordinate system, but it is not valid in the
cylindrical and spherical coordinate systems.

As mentioned earlier in this section, this generic FVM can
in principle be applied to any orthogonal coordinate systems.
From now on, we take the spherical coordinate system as
an example, because it is the least nontrivial case among the
three popular coordinate systems. Note that we show a two-
dimensional version of the FVM for simplicity and its three-
dimensional generalization is a trivial task because the grids
are equally spaced in the ϕ direction and the cell volumes
do not vary in that direction. For those who are interested
in the detailed derivation, see Appendix A, which presents
the three-dimensional FVM formulation for the cylindrical
coordinate system.

In the spherical coordinate system, the variables are
(x1,x2,x3) = (r,θ,ϕ) and the scale factors are (h1,h2,h3) =
(1,r,r sin θ ). Two-dimensional spherical grids and cells
are illustrated in Fig. 1. The areas of the two surfaces
of the cell Ci,j perpendicular to êr are �Ar

i±1/2,j =∫ 2π

0

∫ θj+1/2

θj−1/2
r2
i±1/2 sin θ dθ dϕ. The areas of the cell surfaces

perpendicular to êθ are the differences of lateral surface
areas of two cones �Aθ

i,j±1/2 = ∫ 2π

0

∫ ri+1/2

ri−1/2
r sin θj±1/2dr dϕ

and the volume of the cell Ci,j is given as �Vi,j =∫ 2π

0

∫ θj+1/2

θj−1/2

∫ ri+1/2

ri−1/2
r2 sin θ dr dθ dϕ. All these calculations can

be done analytically, and by combining these results, one can
obtain the geometric factors for the flux calculation Bd±

i ,
as defined in Eq. (12b). Using the scale factors for the
two-dimensional spherical coordinate system, hr±

i,j = 1 and

hθ±
i,j = ri , the results are

Br±
i,j = �Ar

i±1/2,j

�r�Vi,j

= r2
i±1/2

�r
(
r3
i+1/2 − r3

i−1/2

) , (14a)

Bθ±
i,j = �Aθ

i,j±1/2

ri�θ�Vi,j

= sin θj±1/2

�θ
(
r2
i + �r2/12

)
(cos θj−1/2 − cos θj+1/2)

. (14b)
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FIG. 1. Pictorial representation of the discretized spherical co-
ordinate system in two dimensions for the case of I = 3, J = 6,
r1 = 5�r/2, θ1 = �θ/2, and �θ = π/6. The system boundary is
at r1/2 = 2�r and r3+1/2 = 5�r in the r direction and at θ1/2 = 0
and θ6+1/2 = π in the θ direction. Each green dot represents a grid
point i = (i,j ) and the neighboring region surrounded by dotted lines
indicates the grid cell Ci. The cell C2,2 is highlighted with red lines
as an example.

Using this FVM formulation, we are now ready to convert
the modified diffusion equation (1) to successive discretized
operations. Applying the standard Crank-Nicolson method,
the evolution equation of qn

i is obtained as(
1 − a2N

�s

12
δ2 + �s

2
wi

)
qn+1

i

∼=
(

1 + a2N
�s

12
δ2 − �s

2
wi

)
qn

i , (15)

where the field term is defined by wi = 〈w(r)〉i. The discretized
conjugate partial partition function q

†n
i , which is defined

as 〈q†(r,sN−n)〉i, follows the same evolution equation. Note
that the FDM can be expressed in exactly the same way,
except that the geometric factor (12b) and the discretized
Laplacian operator (12a) differ slightly from the FVM version.
The truncation error of the above FVM is calculated to
be O(�s3) + ∑

d O(�s�x2
d ) for both the cylindrical and

spherical coordinate systems.

IV. MATERIAL CONSERVATION

If we assume that all the q’s are obtained by successively
evaluating Eq. (15) using either the FDM or FVM, one can

check the material conservation of each numerical scheme in
the following way. Summing both sides of Eq. (15) over all
cells,

∑
i

�Vi

[(
1 + �s

2
wi

)
qn+1

i − a2N
�s

12

∑
d

Bd+
i

(
qn+1

i+êd
− qn+1

i

)

−Bd−
i

(
qn+1

i − qn+1
i−êd

)]

=
∑

i

�Vi

[(
1 − �s

2
wi

)
qn

i + a2N
�s

12

∑
d

Bd+
i

(
qn

i+êd
− qn

i

)

−Bd−
i

(
qn

i − qn
i−êd

)]
. (16)

When the field term wi vanishes and the FVM is adopted, using
Eq. (13), it is straightforward to show that the discrete sum of
the partial partition function weighted by the cell volume is
invariant,

∑
i

qn
i �Vi =

∑
i

qn+1
i �Vi. (17)

For typical diffusion problems, the function at the position
of our qn

i is the material density at the nth time step. The
above analysis shows that the FVM conserves the amount of
diffusing material for those problems provided there exists
no field term. In the FVM, even though the flux at the cell
surface is approximated, it is guaranteed that one cell’s flux loss
becomes another cell’s flux gain and this is the fundamental
reason why it is generally regarded that the numerical schemes
using the FVM conserve material.

For the case of the SCFT adopting the modified diffusion
equation, however, Eq. (17) is not guaranteed because of
the field term. It is obvious that the introduction of the
field term creates or annihilates materials for the normal
diffusion equation and it is meaningless to discuss the material
conservation. However, this does not necessarily mean that
material conservation must be violated in the numerical
solution of the SCFT. In the SCFT, the discrete volume integral
of the segment concentration, rather than that of the partial
partition function, is required to be invariant for the material
conservation. This material conservation property has never
been investigated in a systematic way. In this section, the
general condition for the material conservation will be derived
and its validity will be tested for a few widely used numerical
methods of the SCFT.

For an efficient analysis of the material conservation, we
express the state of the discretized partial partition function
as a column vector and the evolution of the partial partition
function is expressed as a matrix operator acting on the
column vector. For further simplification, this matrix algebra
will be expressed in the standard bra-ket notation commonly
used in quantum mechanics. Its validity and efficiency will
be apparent as discussion continues. Note that we demon-
strate the two-dimensional version of the analysis, but its
three-dimensional generalization is straightforward and the
conclusions in the following sections are essentially identical
in higher dimensions.
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A. Conditions for material conservation

In this section we will derive the basic condition for a given
numerical scheme to conserve material in the SCFT using the
bra-ket algebra. In the matrix and bra-ket notation, the two
partial partition functions are expressed as

|qn〉 = (
qn

1,1 qn
1,2 · · · qn

1,J qn
2,1 · · · qn

I,J

)T
, (18a)

|pn〉 =
(
q
†n
1,1 q

†n
1,2 · · · q

†n
1,J q

†n
2,1 · · · q

†n
I,J

)T

. (18b)

Note that the original two-dimensional discrete functions
are now packed into one-dimensional column vectors and we
use pn instead of q†n for the purpose of avoiding confusion in
the bra-ket notation. The evolution operator acting on |qn〉 to
produce |qn+1〉 can be defined in the form

|qn+1〉 = U |qn〉, |pn+1〉 = U |pn〉, (19)

where all the matrix elements of |qn〉 and |pn〉 are real.
For the purpose of distinction, matrices or operators will be
represented by calligraphic characters from now on. The actual
shape of U depends on the numerical scheme we choose. Also,
for the case of AB diblock copolymers, the shape ofU switches
at the AB block junction point, but the material conservation
analysis is the same as the homopolymer case we describe
below.

In this matrix representation, the cell volume �Vij is
expressed as the diagonal matrix

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�V1,1

�V1,2 0
. . .

�Vi,j

. . .
0 �VI,J−1

�VI,J

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(20)

Writing the segment concentration equation (3) in the discrete
version, the smth segment concentration can be calculated
after m evolutions of q0

i and N − m evolutions of q
†0
i . The

concentration at cell Ci can be written as

φi,m = Vtot

NQn

qm
i q†(N−m)

i . (21)

Taking the advantage of the bra-ket notation, Eq. (5) is now
expressed in the simple algebraic form

Qn =
∑

i

qn
i q†(N−n)

i �V i = 〈qn|V|pN−n〉

= 〈q0|(U†)
nVUN−n|p0〉. (22)

In the above equations, we keep the subscript n for Q, which
is the total partition function evaluated at s = sn. In the
formal introduction of the SCFT, we emphasized that Q must
be independent of s. However, because we are making an
approximated numerical calculation, it is not guaranteed that
Qn is independent of n.

As a measure to track the material conservation, let us define
the dimensionless global volume error as

εV,m ≡ N

Vtot

(∑
i

φi,m+1�Vi −
∑

i

φi,m�Vi

)

= 1

Qn

〈qm|(U†V − VU)|pN−m−1〉, (23)

where the latter equation can be obtained using Eq. (21). We
seek the condition that this mass error always becomes zero,
regardless of the choice of the following parameters: (i) real
field w(r), (ii) contour step size �s, (iii) contour step number
N , and (iv) initial conditions of partition functions q(r,0) and
q†(r,1). The sufficient and necessary condition for the material
conservation to be valid at all situations is that the evolution
matrix satisfies the equation

(VU)† = VU, (24)

i.e., VU must be a Hermitian operator or matrix, and this is
all we need to test each numerical method. In addition, this
condition also guarantees that Qn in Eq. (22) is independent
of n. For the rest of this section we will investigate the validity
of Eq. (24) for various numerical methods commonly used in
the evaluation of the SCFT equations.

