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We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium,
bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based
on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical
part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte
Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors
from “fully quantum” to “fully classical,” in contrast to many existing methods. We demonstrate the advantages,
sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes
such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method
allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm
and discuss its practical significance.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) simulations [1,2] are essen-
tially the only method for studying equilibrium properties of
large quantum many-body systems without approximations
in more than one dimension.1 These methods have become
key to understanding pertinent macroscopic quantum physical
phenomena in numerous fields from superconductivity and
novel quantum materials to the physics of neutron stars and
quantum chromodynamics, making efficient QMC schemes a
necessary tool more than ever.

Over the years, novel QMC techniques have been devised
with the goal of speeding up convergence rates, thereby allow-
ing the study of ever larger system sizes. One notable example
is the shift from discrete-time techniques to continuous time for
which Trotter discretization errors are absent [4–7]. For many
quantum many-body systems, however, convergence can be
so slow that the simulation is considered virtually intractable
regardless of which method is used. First and foremost in
that regard is the negative sign problem [8,9], which arises
whenever the partition function of the system cannot be
decomposed into positive-valued Monte Carlo weights.

QMC algorithms are also known to be notoriously ineffi-
cient in describing certain models that do not suffer from the
sign problem. A notable example is quantum spin glasses in
“almost classical” parameter regimes [10–12] where updates
resulting from thermal fluctuations are expected to be far
more dominant than those resulting from quantum fluctuations.
These models can be parametrically tuned from a quantum
ordered phase on one end to a classical disordered phase
at the other end. Since QMC methods normally evolve via
configuration updates that are based on quantum fluctuations,
the acceptance rates of quantum updates, e.g., single spin (or
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1In one dimension, the density matrix renormalization group has

proven to be an extremely powerful tool [3].

cluster) flips in the dual Ising system, decrease dramatically in
classical regimes, often causing QMC algorithms to dramati-
cally slow down or “freeze” (see, e.g., Ref. [13]).

Efficient classical thermal updates are typically hard to
implement within the framework of QMC algorithms because
these algorithms do not normally converge to classical Monte
Carlo algorithms in the limit where the model becomes
classical. For this reason, there are almost no algorithms
that efficiently simulate systems that exhibit the full range
of behavior from being “fully quantum” to “fully classical.”
For the successful simulation of systems exhibiting the above
characteristics, it is therefore important to devise Monte Carlo
schemes that can function both as quantum as well as classical
algorithms when necessary. Efficient methods of this type
will have wide-ranging applicability in diverse areas ranging
from statistical physics through quantum chemistry to quantum
computing and beyond.

Here, we propose an algorithm that has the algorithmic
flexibility to simulate interacting many-body systems ranging
from the fully quantum to the fully classical. We present
a Monte Carlo scheme that is based on a decomposition
of the canonical quantum partition function into a sum of
Boltzmann-type weights and that converges to the usual
decomposition of the classical partition function in the limit
where the Hamiltonian of the system becomes classical. Based
on this unique decomposition, our algorithm aims to improve
the convergence rates of simulated systems for which existing
techniques are often inefficient.

Within our approach, the quantum imaginary-time dimen-
sion of the algorithm is “elastic,” i.e., it can stretch or shrink
dynamically depending on the strength of the quantum part
of the system: the off-diagonal portion of the Hamiltonian. In
addition, the proposed method does not introduce Trotter-type
errors as in discrete-time path-integral QMC, a source of
errors that normally occurs from an insufficient discretization
of the imaginary-time dimension (overdiscretization tends to
sharply reduce the acceptance rates of the QMC updates).
Moreover, in the classical limit where off-diagonal terms
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vanish, our algorithm naturally reduces to a classical thermal
simulation. As we illustrate, the above properties allow our
method to naturally overcome certain inefficiencies typically
encountered by other QMC algorithms.

The structure of the paper is as follows. In Sec. II, we
describe the decomposition of the canonical quantum partition
function into what we refer to as generalized Boltzmann
weights (GBWs). We then proceed in Sec. III to present the
basic updates and measurements of our off-diagonal expansion
(ODE) quantum Monte Carlo algorithm that builds on the
above decomposition. To illustrate the practicality of our
algorithm, we examine in Sec. IV simulations of the transverse
field Ising model, especially inside the spin-glass phase, where
the model is known to be hard to simulate. We demonstrate
the advantages, sometimes by orders of magnitude, of our
scheme over existing state-of-the-art QMC methods such as
discrete-time path integral quantum Monte Carlo with cluster
updates along the imaginary-time direction (PIQMC) [14] and
stochastic series expansion (SSE) [7,15,16]. We also discuss
in this context the unification of quantum and classical parallel
tempering. We present some conclusions in Sec. V.

II. GENERALIZED BOLTZMANN WEIGHTS

A. Decomposition of the partition function

The main insight at the heart of our approach is a
decomposition of the canonical quantum partition function
which, as we argue, allows for the development of a QMC
algorithm that has certain advantages over existing methods.
Our work builds in part on the stochastic series expansion
(SSE) algorithm, a well-known and successful QMC algorithm
pioneered by Sandvik [7,15,16], which, unlike the traditional
slicing of the partition function into Trotter segments, involves
a Taylor series expansion in the inverse temperature β = 1/T

(in our units kB = 1) of the partition function as was originally
suggested by Handscomb [17,18].

The canonical quantum partition function of a system
described by a Hamiltonian H is given by Z = Tr [e−βH ].
Our decomposition begins by first writing the Hamiltonian in
the form

H = Hc −
∑

j

�jVj . (1)

Here, Hc is the classical portion of the Hamiltonian, i.e., a
diagonal operator in some known basis, which we refer to as
the computational basis, and whose basis states will be denoted
by {|z〉}. The {�j } are generally complex-valued parameters,
and {Vj } are off-diagonal operators satisfying [Vj ,Hc] �= 0
that give the system its “quantum dimension.” In an analogous
way to standard SSE, in order for the decomposition of the
partition function to be feasible, we require the off-diagonal
operators to be chosen such that they obey Vj |z〉 = |z′〉 for
every basis state |z〉, where |z′〉 �= |z〉 is also a basis state. For
simplicity, we henceforth assume that all the �j parameters are
identical, namely, that �j = �,∀ j , however, as will become
evident shortly this restriction is by no means necessary.

We now present the main steps for the decomposition of the
quantum partition function. We first replace the trace operation
Tr[·] with the explicit sum

∑
z〈z| · |z〉 and then expand the

FIG. 1. A diagrammatic representation of the term 〈z|Sq |z〉. The
sequence of operators Sq = Vi1Vi2 . . . Viq is sandwiched between
classical bra 〈z| and ket |z〉, inducing a sequence of classical
states (|z0〉, . . . ,|zq〉). The multiset of classical energies of the
states |zi〉, namely, Ei = E(zi) = 〈zi |Hc|zi〉, generate the generalized
Boltzmann weight.

exponent in the partition function in a Taylor series:

Z =
∑

z

∞∑
n=0

βn

n!
〈z|(−H )n|z〉

=
∑

z

∞∑
n=0

βn

n!
〈z|

⎛
⎝−Hc + �

∑
j

Vj

⎞
⎠

n

|z〉

=
∑

z

∞∑
n=0

∑
{Sn}

βn

n!
〈z|Sn|z〉, (2)

where in the last step we have also expanded (−H )n, and
{Sn} denotes the set of all sequences of length n composed of
products of basic operators Hc and Vj .

We proceed by stripping all the diagonal Hamiltonian terms
off the sequences 〈z|Sn|z〉. We do so by evaluating their action
on the relevant basis states, leaving only the off-diagonal
operators unevaluated inside the sequence. At this point, the
partition function can be written as

Z =
∑

z

∞∑
q=0

∑
{Sq }

�q〈z|Sq |z〉
⎛
⎝ ∞∑

n=q

βn(−1)n−q

n!

×
∑

∑
ki=n−q

Ek0 (z0) · . . . · Ekq (zq)

⎞
⎠, (3)

where E(zi) = 〈zi |Hc|zi〉 and {Sq} denotes the set of all
sequences of length q of “bare” off-diagonal operators Vj . The
term in large parentheses sums over the diagonal contribution
of all 〈z|Sn|z〉 terms that correspond to a single 〈z|Sq |z〉 term.
The various {|zi〉} states are the states obtained from the action
of the ordered Vj operators in the sequence Sq on |z0〉, then on
|z1〉, and so forth.2 Figure 1 gives a schematic representation
of 〈z|Sq |z〉.

Remarkably, the infinite sum over energies in Eq. (3) may be
simplified to an easily calculated Boltzmann-type weight using
the so-called divided differences representation [19,20] of the
sum (the reader is referred to Appendix A for more details and
a full derivation). This allows us to write the partition function

2For example, for Sq = Viq . . . Vi2Vi1 , we obtain |z0〉 =
|z〉,Vi1 |z0〉 = |z1〉,Vi2 |z1〉 = |z2〉, etc.
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in terms of classical “effective energies” as

Z =
∑
{z}

∑
q

∑
{Sq }

(β�)q

q!
〈z|Sq |z〉e−βE(0,...,q) , (4)

where E(0,...,q) is the “effective classical energy” of the
configuration calculated from the multiset of energies
[E0, . . . ,Eq] generated by the term 〈z|Sq |z〉 and from β.
The effective classical energy is a single real-valued number
E(0,...,q) ∈ (min[E0, . . . ,Eq], max[E0, . . . ,Eq]). Specifically,
E(0,...,q) lies within the spectrum of the classical Hamiltonian.
To calculate E(0,...,q), one may use the divided differences
recursion relation (see Appendix B) which in terms of effective
classical energies becomes

(−β)q

q!
e−βE(0,...,q) = (−β)q−1

(q − 1)!

(e−βE(0,...,q−1) − e−βE(1,...,q) )

E0 − Eq

.

(5)

Isolating E(0,...,q), we arrive at

E(0,...,q) = Ē − 1

β
log

2q sinh β�E

β(Eq − E0)
, (6)

where 2Ē = E(1,...,q) + E(0,...,q−1) and 2�E = E(1,...,q) −
E(0,...,q−1). In the limiting case where all energies in the se-
quence are equal, the above relation neatly becomes E(0,...,q) =
E(0) = E0. The initial condition for the above recursion is
simply e−βE(i) = e−βEi . An illustration of how the recursion
relation is used to calculate E(0,...,q) is depicted in Fig. 2 and is
discussed in more detail in Appendix C.

Finally, since by construction the term 〈z|Sq |z〉 evaluates to
either 0 or to 1 (the operation Sq |z〉 returns a basis state |z′〉
and therefore 〈z|Sq |z〉 = 〈z|z′〉 = δz,z′ ), the partition function
can be neatly presented in its final form as a sum over only
nonvanishing terms:

Z =
∑

{Sq :〈z|Sq |z〉=1}

(β�)q

q!
e−βE(0,...,q) . (7)

We interpret the terms in the sum in Eq. (7) as weights, i.e.,
Z = ∑

{C} WC , where the set of configurations {C} is all the
distinct pairs {|z〉,Sq}. Because of the form of WC ,

WC = (β�)q

q!
e−βE(0,...,q) , (8)

we refer to it as a generalized Boltzmann weight (or GBW).
We shall refer to E(0,...,q) as the “effective classical energy” of
the configuration C and denote it at times for brevity simply
by EC .

In order to interpret the WC terms as actual weights, they
must be non-negative for any simulated system that is not
plagued by the sign problem [2]. It is therefore interesting to
note that the above weights are automatically positive if �

is positive, i.e., if the off-diagonal elements are nonpositive,
which is the case for stoquastic Hamiltonians [21,22]. As
is also evident from the above expression, even values of q

also yield positive weights regardless of the sign of �. This
corresponds to a scenario where off-diagonal operators must be
injected along the imaginary-time dimension in even numbers
in order to ensure nonzero weights. One such example is the

FIG. 2. Calculating the effective classical energy of the general-
ized Boltzmann weight using a “pyramid” structure. The evaluation
of the divided differences of the exponential function of q + 1 input
energies consists of calculating each level of the pyramid starting at its
base. The values at the base of the pyramid E(j ) are simply the energy
inputs Ej (shown as the blue line at the bottom of the pyramid), with
all identical energies placed together as a group (the exact ordering
of the energies is not important). To calculate the elements at the next
level of the pyramid, we use the relation in Eq. (6). This procedure
is continued until the final level of the pyramid is evaluated, which
corresponds to the effective classical energy in the GBW, namely,
E(0,...,q).

transverse-field Ising Hamiltonian

H =
∑
〈i,j〉

Jijσ
z
i σ z

j +
∑

j

hjσ
z
j − �

∑
j

σ x
j , (9)

where Hc = ∑
〈i,j〉 Jijσ

z
i σ z

j + ∑
j hjσ

z
j and the off-diagonal

operators are the spin-flip terms Vj = σx
j . In order for the

〈z|Sq |z〉 terms to evaluate to one rather than to zero, off-
diagonal operators must always be produced and annihilated
in pairs, implying that the total sign of the weight [Eq. (8)]
is positive. We have thus established a decomposition of the
canonical quantum partition function into a sum of positive-
valued weights.