B. Pseudospectral method

Nowadays, in the polymer theory community, the pseu-
dospectral method is commonly used for the solution of the
SCFT in Cartesian coordinates [4,5,10,25]. Even though our
major focus has been on the real-space method using the FDM
or FVM, it is perfectly fine to apply Eq. (24) to check the
material conservation of the pseudospectral method. Let us
begin our discussion with the standard pseudospectral method
in the two-dimensional Cartesian coordinate system (x,y) with
periodic boundary conditions in both directions. For the start
of the pseudospectral method, Strang splitting is applied to the
modified diffusion equation

q(r,s + �s) ∼= exp

(
−�sw(r)

2

)
exp

(
a2N�s∇2

6

)

× exp

(
−�sw(r)

2

)
q(r,s). (25)

The first step is to calculate exp[−�sw(r)/2]q(r,s) in the
real space. Using the bra-ket notation in the discrete world, it
can be written as X |qn〉, where X ≡ exp(−W) and W is the
following diagonal matrix representing the effect of field:

W = �s

2

⎛
⎜⎜⎜⎝

w1,1

w1,2 0
· · ·

0 wI,J−1

wI,J

⎞
⎟⎟⎟⎠. (26)

The next step is to perform the two-dimensional discrete
Fourier transform (DFT). One possible choice of the DFT
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operator F is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1 1 1 · · ·
1 λ λ2 · · · λJ−1 1 λ · · ·
1 λ2 λ4 · · · λ2(J−1) 1 λ2 · · ·

. . .
. . .

1 λJ−1 λ2(J−1) · · · λ(J−1)(J−1) 1 λJ−1 · · ·
1 1 1 · · · 1 ω ω · · ·
1 λ λ2 · · · λJ−1 ω ωλ · · ·

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(27)

divided by
√

IJ , where ω = exp(2πi/I ) and λ = exp(2πi/J )
are the principal I th and J th roots of unity, respectively. With
this choice of DFT, the inverse DFT operator is simply the
inverse of the F matrix, F−1, and it is easy to confirm F−1 =
F†. The next task is to apply the exp(a2N�s∇2/6) operator in
the Fourier space, which is a multiplication of a real diagonal
matrix with the shape

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

c1,1

c1,2 0
c1,3

. . .
0 cI,J−1

cI,J

⎞
⎟⎟⎟⎟⎟⎟⎠

. (28)

The last step is to perform an inverse DFT and to multiply
X , and the final evolution matrix becomes U = XF−1CFX .
The boundaries are periodic and thus it is natural to take
all the cell volumes to be uniform V = �x�yI, where I
is an identity matrix. This means that the U operator or the
matrix XF−1CFX only needs to be Hermitian for the mate-
rial conservation. Since (XF−1CFX )† = XF†C(F−1)

†X =
XF−1CFX , the matrix VU is Hermitian and the material
conservation is confirmed. It is possible to apply this proof to
the higher-order pseudospectral method proposed by Ranjan
et al. [7,8] and the three-dimensional generalization of this
proof is also straightforward.

For other boundary conditions, discrete sine and cosine
transforms are often used in the pseudospectral method and
half-size cells may be used at the boundaries. Even though the
above proof is not directly applicable to those cases, such a
problem is mathematically equivalent to a periodic boundary
problem with twice the size of the original system and the
above proof guarantees the material conservation of those
systems.

C. Crank-Nicolson method

In this section we check the material conservation for the
Crank-Nicolson method. Note that there are a few choices for
the implementation of the Crank-Nicolson method. Both the
FDM and FVM can be combined with it and field operator
splitting consistent with Eq. (25) may or may not be used. All
these choices will be discussed here.

As explained at the end of Sec. III, when the Crank-
Nicolson method without operator splitting is adopted, the
partial partition function evolves according to the algebraic

equation (
1 − a2N

�s

12
δ2 + �s

2
wi

)
qn+1

i

=
(

1 + a2N
�s

12
δ2 − �s

2
wi

)
qn

i . (29)

For the two-dimensional case, the discrete Laplacian operator
has two directional components δ2 ≡ δ2

1 + δ2
2 and each of them

can be expressed by δ2
dq

n
i = Bd+

i (qn
i+êd

− qn
i ) − Bd−

i (qn
i −

qn
i−êd

) using the three-point FDM or FVM. Writing Eq. (29) in
the bra-ket form,

(I − O + W)|qn+1〉 = (I + O − W)|qn〉, (30)

where the rescaled discrete Laplacian operator O has a
nearly banded shape when written in a matrix form. All the
nonzero components of O are either Od±

i ≡ aN2�sBd±
i /12

or their linear combinations. One example of O is shown
in Fig. 2. The following discussion is based on the matrix
shape of O for the periodic boundary conditions. It is easy to
confirm that the conclusion is the same for the Dirichlet and
Neumann boundary conditions, because the resultantO matrix
essentially has the same structure.

Using operator algebra, let us now derive conditions that the
components ofO must satisfy for the material conservation. To
begin with, we assume thatI − O + W is invertible, otherwise
|qn+1〉 cannot be determined by Eq. (30). By multiplying (I −
O + W)−1 on both sides of Eq. (30), one gets

|qn+1〉 = (I − O + W)−1(I + O − W)|qn〉 ≡ U |qn〉. (31)

As explained earlier, VU = V(I − O + W)−1(I + O − W)
must be Hermitian for the material conservation. This expres-
sion is simplified as

V(I − O + W)−1(I + O − W)

= V(I − O + W)−1[2I − (I − O + W)]

= 2V(I − O + W)−1 − V. (32)

Since the multiplication of a constant and the addition of a
real diagonal matrix do not affect the Hermiticity property of
a matrix, we only need to check if the following matrix is
Hermitian:

V(I − O + W)−1. (33)

Using the fact that a matrix and its inverse are both Hermitian
or non-Hermitian at the same time, it is enough to check the
Hermiticity of the expression

(I − O + W)V−1. (34)

Because (I + W)V−1 is diagonal, the Hermiticity relation we
need to test is the equation

OV−1 = V−1O†. (35)

After multiplying V once from the left and once from the right,
the final Hermiticity relation becomes

VO = (VO)†. (36)

One cannot get any further with the operator algebra, but
because we know the generic shape of the O matrix, we
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Or+
1,1 000

0 Or+
1,2 00

· · · 00 Or+
1,3 0

000 Or+
1,4

Or−
2,1 0 0 0 −Or−

2,1 − Or+
2,1 − Oθ−

2,1 − Oθ+
2,1 Oθ+

2,1 0 Oθ−
2,1 · · ·

0 Or−
2,2 0 0 Oθ−

2,2 −Or−
2,2 − Or+

2,2 − Oθ−
2,2 − Oθ+

2,2 Oθ+
2,2 0

0 0 Or−
2,3 0 0 Oθ−

2,3 −Or−
2,3 − Or+

2,3 − Oθ−
2,3 − Oθ+

2,3 Oθ+
2,3

0 0 0 Or−
2,4 Oθ+

2,4 0 Oθ−
2,4 −Or−

2,4 − Or+
2,4 − Oθ−

2,4 − Oθ+
2,4

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

FIG. 2. The O matrix for a 12-point (3 × 4) discretized domain in the two-dimensional spherical coordinate system, with i ∈ [1,3] and
j ∈ [1,4]. Only part of the 12 × 12 matrix is shown. If Neumann boundary conditions are chosen in the r direction, Or−

1,j and Or+
3,j become

zeros.

can directly compare the shape of (VO)† and VO to find the
equivalent expression

Od+
i �Vi = Od−

i+êd
�Vi+êd

, (37)

which is essentially the same as Eq. (13) considering Od±
i =

aN2�sBd±
i /12. This completes the proof that the FVM

we formulated in Sec. III always conserves the amount
of material when the two-dimensional (2D) Crank-Nicolson
method without operator splitting is adopted to solve the SCFT
equations.

Let us now consider the following shape of the evolution
equation, which we call the 2D Crank-Nicolson method with
operator splitting [22]:(

1 − a2N
�s

12
δ2

)
exp

(
�s

2
wi

)
qn+1

i

=
(

1 + a2N
�s

12
δ2

)
exp

(
−�s

2
wi

)
qn

i . (38)

In this case, the evolution matrix U is X (I − O)−1(I + O)X ,
assuming that I − O is invertible. The two X matrices in
this equation are removable in checking the Hermiticity of
the matrix (see Appendix B) and thus we only need to check
the Hermiticity of the expression V(I − O)−1(I + O), which
is just the same as the previous case with W = 0. All the
arguments we used from Eqs. (31)–(37) are valid when W =
0 and thus our FVM formulation conserves the amount of
material when the 2D Crank-Nicolson method with operator
splitting is adopted to solve the SCFT equations.