B. Properties of the GBWs

One property of the above decomposition of the canonical
quantum partition function is that it may be viewed as unifying
the classical and quantum partition functions. Specifically, it
contains as a subsum the classical partition function decom-
position of its diagonal part Hc. Writing the quantum partition
function as a series in the “quantum strength” parameter
�, one obtains the classical partition function as the zeroth
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term, namely,

Z =
∑

{S0:〈z|z〉=1}
e−βE(z)

+ (β�)2

2

∑
{S2:〈z|S2|z〉=1}

e−βE(0,1,2) + . . . . (10)

Furthermore, in classical regimes where � is zero or very small,
the dominant configurations, i.e., those with highest weights,
have no off-diagonal terms, and only the q = 0 terms survive.
In this case, the typical weights are

(β�)q

q!
e−βE(0,...,q)

∣∣∣∣
q=0

= e−βE(0) = e−βE(z), (11)

where E(z) is the classical energy of the spin configuration
z. Our decomposition thus automatically reduces to the usual
sum over Boltzmann weight of classical Hamiltonians.3

The GBW [Eq. (8)] also has several attractive properties
that make it useful for Monte Carlo simulations. First, as
was already mentioned, it is strictly positive for stoquastic
systems. This feature automatically resolves the “diagonal
sign problem” that sometimes appears in other schemes [23],
where constants must be added to the diagonal bonds to rectify
the problem. Moreover, since the addition of such constants
considerably affects the convergence rate of the algorithm
[5,7,15,16,23], these constants usually have to be optimized
for faster convergence. A QMC algorithm based on the GBW
decomposition is in this respect parameter free, a property that
is expected to facilitate computations.

Second, any arbitrary energy shift �E of the diagonal part
of the Hamiltonian has a trivial effect on the effective classical
energy E(0,...,q) → E(0,...,q) + �E, reflecting that the addition
of constants to the simulated Hamiltonian leaves ratios of
weights, which in turn determine the acceptance rates of the
QMC updates, invariant as they should be.

On a more academic note, it is interesting to observe that
the proposed algorithm also has close relations to continuous-
time QMC methods (e.g., Ref. [6]), via the Hermite-Genocchi
formula [20]

e−β[E0,...,Eq ] =
∫

�

dt0 . . . dtqe
−β(E0t0+E1t1+...+Eqtq), (12)

where ti � 0 and the area of integration � is bounded by
t0 + t1 + · · · + tq from above.

C. A simple analytical example

As a first illustration of the above decomposition, let us
calculate the partition function of a transverse-field Ising
Hamiltonian in the case where the classical Ising part vanishes,
namely, where Hc = 0. In this case, the model becomes the
trivial system H = −�

∑
i σ

x
i . The partition function in this

special case is decomposed as

Z =
∑

{Sq :〈z|Sq |z〉=1}

(β�)q

q!
, (13)

3This is to be contrasted with other decompositions of the partition
function where the classical limit is either unnatural or ill defined.

where the classical energies are E0 = · · · = Eq = 0, corre-
sponding to E(0,...,q) = 0. In this case, we have 〈z|Sq |z〉 = 1 if
and only if all σx

i off-diagonal operators in Sq appear an even
number of times. Denoting by Np(q) the number of nonzero
weights for each value of (even) q and every |z〉, the partition
function can be simplified to

Z = 2N
∑

q even

(β�)q

q!
Np(q). (14)

A simple calculation (see Appendix D) reveals

Np(q) = 1

2N

∑
k=0

(
N

k

)
(N − 2k)q, (15)

which yields

Z =
∑

q

(β�)q

q!

∑
k=0

(
N

k

)
(N − 2k)q

=
∑
k=0

(
N

k

) ∑
q�0,even

[β�(N − 2k)]q . (16)

Carrying out the sum over q, we end up with

Z =
∑
k=0

(
N

k

)
cosh[β�(N − 2k)] = (2 cosh β�)N, (17)

which is the correct result for the partition function for the
noninteracting system H = −�

∑
i σ

x
i .

III. OFF-DIAGONAL EXPANSION QMC ALGORITHM

We now describe the basic ingredients of our off-diagonal
expansion (ODE) algorithm, based on the above partition
function decomposition. For concreteness we discuss the
algorithm as it applies to the transverse-field Ising model
[Eq. (9)], however, we note that generalization to other systems
should be straightforward. We first establish the computational
complexity associated with implementing this new algorithm,
discussing in detail generic updates as well as measurements.
We then present some results that allow us to fully characterize
and to quantify the advantages of the algorithm over state-
of-the-art QMC methods, specifically path-integral QMC
and SSE.

A. General description of the algorithm

An ODE configuration is a pair C = {|z〉,Sq} where |z〉 cor-
responds to a classical bit configuration and Sq = Vi1Vi2 . . . Viq

is a sequence of (possibly repeated) off-diagonal operators.
As was discussed above, each configuration C induces a list
of states Z = {|z0〉 = |z〉,|z1〉, . . . ,|zq〉 = |z〉} (see Fig. 1),
which in turn also generates a corresponding multiset of
diagonal energies MC = {E0,E1, . . . ,Eq} of not-necessarily-
distinct values (recall that Ei = 〈zi |Hc|zi〉). For systems with
discretized energy values, the multiset can be stored efficiently
in a “multiplicity table” {m0,m1, . . . ,mj , . . .}, where mj is the
multiplicity of the energy Ej in the multiset. Given MC , the
evaluation of the effective classical energy EC and the GBW
WC follow from the definition of the GBW [Eq. (8)]. The actual
evaluation of the effective classical energy is schematically
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FIG. 3. Basic update moves of the ODE algorithm. (a) Classical moves (e.g., a single bit flip), whereby only the initial state z is changed to
z′ leaving Sq unchanged. (b) Local swap, whereby two adjacent operators Vik Vik+1 are interchanged changing the state between them from z′ to
z′′. (c) Block swap, whereby two partitions of the sequence are interchanged. This changes the initial state from z to z′ as well as the ordering
of the sequence. (d) Pair creation and annihilation, whereby a new pair of operators is inserted or deleted.

given in Fig. 2 and is discussed in more technical detail in
Appendix C.

The initial configuration of the ODE algorithm is a random
classical configuration |z〉 and the empty sequence Sq=0 = 1.
The weight of this initial configuration is

WCinit = e−βE(z) , (18)

i.e., the classical Boltzmann weight of the initial random state
|z〉. Here, the effective classical energy ECinit is the classical
energy of |z〉.

B. Updates

We next describe the basic update moves for the algorithm.
We consider here only generic local updates but note that
updates of the global type can be specifically tailored to the
system in question. An update is considered local if it changes
the multiset MC by a finite (i.e., by a system-size-independent)
number of terms, e.g., MC → MC + {E(zi)} − {E(zj )}. The
basic updates are summarized in Fig. 3 and are discussed in
detail below.

1. Classical moves

Classical moves are any moves that involve a manipulation
of the classical state |z〉 while leaving Sq unchanged [see
Fig. 3(a)]. In a single bit-flip classical move, a spin from
the classical bit-string state |z〉 of C is picked randomly
and is flipped, generating a state |z′〉 and hence a new
configuration C ′. Performing this change requires recalculating
the energies associated with the sequence Sq leading to a new
multiset MC′ and can become computationally intensive if q

is large. Classical moves should therefore be attempted with
low probabilities if q large. Simply enough, the acceptance

probability for a classical move is

p = min

(
1,

WC′

WC

)
= min(1,e−β�E), (19)

where �E = EC′ − EC is the difference between the effective
classical energies of the proposed configuration C ′ and current
configuration C.