It is the proper time to discuss the material conservation
of the 2D Crank-Nicolson method with the combination
of the FDM. In general, the geometric factors Bd±

i of the
FDM are different from those of the FVM. Taking the
three-point FDM in the spherical coordinate system as an
example, the discrete Laplacian operator in each direction
becomes Br±

i,j = 1
�r2 (1 ± �r

ri
) and Bθ±

i,j = 1
r2
i �θ2 (1 ± �θ

2 tan θj
).

By checking Eq. (37) for a few points, it is easy to confirm that
material conservation is violated when FDM geometric factors
are adopted. The only exception is the Cartesian coordinate
system for which the FDM can be made to be equivalent to

the FVM by simply setting Bx±
i,j = 1/�x2 and B

y±
i,j = 1/�y2.

In conclusion, the FVM with the 2D Crank-Nicolson method
conserves the amount of material in the SCFT regardless of
the use of the operator splitting method. The FDM has this
property only for the Cartesian coordinate system.

D. Alternating direction implicit method

Even though the Crank-Nicolson method is almost always a
preferable choice in terms of accuracy, it inevitably introduces
a complicated implicit matrix equation and further approxi-
mation is often recommended for fast calculation of the partial
partition functions. One attractive strategy is to split the matrix
equation into many matrix equations, each of which treats only
one direction implicitly; this approach is collectively called the
ADI method [10,18,21,22,26–31]. Among them, the following
basic ADI method is most famous, and this will be our starting
point for the discussion of the material conservation of ADI
methods.

The basic ADI method for the two-dimensional system
without operator splitting is given as the two-step algebraic
equations(

1 − a2N
�s

12
δ2

2

)
qn+1/2

i =
(

1 + a2N
�s

12
δ2

1 − �s

2
wi

)
qn

i ,

(39a)(
1 − a2N

�s

12
δ2

1 + �s

2
wi

)
qn+1

i =
(

1 + a2N
�s

12
δ2

2

)
qn+1/2

i .

(39b)

It can be written in the bra-ket form

(I − O2)|qn+1/2〉 = (I + O1 − W)|qn〉, (40a)

(I − O1 + W)|qn+1〉 = (I + O2)|qn+1/2〉, (40b)

where O1 and O2 are x1 and x2 directional operator matrices
(see Figs. 3 and 4), respectively, and they satisfy O1 + O2 =
O. In order to verify the material conservation, it is required
to check if the following matrix is Hermitian:

V(I −O1 +W)−1(I +O2)(I −O2)−1(I +O1 − W). (41)
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Or−
1,1 − Or+

1,1 0 0 0 Or+
1,1 0 0 0

0 −Or−
1,2 − Or+

1,2 0 0 0 Or+
1,2 0 0

0 0 −Or−
1,3 − Or+

1,3 0 0 0 Or+
1,3 0

0 0 0 −Or−
1,4 − Or+

1,4 0 0 0 0

Or−
2,1 0 0 0 −Or−

2,1 − Or+
2,1 0 0 0 · · ·

0 Or−
2,2 0 0 0 −Or−

2,2 − Or+
2,2 0 0

0 0 Or−
2,3 0 0 0 −Or−

2,3 − Or+
2,3 0

0 0 0 Or−
2,4 0 0 0 −Or−

2,4 − Or+
2,4

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

FIG. 3. The Or matrix for a 12-point (3 × 4) discretized domain in the two-dimensional spherical coordinate system, with i ∈ [1,3] and
j ∈ [1,4]. Depending on the boundary conditions, a few of the elements shown may become zeros.

Direct calculation of the Od matrices for a few grids shows
that this expression cannot be Hermitian when the field
w is arbitrarily given and thus this ADI method cannot
conserve the amount of material regardless of the use of
the FVM.

The story is much more interesting when the simple
ADI method is modified by adopting the operator splitting
technique. Its matrix equation now changes to

(I − O2)|qn+1/2〉 = (I + O1)X |qn〉, (42a)

(I − O1)X−1|qn+1〉 = (I + O2)|qn+1/2〉. (42b)

From these equations, one needs to check if the following
matrix is Hermitian:

VX (I − O1)−1(I + O2)(I − O2)−1(I + O1)X . (43)

After some algebra (see Appendix C), the sufficient and
necessary condition for the material conservation of the

operator splitting ADI turns out to be

O2O2
1 = O2

1O2. (44)

The operator algebra stops here and we need to directly
compare the components of O2O2

1 and O2
1O2. Even though

the full conditions for Eq. (44) are messy, one of them
turns out to be the equation O2+

i,j + O2−
i,j = O2+

i+1,j + O2−
i+1,j .

In the previously formulated FVM in the spherical coordinate
system, Bθ+

i,j + Bθ−
i,j ∝ 1/(r2

i + �r2/12) varies with respect to
i and the above equation cannot be satisfied; thus, even when
the FVM with operator splitting is adopted, the ADI method
fails to conserve material in the spherical coordinate system
and the conclusion is the same for the cylindrical coordinate
system. In the Cartesian coordinate system, however, our FVM
satisfies Eq. (44), because the geometric factors for the flux
calculation Bd±

i are independent of the position and the Od ’s
commute. Note that for the Cartesian coordinate system, the
FDM can be made to be equal to our FVM and such an

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Oθ−
1,1 − Oθ+

1,1 Oθ+
1,1 0 Oθ−

1,1 0 0 0 0

Oθ−
1,2 −Oθ−

1,2 − Oθ+
1,2 Oθ+

1,2 0 0 0 0 0

0 Oθ−
1,3 −Oθ−

1,3 − Oθ+
1,3 Oθ+

1,3 0 0 0 0

Oθ+
1,4 0 Oθ−

1,4 −Oθ−
1,4 − Oθ+

1,4 0 0 0 0

0 0 0 0 −Oθ−
2,1 − Oθ+

2,1 Oθ+
2,1 0 Oθ−

2,1 · · ·

0 0 0 0 Oθ−
2,2 −Oθ−

2,2 − Oθ+
2,2 Oθ+

2,2 0

0 0 0 0 0 Oθ−
2,3 −Oθ−

2,3 − Oθ+
2,3 Oθ+

2,3

0 0 0 0 Oθ+
2,4 0 Oθ−

2,4 −Oθ−
2,4 − Oθ+

2,4

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

FIG. 4. The Oθ matrix for a 12-point (3 × 4) discretized domain in the two-dimensional spherical coordinate system, with i ∈ [1,3] and
j ∈ [1,4]. Depending on the boundary conditions, a few of the elements shown may become zeros.
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FDM will guarantee material conservation when the operator
splitting ADI method is adopted [22].

As mentioned earlier in this section, there are other known
ADI methods [26,27]. In principle, each method must be
independently tested for the material conservation and we
performed a few such tests. Interestingly, we always obtain
the same condition for the material conservation, Eq. (44),
and it is okay to consider that the above conclusion holds
true for most known ADI methods. One such analysis for a
numerical scheme known as the Douglas-Gunn ADI method
[10,22,28–30] is shown in Appendix D.

E. Material conservation of the SCFT with the
higher-order FVM

In this section we describe the material conservation
property of the SCFT adopting the higher-order finite-volume
method. For the convenience of discussion, we restrict our
analysis to the one-dimensional case. The general form of
higher-order one-dimensional Laplacian can be written by the
linear combination

δ2f n
i =

∑
k

Bi,kf
n
k . (45)

One natural constraint of Bi,k is
∑
k

Bi,k = 0, because δ2f n
i

must vanish for constant f n
i . When the Crank-Nicolson

method is adopted, the condition for the material conserva-
tion of the SCFT, (VU)† = VU , still produces (VO)† = VO
regardless of the use of higher-order schemes. With the current
notation, this condition can be written as

Bi,k�Vi − Bk,i�Vk = 0. (46)

The situation is somewhat different when higher-order
schemes are adopted for the normal diffusion equation. For
its analysis, let us temporarily adopt the following vector
representation in which the cell volume �Vi and the function
f n

i are respectively written as

V = [�V1 �V2 �V3 �V4 · · · �VI ]T ,

fn = [f n
1 f n

2 f n
3 f n

4 · · · f n
I ]T . (47)

For the case of the normal diffusion equation, f n
i is the material

density and the mass conservation condition at each time step
is given as

VT fn = VT fn+1 = VTUfn. (48)

In order to claim that a given numerical scheme conserves
material, the above equation must be true regardless of the
value of fn, which means that the row vector VT must be a
left eigenvector of the evolution matrix U with eigenvalue
1, that is, VT U = VT . When U of the Crank-Nicolson
method is used, it takes some algebra to show that this
condition is equivalent to the equation

∑
k Bk,i�Vk = 0. By

using Bi,i = −∑
k,k �=i Bi,k , the above equation changes into∑

k,k �=i[Bi,k�Vi − Bk,i�Vk] = 0. Adding Bi,i�Vi − Bi,i�Vi

to both sides, it finally becomes∑
k

[Bi,k�Vi − Bk,i�Vk] = 0. (49)

This is the necessary and sufficient condition for the material
conservation of the normal diffusion equation. Comparing this
with Eq. (46), we conclude that a method which conserves
material of the SCFT also conserves material of the normal
diffusion equation, but the reverse is not always true.