In the absence of a quantum part to the Hamiltonian (� =
0), not only are classical moves the only moves necessary,
but they are also the only moves with a nonzero acceptance
probability. In this case, the ODE algorithm automatically
reduces to a classical thermal algorithm keeping the size of
the imaginary-time dimension at zero (q = 0) for the duration
of the simulation.

2. Local swap

A local swap is the swapping of neighboring off-diagonal
operators in the sequence Sq . A random pair of adjacent off-
diagonal operators in the sequence is picked and swapped [as
shown in Fig. 3(b)]. If the state between Vik and Vik+1 is |z′〉
and is |z′′〉 after the swap, then the swap involves adding an
energy E(z′′) and removing an energy E(z′) from the energy
multiset [note that E(z′) and E(z′′) may be the same]. The
acceptance probability for the move is as in Eq. (19) with
MC′′ = MC + {E(z′′)} − {E(z′)}.

3. Block swap

A block swap [Fig. 3(c)] is a local update that involves a
change of the classical state z. Here, a random position k in
the sequence Sq is picked such that the sequence is split into
two (nonempty) parts, Sq = S1S2, with S1 = Vi1 . . . Vik and
S2 = Vik+1 . . . Viq . The classical state |z′〉 at position k in the
sequence is given by

〈z′| = 〈z|S1 = 〈z|Vi1 . . . Vik , (20)
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where |z〉 is the classical state of the current configuration. The
state |z′〉 has energy E(z′), and the state |z〉 has energy E(z).
We consider a new configuration defined by 〈z′|S2S1|z′〉. The
multiplicity table of this configuration differs from that of the
current configuration by having one fewer E(z) state and one
additional E(z′) state. The weight of the new configuration is
then proportional to e−βMC′ where the multiset MC′ = MC +
{E(z′)} − {E(z)}. The acceptance probability is as in Eq. (19)
with the aforementioned MC′ .

4. Creation and annihilation of off-diagonal operators

The moves presented so far have left the size of Sq un-
changed. The creation-or-annihilation move shown in Fig. 3(d)
has the effect of changing the value of q by 2, i.e., q → q ± 2,
which in the transverse-field Ising model corresponds to
creating or destroying off-diagonal operators σx

j in pairs. We
implement this via the insertion or deletion of two adjacent,
identical operators. With probability pdel (e.g., pdel = 1

2 ) we
try to annihilate an adjacent pair, and with probability 1 − pdel

we try to insert a pair.
For pair insertion, we randomly pick an internal insertion

point in the sequence (we denote this internal state by |z′〉)
and a random V to insert. This adds two new energies E(z′)
and E(z′′) to the multiset, where |z′′〉 = V |z′〉. The acceptance
probability for pair creation is given by

p = min

(
1,

pdel

1 − pdel

Nβ2�2

(q + 2)(q + 3)
e−β�E

)
, (21)

where as before �E = EC′ − EC is the difference between the
effective classical energies of the proposed configuration C ′
and current configuration C and MC′ = MC + {E(z′),E(z′′)}.
For deletion, we randomly pick an internal point in the
sequence. If the two operators to the side of the insertion
point are not identical, no deletion is performed, and the move
is rejected. If the two operators are identical, they are deleted
and the relevant energies E(z′) and E(z′′) are removed from
the multiplicity table. The probability of acceptance for the
deletion move is

p = min

(
1,

1 − pdel

pdel

q(q + 1)

β2�2N
e−β�E

)
, (22)

where as before �E = EC′ − EC and MC′ = MC −
{E(z′),E(z′′)}.

The size of the imaginary-time dimension q comes strictly
from off-diagonal terms and shrinks or grows depending on
the strength of the “quantum component” of the model. This
property is expected to be heavily utilized in order to overcome
the freezing of QMC algorithms in almost classical regimes.
In these regimes, q is small, and the algorithm reduces to being
a classical thermal algorithm.4

4This is to be contrasted with the standard SSE formalism where one
normally introduces an additional parameter L in order to fix the size
of imaginary-time dimension for more efficient weight calculations.
The fixing of the size of imaginary time may adversely affect the
convergence of the algorithm if it is chosen to be too large. Here, this
parameter too is spurious.

C. Measurements

An integral part of any QMC algorithm is the acquisition
of various properties of the model such as average energy,
magnetization, specific heat, and correlation functions. In the
ODE algorithm (as in SSE), diagonal (classical) measurements
are measured differently than off-diagonal ones.

1. Diagonal measurements

Diagonal operators D obey D|z〉 = d(z)|z〉 where d(z) is
a number that depends both on the operator and the state
it acts on. Since 〈z|DSq |z〉 = d(z)〈z|Sq |z〉, for any given
configuration C = (|z〉,Sq), there is a contribution d = d(z)
to the diagonal operator thermal average 〈D〉. To improve
statistics, we can also consider rotations in (the periodic)
imaginary time. To do that, we may consider “virtual” block-
swap moves (see Sec. III B 3) that rotate Sq and as a result
also change the classical configuration from |z〉 to |zi〉. The
contribution to the expectation value of a diagonal operator D

thus becomes

d = 1

Z

q−1∑
i=0

d(zi)e
−βECi , (23)

where ECi
is the effective classical energy associated with

configuration Ci whose multiset is MCi
= MC + {E(zi)} −

{E(z)} (recall that z0 ≡ z, so MC0 = MC). The normalization
factor Z above is the sum

Z =
q−1∑
j=0

e
−βECj =

∑
j

mje
−βECj (24)

over all nonzero multiplicities mj . In the case where D = Hc,
the above expression simplifies to

d = 1

Z

q−1∑
i=0

E(zi)e
−βECi = 1

Z
∑

j

mjE(zj )e−βECj . (25)

2. Off-diagonal measurements

We next consider the case of measuring the expectation
value of an off-diagonal operator Vk , namely, 〈Vk〉. To do this,
we interpret the instantaneous configuration as follows:

WC = (β�)qe−βEC

q!
〈z|Sq |z〉

=
(

β�

qe−β�E

)[
(β�)q−1e−βEC′

(q − 1)!
〈z|Sq−1Viq |z〉

]
, (26)

where �E = EC′ − EC and C ′ is the configuration associated
with the multiset MC′ = MC − {E(z)}. In the above form, we
can reinterpret the weight WC as contributing

vk = δk,iq

qe−β�E

β�
(27)

to 〈Vk〉.
As in the case of the diagonal measurements, one can take

advantage of the periodicity in the imaginary-time direction
to improve statistics by rotating the sequence such that any of
the elements of Sq become the last element of the sequence
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(see Sec. III B 3), weighted accordingly by the block-swap
probability. By doing so, vk becomes

vk =
∑

i

q

β�

e−βECi∑q−1
j=0 e

−βECj

e−βEC′

e−βECi
= qNk

Zβ�
e−βEC′ , (28)

where MCi
= MC + {E(zi)} − {E(z)}, the sum

∑
i is over all

rotated configurations C ′ whose Sq ends with Vk , and Nk is the
number of times Vk appears in the sequence Sq .