The finite-volume method is formulated to conserve the
amount of material of the normal diffusion problem, which
means Eq. (49) is always satisfied regardless of the use of
the higher-order schemes. In Sec. IV C we confirmed that
the three-point FVM conserves material of the SCFT, but it
remains to check the material conservation of the SCFT with
higher-order schemes. In a general FVM, the Laplacian at
point i is calculated from the flux differences as

δ2f n
i = Fi+1/2 − Fi−1/2

�Vi

, Fi+1/2 =
∑

k

Ci+1/2,kf
n
k , (50)

where Ci+1/2,k are numerical coefficients for the given FVM
and they must satisfy

∑
k Ci+1/2,k = 0 to make Fi+1/2 = 0 for

constant f n
i . Comparing them with Eq. (45), one can confirm

that Bi,k = (Ci+1/2,k − Ci−1/2,k)/�Vi . Using Eq. (46),

Ci+1/2,k − Ci−1/2,k = Ck+1/2,i − Ck−1/2,i (51)

is the condition for the material conservation of the SCFT. This
equation must be true for every i ∈ [1,I ] and k ∈ [1,I ].

For the three-point FVM, most of the Ci±1/2,k are zeros
and we only need to check the two cases k = i and k = i + 1.
The case k = i is trivially true, and when k = i + 1, Eq. (51)
becomes Ci+1/2,i+1 = −Ci+1/2,i . For the three-point FVM,∑

k Ci+1/2,k = 0 is equivalent to this equation and the material
conservation of the SCFT is again confirmed. The situation
is different for higher-order FVM. Various formulations of
higher-order FVM are available [24,32–34], but they do not
satisfy Eq. (51) in general. This is one reason we recommend
our three-point FVM for those who want to develop numerical
SCFT algorithms adopting the FVM.

V. IRREGULAR GEOMETRY AND NUMERICAL RESULTS

In this section we upgrade our SCFT method to model
two interesting nanostructured polymer systems in which
polymers do not assemble into a regular geometry such as
a rectangular parallelepiped, a cylinder, or a sphere. Since the
polymer-filled region and the orthogonal coordinates do not
perfectly match, the discretized Laplacian at the boundary cell,
which has a fractional cell volume and surfaces, is calculated
in a special way. Figure 5 exhibits a pictorial demonstration
of the polymer-filled, partially filled, and empty cells in
the orthogonal coordinate systems. The computation of the
geometric factors Bd±

i must be conducted carefully depending
on the cell and boundary shapes.

The geometric factors for the green dotted polymer-filled
cells can be obtained by the FVM we formulated in Sec. III.
For the actual calculation of Bd±

i in the three-dimensional
cylindrical coordinate system [Fig. 5(b)], see Appendix A.
The geometric factors for the red dotted empty cells are all
zeros. A careful consideration is necessary for the yellow
dotted partially filled cells. For these cells, the geometric
factor at each boundary must be calculated directly from the
definition (12b), using the actual fractional volume and surface
area of the cell. One such example is marked by red lines in
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x

z

(3, j, 2)
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3,j,2− 1
2

ΔAz
3,j,2+ 1

2

Boundary

(1, j, 1) (2, j, 1) (3, j, 1) (4, j, 1) (5, j, 1)

(1, j, 2)

(1, j, 3)

x

y

ρ
ϕ

α

(a)

(b)

FIG. 5. Pictorial representation of orthogonal coordinates for
polymers in irregular geometries. (a) Cartesian coordinate system
with curved boundary. Cell C3,j,2 is highlighted with red lines as
an example. In the y direction, the two-dimensional slice at the j th
cells is shown. (b) Cylindrical coordinate system modeling a thin film
with thickness variation. The slope of the upper surface is α. In the
z direction, the two-dimensional slice is shown. Green dotted cells
have the whole volumes and yellow dotted cells have only fractional
volumes. Red dotted cells are skipped in the calculation because no
flux flows in or out of the cells.

Fig. 5(a). Note that no flux passes through the irregular system
boundary marked by blue lines. After this modification, we
calculate the evolution of the partial partition functions using
the three-dimensional operator splitting Douglas-Gunn ADI
method (see Appendix D).

For the first example, we study the alignment of symmetric
AB diblock copolymer domains in the thickness-modulated
region confined by surfaces curved in one direction. This
subject was inspired by the experimental work of Kim et al.
[35], which reported that the thickness modulation promotes
the alignment of lamellar domains. In order to implement the
numerical SCFT in this geometry, we choose the Cartesian
coordinate system adopting fractional cells at the polymer-air
boundary. The simplified demonstration of this coordinate
system is shown in Fig. 5(a). Since the film has a reflection
symmetry along the y-z plane, we restrict our calculation
to the right half of the film shown in experiments. For the

convenience of cell volume calculation, the curved surface on
a cell is approximated by a planar surface as shown in Fig. 5(a).

In our model, the film consists of np symmetric incompress-
ible AB diblock copolymers with the A fraction f = 0.5. The
Flory-Huggins parameter for the AB interaction is chosen to
be χN = 20 and each polymer is considered as a Gaussian
chain whose natural end-to-end length is aN1/2. We omit the
derivation of equations here and only present the result (see
Ref. [2] for the details). The mean fields acting on A and B
blocks are given as

wA(r) = χNφB(r) + ξ (r), (52a)

wB(r) = χNφA(r) + ξ (r), (52b)

where φA(r) and φB(r) are the ensemble-average segment
concentration of A and B blocks, respectively, and ξ (r) is
the pressure field. The mean field free energy per chain is

F

npkBT
= − ln

(
Q

Vtot

)
+ 1

Vtot

∫
dr[χNφA(r)φB(r)

−wA(r)φA(r) − wB(r)φB(r)], (53)

where Q is the total partition function of the diblock
copolymers and Vtot is the polymer-filled system vol-
ume. At χN = 20, the natural lamellar domain period
is L0 = 1.643aN1/2, and we assign the computation box
size of 20L0 × 20L0 × 4L0, which is represented by a
Cartesian grid of 300 × 300 × 60, and �s = 0.02 is used.
For the modeling of the thickness variation of the film,
the height of the polymer-air surface is given as a
curved function Lz(x,y) = (4L0/aN1/2) exp(−x2/98a2N ) ×
(4L0 − 1.2aN1/2) + 1.2aN1/2. The polymer chains reside
only under the curved surface.

In order to investigate the preferred direction of the lamellar
domain alignment, our SCFT computation is conducted with
the initial condition that the lamellar domains are aligned in the
x, y, or z direction. The results are shown in Fig. 6 and we can
see that each morphology aligned in the x, y, or z direction is at
least metastable. Note that the z-directionally aligned domains
exhibit local kinks and distortions to fit into the curved system
geometry, which was also observed in previous theoretical
works [18,36].

We compare the free energy of each phase for the deter-
mination of the stable morphology. The free energy of the
z-directionally aligned phase is 4.0303kBT per chain, which
is much higher than the other two cases. It can be easily
attributed to the incommensurability of the film thickness and
the presence of the kinks and distortions. The y-directionally
aligned phase has a free energy of 3.9829kBT per chain,
which is slightly below that of the x-directionally aligned
phase, 3.9844kBT . The difference 0.0015kBT is small but
meaningful in our calculation using fine grid and it clearly
suggests that the preferable morphology is the y-directionally
aligned one. This result is consistent with the conclusion of the
experimental work [35] which suggested that this alignment is
due to the tendency to minimize elastic energy in the irregular
geometry of confinement. For the x-directionally aligned
morphology, the lamellae tend to be aligned perpendicular
to both the top and bottom surfaces, but it inevitably bends
the layers, which costs additional free energy. In Ref. [35]
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FIG. 6. Possible AB diblock copolymer morphologies in a
thickness-modulated geometry. The segment concentrations of the
A block (φA) and the B block (φB ) are shown in red and blue,
respectively. The lamellae are aligned in the (a) x, (b) y, and
(c) z directions.

this thickness-modulation promoted alignment mechanism is
called geometrical anchoring.

Our second example is an asymmetric (f = 0.3) incom-
pressible diblock copolymer thin film with linear thickness
variation. A similar problem was the subject of Ref. [37]. We
choose χN = 18, which produces a cylindrical phase with a
natural cylinder-to-cylinder distance L0 = 1.638aN1/2. The
film is now trapezoid shaped, as shown in Fig. 5(b) with
exaggeration. In order to apply a surface interaction on the top
and bottom surfaces [37], we perform the SCFT calculation in
the cylindrical coordinate system in which the cell boundaries
naturally follow the thin film surfaces as shown in the figure.