3. Products of off-diagonal measurements

The sampling of the expectation values of the form 〈Vk1Vk2〉
proceeds very similarly to the single operator case except
that now both operators must appear at the end of the
sequence. The argument proceeds similarly to the single
off-diagonal measurement, and we have that the contribution
to the expectation value of 〈Vk1Vk2〉 is

vk1,k2 = δiq−1,k1δiq ,k2

q(q − 1)

β2�2

e−βEC′

e−βEC
, (29)

with MC′ = MC − {E(z),E(zq−1)}. As in the single off-
diagonal operator case, we can use the block-swap move to
alter the elements at the end of the sequence, and for each
pair of adjacent operators in the sequence obtain an improved
contribution

vk1,k2 = q(q − 1)

β2�2

∑
i

e−βECi∑q−1
j=0 e

−βECj

e
−βEC′

i

e−βECi

= q(q − 1)

Zβ2�2

∑
i

e
−βEC′

i , (30)

where MCk
=MC+{E(zk)}−{E(z)}, MC′

i
=MC−{E(z),E(z′′)}

with |z′′〉 = Vk2 |z′〉, and |z′〉 is the classical state after the block
swap. Similar to the single off-diagonal operator case, the
sum

∑
i is over all rotated configurations C ′ whose Sq ends

with Vk1Vk2 .
Measurements of thermal averages of products of more

than two off-diagonal operators can also be derived in a
straightforward manner.

D. ODE weights vs SSE weights

It is worthwhile to contrast the properties of standard SSE
weights against ODE weights. Foremost, while in standard
SSE the classical part of the Hamiltonian must be broken
up into local bonds, in ODE this is not the case: within
ODE the diagonal portion remains “intact.” Moreover, a single
divided-difference term is a sum of an infinite number of terms
of standard SSE weights, meaning that ODE weights will
generally represent very many standard SSE configurations.
This can be immediately seen in Eq. (3), which relates the
standard SSE weight involving sequences of diagonal as well
as off-diagonal bonds (denoted by Sn) to the weights of the
current algorithm that only involve off-diagonal bonds. The
differences above suggest that ODE weights are orders-of-
magnitude larger than SSE weights, and as such fewer of them
are required for the algorithm to converge.

On the other hand, the computational cost of updating
ODE weights within a Monte Carlo scheme is generally
higher than standard SSE weights since the calculation of

FIG. 4. Connectivity of a randomly generated N = 36-spin 3-
regular MAX2SAT instance. Here, the diamonds denote spins and
the edges denote antiferromagnetic couplings with strength Jij = 1.
Each spin is connected to three other randomly chosen spins.

the effective classical energy is, as we show below explicitly,
proportional to the number of terms in the sequence Sq (by
direct divided-differences calculation, see Appendix B), which
scales linearly with the inverse temperature β and with the
number of particles in the system N (this is discussed in detail
later on). Within SSE, weight updates normally require a fixed
number of operations.

As we demonstrate below, the balance between the cost
increase and weight size can result in considerable speedups
in general over standard methods, including SSE.

IV. RESULTS

Having laid the groundwork for the ODE QMC algorithm,
we present in this section some results that highlight some of
its properties and advantages over existing QMC techniques,
specifically a discrete-time PIQMC algorithm with cluster
updates5 and with the continuous-time SSE algorithm with
cluster updates [7,13]. For benchmarking purposes, we study
random 3-regular MAX2SAT instances augmented with a
transverse field. This class of instances corresponds to a
particular choice of the Ising Hamiltonian given in Eq. (9),
whereby each spin is coupled antiferromagnetically (with
strength Jij = 1) with exactly three other spins picked at
random (see Fig. 4 for an illustration). This class of instances is
known to exhibit a quantum spin-glass phase transition and is
notoriously difficult to simulate by standard QMC techniques
(see, e.g., Refs. [13,26]), making it suitable to illustrate the
strengths of the ODE algorithm.

A. Correctness of algorithm and elastic imaginary time

As a preliminary test, we verify that we are able to reproduce
the correct thermal expectation values for sufficiently small
systems where comparison to exact diagonalization is feasible.
An example is given in Fig. 5 illustrating the excellent

5We use Wolff cluster updates [24] along the imaginary-time
direction [25].

063309-7



TAMEEM ALBASH, GENE WAGENBRETH, AND ITAY HEN PHYSICAL REVIEW E 96, 063309 (2017)

FIG. 5. Agreement between ODE, PIQMC, and exact diago-
nalization for small systems. The thermal expectation value of
the internal energy per spin 〈H 〉/N and specific heat per spin
C = β2(〈H 2〉 − 〈H 〉2)/N for a 3-regular MAX2SAT instance of size
N = 12 for a range of β with � = (10β)−1/2 as calculated using ODE,
PIQMC (with 5120 Trotter slices), and exact diagonalization. Error
bars correspond to 2σ generated by performing 1000 bootstraps over
the measurements.

agreement of ODE with the exact-numerical values, even in
the high-β but low-� regime where PIQMC begins to show
deviations from the exact results. Increasing the number of
measurements for PIQMC rectifies this discrepancy, but the
deviation already suggests that the ODE algorithm may require
fewer measurements over PIQMC in the low-� but large-β
regime.

We next study in Fig. 6 the dependence of the average size
of the imaginary-time dimension, namely, q on system size
N , inverse temperature β, and transverse-field strength �.6

6The warm-up of the simulations involved a linear anneal in β from
an initial value that is a factor 103 smaller than the target β to the

As was discussed earlier, the ODE QMC does not presume a
priori a size for the imaginary-time dimension but rather allows
it to be set dynamically during the simulation. As is shown
in Fig. 6(a), as the simulation advances, the instantaneous
q which starts at q = 0 gradually grows and eventually
fluctuates around an average value indicating the size of the
imaginary-time dimension. As we expect, the average value
of q, which we denote 〈q〉, scales linearly with N and β with
fluctuations on the order of

√
N and

√
β [Figs. 6(b) and 6(c),

respectively]. Moreover, we find that 〈q〉 does indeed grow
with the quantum strength of the model. Specifically, we find
it to scale quadratically with � as indicated in Fig. 6(d).

B. Quantum-classical parallel tempering

As we demonstrated in Sec. II, the ODE partition function
decomposition naturally reduces to the classical one when the
strength of the off-diagonal terms in the Hamiltonian are sent
to zero. As we show next, this allows us to naturally unify the
classical parallel tempering (CPT) algorithm (also known as
“exchange Monte Carlo”) [27,28] and its quantum counterpart
(QPT see, e.g., Refs. [29,30]). CPT is a refinement of the
simulated annealing algorithm [31], whereby NT replicas
of an N -spin system at inverse temperatures β1 < β2 <

· · · < βNT
undergo Metropolis spin-flip updates independently

of one another and, in addition, replicas with neighboring
temperatures regularly attempt to swap their temperatures with
probabilities that satisfy detailed balance [32]. In this way,
each replica performs a random walk on the temperature axis,
which generally allows for quicker equilibration of the system
in comparison to other techniques. Analogously in QPT,
temperature is replaced by a parameter � of the (quantum)
Hamiltonian, e.g., the strength of the transverse magnetic field
in the transverse Ising model, and each replica performs a
random walk on the � axis.

Both CPT and QPT are two widely used variations on
Monte Carlo schemes but have so far been considered as
separate algorithms. The current formulation allows to unify
the two tempering algorithms in a straightforward and natural
manner. A simple generalization is to consider a tempering al-
gorithm that traces an arbitrary curve in the classical-quantum
β-� plane. This opens up the opportunity to study, e.g.,
certain properties of experimental quantum annealers (see, for
example, Ref. [33]) which trace such quantum-classical curves
as well as to study classical-quantum optimization techniques
and equilibration methods, by, e.g., looking for curves that
would allow one to bypass first order phase transitions.

If we consider replicas along a curve in the β-� plane
at points {(β1,�1), . . . ,(βNT

,�NT
)}, then a parallel tempering

swap probability between the ith and (i + 1)th replica is
given by

P = min

(
1,

WCi
(βi+1,�i+1)WCi+1 (βi,�i)

WCi
(βi,�i)WCi+1 (βi+1,�i+1)

)
, (31)

target β. 106 sweeps are performed in total during the warm-up. After
the warm-up, 104 measurements are performed, with 102 sweeps
between measurements to ensure the subsequent measurements are
uncorrelated.
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(a) (b)

(c) (d)

FIG. 6. Size of imaginary-time dimension as a function of inverse temperature, problem size, and quantum strength. (a) Instantaneous
value of q as the algorithm advances, showing q growing gradually from zero and then stabilizing around a mean value 〈q〉 (dashed red line)
with fluctuations �q = √〈q2〉 − 〈q〉2 (dotted red line). (b) 〈q〉 averaged over 48 instances (denoted 〈〈q〉〉) as a function of problem size (here,
β = 1 and � = 0.5,1). The inset shows �q averaged over 48 instances (denoted 〈�q〉) as a function of

√
N . (c) 〈q〉 as a function of β for a

single instance of size N = 60 and � = 0.5,1. The inset shows �q as a function of
√

β. Inset shows �q as a function of
√

N . (d) 〈q〉 as a
function of � for the same instance as in (b) of size N = 60 and β = 1,2. (b)–(d) The solid curves correspond to linear fits of the data points.
Error bars correspond to 2σ generated by performing 1000 bootstraps over the measurements for (a) and (d) and over the mean from the 48
instances for (b) and (c).

where the above weight ratio is conveniently simplified to

WCi
(βi+1,�i+1)WCi+1 (βi,�i)

WCi
(βi,�i)WCi+1 (βi+1,�i+1)

=
(

βi�i

βi+1�i+1

)qi+1−qi e
−βi (E′

Ci+1
−ECi )

e
−βi+1(ECi+1 −E′

Ci )
, (32)

where ECi
and ECi+1 are the effective classical energies of

configurations Ci and Ci+1, respectively, and E′
Ci

and E′
Ci+1

are
the effective classical energies of these configurations when
calculated with switched β and �.

In the classical limit � → 0 the ratio readily reduces to the
standard CPT acceptance ratio

WCi
(βi+1)WCi+1 (βi)

WCi+1 (βi+1)WCi
(βi)

= e�β�E, (33)

where �β = βi+1 − βi and �E is the change in classical
energy between the two configurations. Furthermore, in the
case of pure quantum parallel tempering, i.e., if β is fixed

between neighboring replicas, the acceptance ratio neatly
reduces to

WCi
(β,�i+1)WCi+1 (β,�i)

WCi
(β,�i)WCi+1 (β,�i+1)

=
(

�i

�i+1

)qi+1−qi

. (34)

We show in Fig. 7 results for our quantum-classical parallel
tempering (QCPT) algorithm along different curves in the
β-� plane. The parallel tempering algorithm gives excellent
agreement with numerical calculations using PIQMC with
a temperature annealing protocol for every individual (β,�)
point (as in our comparisons in the previous section).7 We
nicely see the precursor of the quantum phase transition in our
results.

7The QPT algorithms used 105 swap sweeps with 10 MC sweeps
per swap, whereas the PIQMC algorithm used 106 sweeps and 5120
Trotter slices. Both algorithms took 104 measurements with 100
sweeps between measurements.
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FIG. 7. Classical parallel tempering (CPT), quantum parallel
tempering (QPT), and quantum-classical parallel tempering (QCPT).
Results for an instance with N = 60 using our generalized parallel
tempering algorithm along different curves in the β-� plane. Shown
are the cases for CPT (red), QPT (green), and a case where � =
(10β)−1/2 (blue). To verify the accuracy of our algorithm, we also
show the PIQMC prediction (solid line).

It is important to note that while parallel tempering along
one-dimensional curves in the β-� plane is certainly possible
in other QMC techniques, they are not natural in the following
sense. Both discrete-time PIQMC and the continuous-time
SSE (in their standard applications) require setting up the size
of imaginary-time dimension prior to execution. In PIQMC,
the number of slices is a user-chosen parameter and in SSE
the size is determined in a dynamical way prior to the
full run. In both cases, all PT replicas must use the same
imaginary-time size for a swap to take place, which then
requires the PT simulation to use the largest imaginary-time
size needed over all β-� points along the chosen curve. This
can be a source of considerable inefficiency since many points
in the β-� plane may not normally require such a large
number of imaginary-time slices (e.g., if β and/or � are
small).

C. Benchmarks against PIQMC and SSE

To demonstrate the advantages of ODE over PIQMC and
SSE, we carry out multiple runs of parallel tempering QMC
simulations on random MAX2SAT instances augmented with
a transverse field [see Eq. (9)] with various problem sizes N ,
a range of β (inverse temperature), and � (quantum strength)
values.

We begin by comparing ODE against the discrete-time
PIQMC algorithm. Since the value of q determines the cost
of calculating the GBWs, our results in Fig. 6 indicate that
the ODE algorithm can have significant advantages in the
low-� but large-β regime. For the 3-regular MAX2SAT class,
this would be in the spin-glass phase, where we can expect
QMC algorithms to become less efficient. We quantify this
possible advantage by comparing the performance of our
algorithm against PIQMC and SSE in this regime. In Fig. 8,
we compare the warm-up time required to reach close to the
thermal state for ODE and PIQMC. We observe that in order
for the (discrete-time) PIQMC algorithm to achieve this, we
need a sufficiently large Trotter slicing (>1024), which in
turn increases the time cost of performing a sweep in the
simulations. In this regard, the ODE algorithm reaches the
thermal state in less computational time, with even a factor
of 10 advantage when compared to PIQMC with 2048 Trotter
slices.