The film thickness varies from 0.200L0 to 2.000L0 in
a lateral length of 31.443L0 and the width of the film
is 3.500L0. With the choice of �ρ = 0.082aN1/2, �ϕ =
1.429 × 10−3 rad, and �z = 0.082aN1/2, the simulation is
conducted on a grid of 630 × 40 × 70. The preference of the A
block to the air is represented by the parameter ηA [10,18,22],
so the mean field acting on each segment is written in the
cylindrical coordinate system as

wA(r) = χNφB(r) + ξ (r) − 2ηA

ρ
[δ(ϕ) + δ(ϕ − α)]aN1/2,

(54a)

wB(r) = χNφA(r) + ξ (r), (54b)

where α is the slope of the surface as shown in Fig. 5(b)
and we choose α = 5.717 × 10−2 rad (3.276◦) for the current
simulation.

Figure 7 shows the result of a few simulations with different
ηA. In the absence of interfacial energy, cylindrical domains
parallel to the film surface are preferable only when the
thickness of the film is specially chosen to be commensurate
with them. For the current system with thickness variation,
commensurability cannot always be satisfied and short cylin-
ders perpendicular to the surface are usually chosen for the
thin part of the film as shown in Fig. 7(a). As the film
thickness increases, the influence of confinement on the overall
alignment decreases and cylinders with mixed orientations are
observed on the right-hand side of the figure.

The situation changes when the top and bottom surfaces
prefer one block over the other. Figure 7(b) shows the case
that the surfaces prefer the minority block, while Fig. 7(c)
corresponds to the opposite case. For Fig. 7(b) the region
with vertical cylinders is much narrower than the neutral case,
because domain A tends to stick to the top and bottom surfaces.
This tendency creates a single-layer lamellar phase as the
film thickness increases. At the thicker region, surface-parallel
cylinders are observed and they are eventually interconnected
to form a bicontinuous phase.

The region with vertical cylinders is also narrow for
Fig. 7(c) because domain A now tends to stay in the
interior. As the film thickness increases, the vertical cylinders
gradually become spherical and then surface-parallel cylinders
appear. At the thicker region, they are interconnected and
form a perforated lamellar phase and it eventually becomes
multilayered.

One may be tempted to solve these problems by introducing
nonorthogonal skewed coordinates which follow the exact
shape of the polymeric system. However, such attempts
usually require a complicated numerical implementation.
Moreover, it can only be achieved by the sacrifice of speed
because discretization of the Laplacian in the nonorthogonal
coordinates cannot be calculated from the information of
nearest cells, which limits the use of the ADI method.

For Fig. 6 we are using the operator splitting ADI method in
the Cartesian coordinate system, which in principle preserves
material perfectly. However, the presence of fractional cells at
the system boundary makes Bd±

i dependent on the position,
which breaks the material preservation slightly. For the second
example, use of the operator splitting ADI method in the

063312-11



DAESEONG YONG AND JAEUP U. KIM PHYSICAL REVIEW E 96, 063312 (2017)

A fraction

0.5 0.6 0.7 0.8 0.9 1

(a)

(b)

(c)

FIG. 7. Simulation of AB block copolymers in a large thickness-modulated film with surface interaction (a) ηA = 0, (b) ηA = 0.2, and (c)
ηA = −0.3. For clarification, only the regions with φA � 0.5 are shown with colors.

cylindrical coordinate system breaks the material preservation
even before introducing fractional cells. Despite this, with
the application of the FVM formulated in this paper, we can
manage to keep the error level low enough to distinguish
competing morphologies. For the two systems, the relative
errors defined by

∑
i(φ

A
i + φB

i − 1)�Vi/Vtot vary from 10−6

to 10−10, depending on the parameters chosen.
For a systematic test of the free energy convergence, we take

an example of block copolymers with f = 0.25 and χN = 18,
which are known to form a body-centered-cubic (bcc) phase
in bulk with the unit cell size 1.86aN1/2. Our target must be a
known but nontrivial morphology and thus we use a box with
varying thickness, as shown in Fig. 5(b). We choose the system
shape to be close to the original bcc unit cell with a height
variation of 20%. The natural choice is Lz = 1.86aN1/2, the
inner radius ρ1/2 = 9.30aN1/2, and the outer radius ρI+1/2 =
11.16aN1/2. The angle ϕ varies from 0 to 0.182 rad to make
the arc length at the central region 1.86aN1/2.

Because of the fractional cells in the system, implementing
an FDM adopting the ADI method is rather difficult and we
compare the FVM with the operator splitting ADI method
[FVM(OS)] and the FVM without the operator splitting ADI
method [FVM(non-OS)] in this analysis. To reduce the number
of free parameters, we set I = J = K , with I varying from 40
to 80, and 1/�s up to 700 is used. The equilibrium morphology
at I = 80 and 1/�s = 700 is shown in Fig. 8(a) and the
distorted bcc structure is found, as expected. The free energy
convergence is shown in Fig. 8(b). It is observed that at a given
I value, both the FVM(OS) and FVM(non-OS) converge to a
certain free energy as 1/�s increases and the convergence is
better for the FVM(OS). As I increases, the converging free
energy approaches to the actual free energy drawn by a dotted
line. At I = 80 and 1/�s = 200, the free energy convergence
of the FVM(OS) is excellent, but the FVM(non-OS) can
achieve such an accuracy only at 1/�s = 700.

The mass errors are found to behave in a slightly different
way. The error depends weakly on the I value and thus it

is enough to describe its 1/�s dependence here. For the
FVM(non-OS), the mass error was above 10−5 at 1/�s = 100
and it reduces to 10−6 at 1/�s = 700. The FVM(OS) can
achieve 10−6 of error at 1/�s = 100 and it can go below 10−9

at 1/�s = 700. This analysis suggests that our choice of the
FVM(OS) for the problems of Figs. 6 and 7 is appropriate and
the free energy differences reported for Fig. 6 are meaningful.

Our method using the FVM and the ADI method is in
principle as fast as any existing SCFT methods with high
resolution. The only complication comes in the implemen-
tation of the FVM, which is a one-time upgrade from the
FDM after the required equations are derived. Consider a
given mesh with points M = I × J × K . For each contour
step �s, multiplication of X takes time O(M) and it takes
another time O(M) to solve the tridiagonal matrix equations.
Thus, the overall time complexity becomes O(M/�s) [38].
One additional advantage of this method is that parallelization
of the algorithm is easy with high parallel efficiency. For
our first example, with the use of 15 cores of Xeon Gold
6132 CPUs and the OpenMP library, one iteration takes 12 s.
Up to 10 000 iterations are necessary for the stabilization of
the global morphology, but the whole calculation is usually
completed within a day.

VI. DISCUSSION AND CONCLUSION

We have successfully developed an algebraic test verifying
the material conservation of the numerical SCFT. By intro-
ducing the bra-ket notation, the condition for the material
conservation turns out to be equivalent to (VU)† = VU ,
where V and U are the volume and evolution operators,
respectively. Using this method, we have proven that the
material conservation is perfect for the pseudospectral method
in the Cartesian grid, which is the most widely used SCFT
numerical scheme nowadays.

The situation is more complicated when the SCFT real-
space methods using the FDM or FVM are adopted. For
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FIG. 8. Convergence and error analysis for the cylindrical grid
in Fig. 5(b). (a) Distorted bcc morphology observed for block
copolymers with f = 0.25 and χN = 18, inside a box with vary-
ing thickness. (b) The FVM free energies at various I = J = K

values plotted as functions of 1/�s. The FVM(OS) (solid lines)
and FVM(non-OS) (dashed lines) are shown along with our best
estimation for the free energy drawn with a dotted line [FVM(OS),
with I = 250 and 1/�s = 700].

the Crank-Nicolson method, the material conservation re-
quirement is (VO)† = VO, where O is the rescaled discrete
Laplacian operator. In the three-point approximation, this
condition is always satisfied regardless of the coordinate
system when the Laplacian in the modified diffusion equation
is discretized by the FVM. The three-point FDM is equivalent
to the FVM in the Cartesian coordinate system and thus the
material conservation is trivial. However, the FDM and FVM
are not the same for other coordinate systems such as the
cylindrical and spherical coordinate systems and three-point
FDM fails to conserve material for them. The discretization
of the SCFT using the finite-volume approach in the generic
orthogonal coordinate system was explained in Sec. III and its
explicit application in the spherical and cylindrical coordinate
systems was provided in the same section and Appendix A.

The FVM is designed to conserve material for the normal
diffusion problem, but the analysis at the end of Sec. IV showed
that not all FVMs conserve material when they are adopted
by the SCFT. Various formulations of higher-order FVMs

are available, but they are not designed to conserve material
for the SCFT. For example, our tests of higher-order FVMs
using reconstruction schemes such as the weighted essen-
tially nonoscillatory scheme [32,33] and piecewise parabolic
method [24,34] reveal that they are inappropriate for the the
SCFT. Because of this, we recommend the three-point FVM
formulated in this paper for the SCFT applications.

In order to solve parabolic problems efficiently, ADI
methods are often used as an approximation of the Crank-
Nicolson method. By applying the same algebraic test to
various ADI methods, we have shown that the FVM in the
cylindrical and spherical coordinate systems cannot conserve
material. The FVM in the Cartesian coordinate system is
special in that the use of the operator splitting ADI method
conserves material and this is the only known ADI method
that conserves material for the SCFT.