Runtime comparisons of ODE against both PIQMC and
SSE are summarized in Figs. 9 and 10. Both figures depict
the performance of ODE, PIQMC, and SSE as it is reflected
by the thermal average of x magnetization HX = −∑N

i=1 σx
i

(other observables exhibit similar behavior) for increasing
problem size and different values of β and �. Each data
point in each of the panels is an average over eight random
instances.

The first of the figures, Fig. 9, depicts the results of PT
simulations done along a fixed � line in the β-� plane, that
is, different β values. As is clearly evident from the figure,
while for large temperatures (β = 2) the performance of all
three algorithms is comparable, with decreasing temperature

FIG. 8. Performance of ODE vs PIQMC. Required simulation time to reach a thermal state for � = 0.1 and β = 30. Here, we calculate
the specific heat per spin C = β2(〈H 2〉 − 〈H 〉2)/N . For these values, we expect the thermal state to have 〈H 2〉 ≈ 〈H 〉2 since the thermal state
should have almost all its weight on the ground state. (a) PIQMC with 512 Trotter slices (Nτ ). (b) PIQMC with 1024 Trotter slices. (c) PIQMC
with 2048 Trotter slices. The warm-up of both ODE and PIQMC simulations involved a linear anneal in β from an initial value that of 0.1 to
the target β of 30. The number of warm-up sweeps was varied from 102 to 106. After the warm-up, 100 measurements are performed, with 102

sweeps between measurements. We ran 103 independent simulations. Error bars correspond to 2σ generated by performing 103 bootstrap over
the mean values from the 103 independent simulations [34].
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FIG. 9. Thermal average of the off-diagonal Hamiltonian as obtained by ODE, PIQMC, and SSE for a fixed � = 0.1. Results
are obtained using PT simulations of different system sizes N = 60, 96, and 128, each with 11 replicas at inverse temperatures
β ∈ {0.1,0.2,0.5,1,2,5,10,20,30,40,50}. A subset of the results are shown for β = 2, 10, and 50. Each data point is the mean value of
103 bootstraps performed on the 500 measurements of the x-magnetization-per-spin taken in the course of simulations with different runtimes
(horizontal axis), while the error bars correspond to the 2σ confidence interval generated by the bootstrap. For PIQMC we use 1280 Trotter
slices. As is evident, ODE converges to the true value at times orders of magnitude faster than both SSE and PIQMC [34].

and as problem sizes grow, ODE performs up to four and
more orders of magnitude faster than the other two algorithms.
Specifically, a large fraction of the instances did not finish

running over the 24 hour window allocated for each of
the simulations, whereas ODE had converged after a few
seconds.

FIG. 10. Thermal average of the off-diagonal Hamiltonian as obtained by ODE, PIQMC, and SSE for a fixed β = 10. Results are obtained
using PT simulations of different system sizes N = 60 and 96, each with 5 replicas at transverse-field strengths � ∈ {0.1,0.2,0.3,0.4,0.5}.
A subset of the results are shown for � = 0.3, 0.4, and 0.5. Each data point is the mean value of 103 bootstraps performed on the 500
measurements of the x-magnetization-per-spin taken in the course of simulations with different runtimes (horizontal axis), while the error bars
correspond to the 2σ confidence interval generated by the bootstrap. For PIQMC we use 1280 Trotter slices. Here, all three algorithms perform
similarly [34].
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FIG. 11. Thermal average of the off-diagonal Hamiltonian as obtained by ODE and PIQMC at large � values. Results are obtained using
PT simulations of different system sizes N = 60, 96, and 128, each with 7 replicas at inverse temperatures β ∈ {0.1,0.2,0.5,1,2,5,10}. Results
are shown for β = 10. Each data point is the mean value of 103 bootstraps performed on the 500 measurements of the x-magnetization-per-spin
taken in the course of simulations with different runtimes (horizontal axis), while the error bars correspond to the 2σ confidence interval
generated by the bootstrap. For PIQMC we use 1280 Trotter slices. As is evident, even at large � values, ODE can converge faster than PIQMC
by several orders of magnitude [34].

Figure 10 depicts the results of PT simulations done
along a fixed β line in the β-� plane, that is, different
� values. Interestingly, here all three algorithms seem to
perform comparably, indicating that ODE is, as expected, at
its optimum in near classical regimes.

To demonstrate the performance of the ODE algorithm
away from the “almost classical” regime, i.e., in regimes where
the quantum strength parameter � is not small, we show in
Fig. 11 some results obtained for � = 0.4 and 0.5 for different
problem sizes. Here too, we find a regime where ODE con-
verges faster to the true values by several orders of magnitude
than PIQMC (not shown in this figure are SSE results, which
we expect perform similarly to PIQMC in these regimes as is
evident from the data presented in the preceding figures).

V. CONCLUSIONS

We have developed a parameter-free Monte Carlo scheme
designed to simulate quantum and classical many-body sys-
tems under a single unifying framework. The method is based
on a decomposition of the quantum partition function that
can be viewed as an expansion in the “quantumness” of the
system. We have argued that the classical limit of the expansion
together with the elastic quantum dimension make the method
suitable to simulate models that exhibit the full range of
quantum and classical behavior, specifically, systems with a
non-negligible glassy classical component, which are often
difficult to simulate using existing QMC techniques. We have
shown that a single weight in the proposed decomposition
corresponds to infinitely many weights of the standard SSE
algorithm and have demonstrated the effectiveness of our
algorithm using instances from 3-regular MAX2SAT where
clear advantages can be observed over PIQMC in the near-
classical regime.

This near-classical regime is particularly relevant in the
case of the quantum spin glasses when additional structure

occurs after the paramagnetic spin-glass phase transition, as
numerically shown for 3-regular MAX2SAT in Ref. [13]. An
analytic study of the two-pattern Gaussian Hopfield model in
Ref. [35] exhibits similar rich behavior in terms of O(log N )
ground state minima in the spin-glass phase. Such examples
are particularly relevant for adiabatic approaches to quantum
computation like quantum annealing [36–45], where these
minima in the spin-glass phase may be the relevant bottlenecks
for the quantum algorithm as opposed to the critical point
associated with the paramagnetic spin-glass phase transition.

Additionally, the feature of naturally transitioning from the
quantum to the classical regime also lends itself to simulating
quantum annealing. Since quantum annealing processes are
typically simulated by applying equilibrium QMC algorithms
to a slowly changing Hamiltonian interpolating between a
transverse-field initial Hamiltonian and a typically classical
final Hamiltonian (see, for example, Refs. [7,13,14,30,46–50];
a notable exception to this approach is Ref. [26]), it has
become crucially important to devise quantum Monte Carlo
approaches capable of effectively simulating the full range of
the quantum annealing process. We believe our algorithm will
be particularly suited for this purpose.

We also showed how the algorithm naturally unifies
classical and quantum parallel tempering into a single parallel
tempering process along curves in the classical-quantum β-�
plane. This highlights a key feature of our method, which
is that it naturally bridges the algorithmic gap between
quantum Monte Carlo and classical (thermal) Monte Carlo.
This property opens up the possibility of exploring optimal
curves that speed up equilibration in the classical-quantum
plane.