In short, the amount of material is conserved for the SCFT
when the following numerical methods are adopted: (i) the
pseudospectral method in the Cartesian coordinate system,
(ii) the Crank-Nicolson method with the FVM, and (iii) the
operator splitting ADI method with the FVM in the Cartesian
coordinate system. Note that for the two polymeric systems
we investigated in this paper, we adopt operator splitting
ADI methods with the FVM. Even though their material
conservation is not perfect, the error is reduced significantly
by the adoption of the FVM, and the ADI method with the
FVM is a recommendable choice for most practical polymeric
systems as a compromise between speed and accuracy.

By introducing fractional cells in the FVM formulation,
accurate SCFT calculations have been performed for systems
with irregular geometry. Our first system is the symmetric
(f = 0.5) incompressible AB diblock copolymers residing in a
thickness-modulated region confined by surfaces curved in one
direction. By comparing free energies of the candidate phases,
it has been found that the block domains tend to be aligned in
a direction perpendicular to both surfaces. This morphology is
consistent with the experimental report of Kim et al. [35].

Our second example is the asymmetric (f = 0.3) incom-
pressible AB diblock copolymer thin film with linear thickness
variation. We have performed the SCFT calculation by
applying a surface interaction on the top and bottom surfaces.
In the absence of interfacial energy, short upright cylinders are
observed for the thinnest part of the film. As the film thickness
increases, cylinders with mixed orientations are observed.
When both surfaces prefer either the minority or the majority
block, at the thicker part of the film, the minority domains are
interconnected and they eventually form perforated lamellar or
multilayered phase. By analyzing the free energy convergence
and the mass conservation error, we have shown that a very
accurate and fast SCFT calculation is possible with the choice
of the FVM with the operator splitting ADI method.
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FIG. 9. Pictorial representation of the discretized cylindrical
coordinate system, for the case of I = 3, J = 12, ρ1/2 = 2�ρ,
and �ϕ = π/6. In the z direction, the two-dimensional slice at
the kth cells is shown. The system boundary is at ρ 1

2
= 2�ρ and

ρ3+1/2 = 5�ρ in the ρ direction and there is a periodic boundary in
the ϕ direction so that ϕ1/2 = 0 is equivalent to ϕ12+1/2 = 2π . Each
green dot represents a grid point (i,j,k) and the neighboring region
surrounded by dotted lines indicates the grid cell Ci,j,k . The cell C2,2,k

is highlighted with red lines as an example. Each blue dot denotes
the midpoint of a surface where the scale factor for the gradient
calculation must be selected.

APPENDIX A: THREE-DIMENSIONAL FINITE-VOLUME
METHOD IN A CYLINDRICAL COORDINATE SYSTEM

In this appendix, using the generic FVM formulated in
Sec. III, the discrete Laplacian operator for the cylindrical
coordinate system is derived. In this coordinate system, the
variables are (x1,x2,x3) = (ρ,ϕ,z) and the scale factors are
(h1,h2,h3) = (1,ρ,1). The grid points and cell boundaries are
illustrated in Fig. 9. Note that (ρi,ϕj ,zk) represents the point
(ρ 1

2
+ (i − 1

2 )�ρ,(j − 1
2 )�ϕ,(k − 1

2 )�z).
The areas of the two surfaces of cell Ci perpendicular to the

vector êρ are

�A
ρ

i±1/2,j,k =
∫ zk+1/2

zk−1/2

∫ ϕj+1/2

ϕj−1/2

ρi±1/2dϕ dz = ρi±1/2�ϕ�z

(A1)
and the surface areas perpendicular to êϕ and êz are

�A
ϕ

i,j±1/2,k =
∫ zk+1/2

zk−1/2

∫ ρi+1/2

ρi−1/2

dρ dz = �ρ�z, (A2)

�Az
i,j,k±1/2 =

∫ ϕj+1/2

ϕj−1/2

∫ ρi+1/2

ρi−1/2

ρ dρ dϕ

= 1

2

(
ρ2

i+1/2 − ρ2
i−1/2

)
�ϕ = ρi�ρ�ϕ. (A3)

The volume of the cell Ci,j,k is

�Vi,j,k =
∫ zk+1/2

zk−1/2

∫ ϕj+1/2

ϕj−1/2

∫ ρi+1/2

ρi−1/2

ρ dρ dϕ dz

= 1

2

(
ρ2

i+1/2 − ρ2
i−1/2

)
�ϕ�z = ρi�ρ�ϕ�z. (A4)

Using these equations and the scale factors
(hρ±

i,j,k,h
ϕ±
i,j,k,h

z±
i,j,k) = (1,ρi,1), one can obtain Bd±

i , the
geometric factors for the flux calculation,

B
ρ±
i,j,k = �A

ρ

i±1/2,j,k

h
ρ±
i,j,k�ρ�Vi,j,k

= ρi±1/2

ρi�ρ2
, (A5a)

B
ϕ±
i,j,k = �A

ϕ

i,j±1/2,k

h
ϕ±
i,j,k�ϕ�Vi,j,k

= 1

ρ2
i �ϕ2

, (A5b)

Bz±
i,j,k = �Az

i,j,k±1/2

hz±
i,j,k�z�Vi,j,k

= 1

�z2 . (A5c)

Inserting these expressions in Eq. (12a) completes the
calculation of the discrete Laplacian operator.

APPENDIX B: REMOVAL OF X MATRICES IN THE
HERMITICITY PROOF

For the evolution operator of operator splitting schemes, the
diagonal matrixX ≡ exp(−W) is required and its components
are Xii = exp(−Wii). Our task is to check the Hermiticity of
the matrix VXAX , where A is a generic evolution operator
without fields. If VXAX is Hermitian, the following equation
holds true:

VXAX = XA†XV. (B1)

Since V and X are diagonal, they commute and the above
equation is equivalent to

XVAX = XA†VX . (B2)

The matrix X is invertible, because Xii is always nonzero. By
multiplying X−1 once from the left and once from the right,
we obtain

VA = A†V. (B3)

Thus, the matrix VXAX is Hermitian if and only if the matrix
VA is Hermitian. This theorem is useful for the Hermiticity
check of an expression containing two X matrices.

APPENDIX C: ALTERNATING DIRECTION
IMPLICIT METHOD

The ADI method [18,21,31] with operator splitting is(
1 − a2N

�s

12
δ2

2

)
q

n+1/2
i,j

=
(

1 + a2N
�s

12
δ2

1

)
exp

(
−�s

2
wi,j

)
qn

i,j , (C1a)

(
1 − a2N

�s

12
δ2

1

)
exp

(
�s

2
wi,j

)
qn+1

i,j

=
(

1 + a2N
�s

12
δ2

2

)
q

n+1/2
i,j . (C1b)
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Its bra-ket equation becomes

(I − O2)|qn+1/2〉 = (I + O1)X |qn〉,
(I − O1)X−1|qn+1〉 = (I + O2)|qn+1/2〉. (C2)

From these equations, the evolution operator is

U = X (I − O1)−1(I + O2)(I − O2)−1(I + O1)X (C3)

and we need to check if the following matrix is Hermitian:

VX (I − O1)−1(I + O2)(I − O2)−1(I + O1)X . (C4)

Before proceeding, we will construct a few useful equations
which are valid when Od matrix for the FVM is used. In this
case, OdV−1 is Hermitian for each d, because each equation
identifying the Hermiticity reduces to Eq. (37), which we
confirmed for the FVM. Using this property, the following
two equations can be confirmed:

V (I ± Od )V−1 = (I ± Od )†, (C5a)

V (I − Od )−1V−1 = [(I − Od )−1]†, (C5b)

where we assume that I − Od is invertible.
Using the theorem in Appendix B, the two X matrices in

the evolution matrix are removable in checking the Hermiticity
of the matrix. Starting from this modification of Eq. (C4),

V(I − O1)−1(I + O2)(I − O2)−1(I + O1)

= V(I − O1)−1[2I − (I − O2)](I − O2)−1(I + O1)

= V{(I − O1)−1[2(I − O2)−1 − I](I + O1)}
= V[2(I −O1)−1(I −O2)−1(I +O1)

− (I −O1)−1(I +O1)]

= V[2(I − O1)−1(I − O2)−1(I + O1)

− 2(I − O1)−1 + I]. (C6)

Using Eq. (C5b), V(I − O1)−1 is Hermitian and the second
and third terms can be removed in checking the Hermiticity
of the matrix. After dividing by 2, what now remains to
check is

V(I − O1)−1(I − O2)−1(I + O1). (C7)

Using Eqs. (C5), the conjugate transpose of Eq. (C7) turns out
to be equivalent to

(I + O1)†[(I − O2)−1]
†
[(I − O1)−1]

†V

= V(I + O1)(I − O2)−1(I − O1)−1. (C8)

Our task is to compare Eq. (C7) with Eq. (C8). Multiply-
ing (I − O2)(I − O1)V−1 from the left and (I − O1)(I −
O2) from the right of both expressions, we get the
condition

(I − O2)(I − O1)(I + O1) = (I + O1)(I − O1)(I − O2).

(C9)

Expanding this equation, the final sufficient and necessary
condition for the material conservation of the operator splitting
ADI with the FVM is

O2O2
1 = O2

1O2. (C10)

For two arbitrary matrices A and B, if AB = BA is
satisfied, AB2 = B2A is always true. Therefore,

O2O1 = O1O2 (C11)

is a sufficient condition for Eq. (C10). The two matricesO1 and
O2 are sparse and the matrix multiplication can be performed.
The requirements for Eq. (C11) turn out to be

O1+
i,j + O1−

i,j − O1+
i,j+1 − O1−

i,j+1 = 0, (C12a)

O2+
i,j + O2−

i,j − O2+
i+1,j − O2−

i+1,j = 0, (C12b)

O1−
i,j O2−

i−1,j − O1−
i,j−1O

2−
i,j = 0, (C12c)

O1−
i,j O2+

i−1,j − O1−
i,j+1O

2+
i,j = 0, (C12d)

O1+
i,j O2−

i+1,j − O1+
i,j−1O

2−
i,j = 0, (C12e)

O1+
i,j O2+

i+1,j − O1+
i,j+1O

2+
i,j = 0. (C12f)

The full conditions for Eq. (C10) are even more compli-
cated. All we need to mention in this appendix is that one
necessary condition is Eq. (C12b).

APPENDIX D: DOUGLAS-GUNN ADI METHOD

In this appendix we introduce the three-dimensional
Douglas-Gunn ADI method [10,22,28,29] with operator
splitting [22] and we investigate conditions for its material
conservation. This method consists of the following five steps:

q∗
i = exp

(
−�s

2
wi

)
qn

i , (D1a)

(
1 − a2N

�s

12
δ2

1

)
qA

i =
(

1 + a2N
�s

12
δ2

1 + a2N
�s

6
δ2

2

+ a2N
�s

6
δ2

3

)
q∗

i , (D1b)

(
1 − a2N

�s

12
δ2

2

)
qB

i = qA
i − a2N

�s

12
δ2

2q
∗
i , (D1c)

(
1 − a2N

�s

12
δ2

3

)
q∗∗

i = qB
i − a2N

�s

12
δ2

3q
∗
i , (D1d)

qn+1
i = exp

(
−�s

2
wi

)
q∗∗

i . (D1e)

The bra-ket representation of Eqs. (D1) is

(I − O1)|qA〉 = (I + O1 + 2O2 + 2O3)X |qn〉,
(D2a)

(I − O2)|qB〉 = |qA〉 − O2X |qn〉, (D2b)

(I − O3)X−1|qn+1〉 = |qB〉 − O3X |qn〉. (D2c)
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From these equations, the evolution operator is

U = X (I − O3)−1{(I − O2)−1[(I − O1)−1(I + O1 + 2O2 + 2O3) − O2] − O3}X . (D3)

In order to verify whether the FVM conserves material, we are required to check if the following matrix is Hermitian when
the Od ’s for the FVM are adopted:

VX (I − O3)−1{(I − O2)−1[(I − O1)−1(I + O1 + 2O2 + 2O3) − O2] − O3}X . (D4)

Using the theorem in Appendix B, the two X matrices in Eq. (D4) are removable and we only need to check the Hermiticity of
the matrix

V(I − O3)−1{(I − O2)−1[(I − O1)−1(I + O1 + 2O2 + 2O3) − O2] − O3} . (D5)

This equation becomes

V(I − O3)−1{(I − O2)−1[(I − O1)−1(I + O1 + 2O2 + 2O3) − O2] − O3}
= V(I − O3)−1{(I − O2)−1[(I − O1)−1(I + O1 + 2O2 + 2O3) − O2] + I − O3 − I}
= V(I − O3)−1(I − O2)−1(I − O1)−1(I + O1 + 2O2 + 2O3) − V(I − O3)−1(I − O2)−1O2 + V − V(I − O3)−1. (D6)

From Eq. (C5b), V(I − O3)−1 is Hermitian and the last two terms can be removed in checking the Hermicity of the matrix. The
remaining expression is

V[(I − O3)−1(I − O2)−1(I − O1)−1(I + O1 + 2O2 + 2O3) − (I − O3)−1(I − O2)−1O2]. (D7)

Using Eqs. (C5), the conjugate transpose of Eq. (D7) turns out to be equivalent to

(I + O1 + 2O2 + 2O3)†[(I − O1)−1]†[(I − O2)−1]†[(I − O3)−1]†V − O2
†[(I − O2)−1]†[(I − O3)−1]†V

= V[(I + O1 + 2O2 + 2O3)(I − O1)−1(I − O2)−1(I − O3)−1 − O2(I − O2)−1(I − O3)−1]. (D8)

Our final task is to compare the two equations (D7) and (D8).
Multiplying

(I − O1)(I − O2)(I − O3)V−1 from the left and (I −
O3)(I − O2)(I − O1) from the right of both expressions, one
obtains the equation

[(I + O1 + 2O2 + 2O3) − (I − O1)O2]

× (I − O3)(I − O2)(I − O1)

= (I − O1)(I − O2)(I − O3)

× [(I + O1 + 2O2 + 2O3) − O2(I − O1)]. (D9)

The material conservation is guaranteed if this equation is true.
For the two-dimensional case, we set O3 = 0 and Eq. (D9)
reduces to O1O2

2 = O2
2O1. It is the same equation obtained in

the previous appendix except that the roles of indices 1 and 2
are reversed.

For the two-dimensional systems, all the remaining stories
of the basic ADI method can be shared. This means that
material conservation fails in the two-dimensional cylindrical
and spherical coordinate system while the Cartesian coordinate
system has the ability to conserve the amount of material, when
the FVM with operator splitting Douglas-Gunn ADI method
is adopted.

Because material conservation fails in most coordinate
systems for the two-dimensional Douglas-Gunn ADI method,
we only need to check the material conservation of the
three-dimensional case for the Cartesian coordinate system.
In this case, the Od ’s commute, Eq. (D9) is satisfied, and the
operator splitting Douglas-Gunn ADI method in the Cartesian
coordinate system conserves material. In short, most of our
conclusions in this paper can be directly extended to the
three-dimensional numerical SCFT schemes.

[1] F. S. Bates and G. H. Fredrickson, Phys. Today 52(2), 32
(1999).

[2] M. W. Matsen, in Soft Matter, edited by G. Gompper and M.
Schick (Wiley-VCH, Weinheim, 2006), Vol. 1.

[3] G. H. Fredrickson, The Equilibrium Theory of Inhomogeneous
Polymer (Oxford University Press, New York, 2006).

[4] K. Ø. Rasmussen and G. Kalosakas, J. Polym. Sci. B 40, 1777
(2002).

[5] H. D. Ceniceros and G. H. Fredrickson, Multiscale Model.
Simul. 2, 452 (2004).

[6] E. W. Cochran, C. J. Garcia-Cervera, and G. H. Fredrickson,
Macromolecules 39, 2449 (2006).

[7] A. Ranjan, J. Qin, and D. C. Morse, Macromolecules 41, 942
(2008).

[8] P. Stasiak and M. W. Matsen, Eur. Phys. J. E 34, 110 (2011).
[9] D. Lee, M.-H. Kim, D. Bae, G. Jeon, M. Kim, J. Kwak,

S. J. Park, J. U. Kim, and J. K. Kim, Macromolecules 47, 3997
(2014).

[10] Y.-B. Yang, Y. M. Jeon, J. U. Kim, and J. Cho, Eur. Phys. J. E
35, 86 (2012).

[11] F. Drolet and G. H. Fredrickson, Phys. Rev. Lett. 83, 4317
(1999).

[12] F. Drolet and G. H. Fredrickson, Macromolecules 34, 5317
(2001).

063312-16

https://doi.org/10.1063/1.882522
https://doi.org/10.1063/1.882522
https://doi.org/10.1063/1.882522
https://doi.org/10.1063/1.882522
https://doi.org/10.1063/1.882522
https://doi.org/10.1002/polb.10238
https://doi.org/10.1002/polb.10238
https://doi.org/10.1002/polb.10238
https://doi.org/10.1002/polb.10238
https://doi.org/10.1137/030601338
https://doi.org/10.1137/030601338
https://doi.org/10.1137/030601338
https://doi.org/10.1137/030601338
https://doi.org/10.1021/ma0527707
https://doi.org/10.1021/ma0527707
https://doi.org/10.1021/ma0527707
https://doi.org/10.1021/ma0527707
https://doi.org/10.1021/ma0714316
https://doi.org/10.1021/ma0714316
https://doi.org/10.1021/ma0714316
https://doi.org/10.1021/ma0714316
https://doi.org/10.1140/epje/i2011-11110-0
https://doi.org/10.1140/epje/i2011-11110-0
https://doi.org/10.1140/epje/i2011-11110-0
https://doi.org/10.1140/epje/i2011-11110-0
https://doi.org/10.1021/ma500761e
https://doi.org/10.1021/ma500761e
https://doi.org/10.1021/ma500761e
https://doi.org/10.1021/ma500761e
https://doi.org/10.1140/epje/i2012-12086-9
https://doi.org/10.1140/epje/i2012-12086-9
https://doi.org/10.1140/epje/i2012-12086-9
https://doi.org/10.1140/epje/i2012-12086-9
https://doi.org/10.1103/PhysRevLett.83.4317
https://doi.org/10.1103/PhysRevLett.83.4317
https://doi.org/10.1103/PhysRevLett.83.4317
https://doi.org/10.1103/PhysRevLett.83.4317
https://doi.org/10.1021/ma0100753
https://doi.org/10.1021/ma0100753
https://doi.org/10.1021/ma0100753
https://doi.org/10.1021/ma0100753


FINITE VOLUME METHOD FOR SELF-CONSISTENT . . . PHYSICAL REVIEW E 96, 063312 (2017)

[13] P. Tang, F. Qiu, H. Zhang, and Y. Yang, Phys. Rev. E 72, 016710
(2005).

[14] J. F. Li, J. Fan, H. D. Zhang, F. Qiu, P. Tang, and Y. L. Yang,
Eur. Phys. J. E 20, 449 (2006).

[15] J. U. Kim and M. W. Matsen, Macromolecules 41, 246 (2008).
[16] G. H. Fredrickson, V. Ganesan, and F. Drolet, Macromolecules

35, 16 (2002).
[17] J. U. Kim and M. W. Matsen, Phys. Rev. Lett. 102, 078303

(2009).
[18] J. U. Kim and M. W. Matsen, Soft Matter 5, 2889 (2009).
[19] B. Vorselaars, J. U. Kim, T. L. Chantawansri, G. H. Fredrickson,

and M. W. Matsen, Soft Matter 7, 5128 (2011).
[20] J. Li, H. Zhang, and F. Qiu, Eur. Phys. J. E 37, 18 (2014).
[21] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,

Numerical Recipes: The Art of Scientific Computing (Cambridge
University Press, Cambridge, 2007).

[22] Y.-B. Yang, S. J. Park, P. Kim, and J. U. Kim, Soft Matter 9,
5624 (2013).

[23] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems
(Cambridge University Press, Cambridge, 2002).

[24] A. Mignone, J. Comput. Phys. 270, 784 (2014).
[25] G. Tzeremes, K. Ø. Rasmussen, T. Lookman, and A. Saxena,

Phys. Rev. E 65, 041806 (2002).
[26] J. Douglas, Jr., Numer. Math. 4, 41 (1962).

[27] H. Zeng and J. Zhu, Proceedings of the International Conference
on Parallel Processing Workshops (IEEE, 2002), p. 320.

[28] M. Sun, P. Wang, F. Qiu, P. Tang, H. Zhang, and Y. Yang,
Phys. Rev. E 77, 016701 (2008).

[29] D.-W. Sun, Z.-Y. Sun, H.-F. Li, and L.-J. An, Polymer 50, 4270
(2009).

[30] Y.-B. Yang, Y. J. Choi, S. O. Kim, and J. U. Kim, Soft Matter
11, 4496 (2015).

[31] J. U. Kim and M. W. Matsen, Macromolecules 41, 4435 (2008).
[32] C.-W. Shu, Int. J. Comput. Fluid Dyn. 17, 107 (2003).
[33] Y. Liu, C.-W. Shu, and M. Zhang, SIAM J. Sci. Comput. 33,

939 (2011).
[34] P. Colella and P. R. Woodward, J. Comput. Phys. 54, 174 (1984).
[35] B. H. Kim, H. M. Lee, J.-H. Lee, S.-W. Son, S.-J. Jeong, S.

Lee, D. I. Lee, S. U. Kwak, H. Jeong, H. Shin, J.-B. Yoon,
O. D. Lavrentovich, and S. O. Kim, Adv. Funct. Mater. 19, 2584
(2009).

[36] P. Stasiak, J. D. McGraw, K. Dalnoki-Veress, and M. W. Matsen,
Macromolecules 45, 9531 (2012).

[37] A. Knoll, A. Horvat, K. S. Lyakhova, G. Krausch, G. J. A.
Sevink, A. V. Zvelindovsky, and R. Magerle, Phys. Rev. Lett.
89, 035501 (2002).

[38] T. Wang and C. C. Chen, IEEE Trans. Very Large Scale Integr.
Syst. 11, 691 (2003).

063312-17

https://doi.org/10.1103/PhysRevE.72.016710
https://doi.org/10.1103/PhysRevE.72.016710
https://doi.org/10.1103/PhysRevE.72.016710
https://doi.org/10.1103/PhysRevE.72.016710
https://doi.org/10.1140/epje/i2006-10035-y
https://doi.org/10.1140/epje/i2006-10035-y
https://doi.org/10.1140/epje/i2006-10035-y
https://doi.org/10.1140/epje/i2006-10035-y
https://doi.org/10.1021/ma071906t
https://doi.org/10.1021/ma071906t
https://doi.org/10.1021/ma071906t
https://doi.org/10.1021/ma071906t
https://doi.org/10.1021/ma011515t
https://doi.org/10.1021/ma011515t
https://doi.org/10.1021/ma011515t
https://doi.org/10.1021/ma011515t
https://doi.org/10.1103/PhysRevLett.102.078303
https://doi.org/10.1103/PhysRevLett.102.078303
https://doi.org/10.1103/PhysRevLett.102.078303
https://doi.org/10.1103/PhysRevLett.102.078303
https://doi.org/10.1039/b905163e
https://doi.org/10.1039/b905163e
https://doi.org/10.1039/b905163e
https://doi.org/10.1039/b905163e
https://doi.org/10.1039/c0sm01242d
https://doi.org/10.1039/c0sm01242d
https://doi.org/10.1039/c0sm01242d
https://doi.org/10.1039/c0sm01242d
https://doi.org/10.1140/epje/i2014-14018-1
https://doi.org/10.1140/epje/i2014-14018-1
https://doi.org/10.1140/epje/i2014-14018-1
https://doi.org/10.1140/epje/i2014-14018-1
https://doi.org/10.1039/c3sm50532d
https://doi.org/10.1039/c3sm50532d
https://doi.org/10.1039/c3sm50532d
https://doi.org/10.1039/c3sm50532d
https://doi.org/10.1016/j.jcp.2014.04.001
https://doi.org/10.1016/j.jcp.2014.04.001
https://doi.org/10.1016/j.jcp.2014.04.001
https://doi.org/10.1016/j.jcp.2014.04.001
https://doi.org/10.1103/PhysRevE.65.041806
https://doi.org/10.1103/PhysRevE.65.041806
https://doi.org/10.1103/PhysRevE.65.041806
https://doi.org/10.1103/PhysRevE.65.041806
https://doi.org/10.1007/BF01386295
https://doi.org/10.1007/BF01386295
https://doi.org/10.1007/BF01386295
https://doi.org/10.1007/BF01386295
https://doi.org/10.1103/PhysRevE.77.016701
https://doi.org/10.1103/PhysRevE.77.016701
https://doi.org/10.1103/PhysRevE.77.016701
https://doi.org/10.1103/PhysRevE.77.016701
https://doi.org/10.1016/j.polymer.2009.06.072
https://doi.org/10.1016/j.polymer.2009.06.072
https://doi.org/10.1016/j.polymer.2009.06.072
https://doi.org/10.1016/j.polymer.2009.06.072
https://doi.org/10.1039/C5SM00474H
https://doi.org/10.1039/C5SM00474H
https://doi.org/10.1039/C5SM00474H
https://doi.org/10.1039/C5SM00474H
https://doi.org/10.1021/ma8002856
https://doi.org/10.1021/ma8002856
https://doi.org/10.1021/ma8002856
https://doi.org/10.1021/ma8002856
https://doi.org/10.1080/1061856031000104851
https://doi.org/10.1080/1061856031000104851
https://doi.org/10.1080/1061856031000104851
https://doi.org/10.1080/1061856031000104851
https://doi.org/10.1137/100791002
https://doi.org/10.1137/100791002
https://doi.org/10.1137/100791002
https://doi.org/10.1137/100791002
https://doi.org/10.1016/0021-9991(84)90143-8
https://doi.org/10.1016/0021-9991(84)90143-8
https://doi.org/10.1016/0021-9991(84)90143-8
https://doi.org/10.1016/0021-9991(84)90143-8
https://doi.org/10.1002/adfm.200900121
https://doi.org/10.1002/adfm.200900121
https://doi.org/10.1002/adfm.200900121
https://doi.org/10.1002/adfm.200900121
https://doi.org/10.1021/ma302143q
https://doi.org/10.1021/ma302143q
https://doi.org/10.1021/ma302143q
https://doi.org/10.1021/ma302143q
https://doi.org/10.1103/PhysRevLett.89.035501
https://doi.org/10.1103/PhysRevLett.89.035501
https://doi.org/10.1103/PhysRevLett.89.035501
https://doi.org/10.1103/PhysRevLett.89.035501
https://doi.org/10.1109/TVLSI.2003.812372
https://doi.org/10.1109/TVLSI.2003.812372
https://doi.org/10.1109/TVLSI.2003.812372
https://doi.org/10.1109/TVLSI.2003.812372