We have demonstrated how the algorithm applies to the
transverse-field Ising model. It would be interesting to see
how it performs with respect to existing techniques on other
models considered difficult to simulate. Another aspect worth
studying is the existence of additional updates that are more
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global in nature in order to further speed up convergence.
These will more likely have to be specifically tailored to the
system in question. Last, methods to facilitate the evaluation
of the generalized Boltzmann weights are of significance as
these scale in the worst case as the square of the imaginary-
time dimension. More efficient methods will serve to further
increase the usefulness of the ODE algorithm. We leave the
resolution of these questions for future work.
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APPENDIX A: PARTITION FUNCTION DERIVATION

Here, we discuss in more detail the derivation of the
partition function decomposition to as sum of Boltzmann-type
weights. We begin by recalling that the partition function may
be written as

Z =
∑

z

∞∑
q=0

∑
{Sq }

�q〈z|Sq |z〉
( ∞∑

n=q

βn(−1)n−q

n!

×
∑

∑
ki=n−q

Ek0 (z0) · . . . · Ekq (zq)

⎞
⎠, (A1)

where E(zi) = 〈zi |Hc|zi〉 and {Sq} denotes the set of all
sequences of length q of “bare” off-diagonal operators Vj . The
term in large parentheses sums over the diagonal contribution
of all 〈z|Sn|z〉 terms that correspond to a single 〈z|Sq |z〉 term.
The various {|zi〉} states are the states obtained from the action
of the ordered Vj operators in the sequence Sq on |z0〉, then
on |z1〉, and so forth.8 After a change of variables, n → n + q,
we arrive at

Z =
∑

z

∞∑
q=0

∑
{Sq }

〈z|Sq |z〉
(

(β�)q
∞∑

n=0

(−β)n

(n + q)!

×
∑

∑
ki=n

Ek0 (z0) . . . Ekq (zq)

⎞
⎠. (A2)

8For example, for Sq = Viq . . . Vi2Vi1 , we obtain |z0〉 =
|z〉,Vi1 |z0〉 = |z1〉,Vi2 |z1〉 = |z2〉, etc.

Abbreviating Ei ≡ E(zi) (note that the various {Ei} are
functions of the |zi〉 states created by the operator sequence
Sq), the partition function is now given by

Z =
∞∑

q=0

(−�)q
∑
z,{Sq }

〈z|Sq |z〉

×
⎛
⎝ (∞,...,∞)∑

{ki }=(0,...,0)

(−β)q

(q + ∑
ki)!

q∏
j=0

(−βEj )kj

⎞
⎠. (A3)

A feature of the above infinite sum is that the term in large
parentheses can be further simplified to give the exponent of
divided differences of the Ei’s (we give a short description
of divided differences and an accompanying proof of the
above assertion in Appendix B), namely, it can be succinctly
rewritten as∑

{ki }

(−β)q

(q + ∑
ki)!

q∏
j=0

(−βEj )kj = e−β[E0,...,Eq ],

where [E0, . . . ,Eq] is a multiset of energies and where a
function F [·] of a multiset of input values is defined by

F [E0, . . . ,Eq] ≡
q∑

j=0

F (Ej )∏
k �=j (Ej − Ek)

(A4)

and is called the divided difference [19,20] of the function
F [·] with respect to the list of real-valued input variables
[E0, . . . ,Eq]. In our case, F [·] is the function

F [E0, . . . ,Eq] = e−β[E0,...,Eq ]. (A5)

A feature of divided differences is that they are invariant under
rearrangement of the input values, so the input sequence forms
a multiset, i.e., a generalization of the mathematical set which
allows repetitions but where order does not play a role. The
above infinite sum over energies may be simplified to

Z =
∑

z

∞∑
q=0

∑
{Sq }

〈z|Sq |z〉(−�)qe−β[E0,...,Eq ]. (A6)

Furthermore, the mean value theorem for divided differences
[19,20] together with the monotonicity of the exponential
function allows us to write

e−β[E0,...,Eq ] = dq(e−βE)

dEq

∣∣∣∣
E=E(0,...,q)

= (−β)qe−βE(0,...,q)

q!
. (A7)

We thus arrive at an expression for the partition function in
terms of classical “effective energies” as

Z =
∑
{z}

∑
q

∑
{Sq }

(β�)q

q!
〈z|Sq |z〉e−βE(0,...,q) , (A8)

where E(0,...,q) is the “effective classical energy” of the
configuration, calculated from the multiset of energies
[E0, . . . ,Eq] generated from 〈z|Sq |z〉 and from β. The
effective classical energy is a single real-valued energy
E(0,...,q) ∈ (min[E0, . . . ,Eq], max[E0, . . . ,Eq]). Specifically,
E(0,...,q) lies within the spectrum of the classical Hamiltonian.
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To calculate E(0,...,q), one may use the divided differences
recursion relation (see Appendix B) which in terms of effective
classical energies becomes

(−β)q

q!
e−βE(0,...,q) = (−β)q−1

(q − 1)!

(e−βE(0,...,q−1) − e−βE(1,...,q) )

E0 − Eq

. (A9)

Isolating E(0,...,q), we arrive at

E(0,...,q) = Ē − 1

β
log

2q sinh β�E

β(Eq − E0)
, (A10)

where 2Ē = E(1,...,q) + E(0,...,q−1) and 2�E = E(1,...,q) −
E(0,...,q−1). In the limiting case where all energies in the se-
quence are equal, the above relation neatly becomes E(0,...,q) =
E(0) = E0. The initial condition for the above recursion is
simply e−βE(i) = e−βEi . An illustration of how the recursion
relation is used to calculate E(0,...,q) is depicted in Fig. 2 and is
discussed in more detail in Appendix C.

APPENDIX B: NOTES ON DIVIDED DIFFERENCES

We provide below a brief summary of the concept of divided
differences which is a recursive division process. This method
is typically encountered when calculating the coefficients in
the interpolation polynomial in the Newton form.

The divided difference [19,20] of a function F (·) is
defined as

F [x0, . . . ,xq] ≡
q∑

j=0

F (xj )∏
k �=j (xj − xk)

(B1)

with respect to the list of real-valued input variables
[x0, . . . ,xq]. The above expression is ill defined if some of
the inputs have repeated values, in which case one must
resort to a limiting process. For instance, in the case where
x0 = x1 = · · · = xq = x, the definition of divided differences
reduces to

F [x0, . . . ,xq] = F (q)(x)

q!
, (B2)

where F (n)(·) stands for the nth derivative of F (·). Divided
differences can alternatively be defined via the recursion
relations

F [xi, . . . ,xi+j ] = F [xi+1, . . . ,xi+j ] − F [xi, . . . ,xi+j−1]

xi+j − xi

,

(B3)

with i ∈ {0, . . . ,q − j}, j ∈ {1, . . . ,q} with the initial
conditions

F [xi] = F (xi), i ∈ {0, . . . ,q} ∀ i. (B4)

A function of divided differences can be defined in terms of
its Taylor expansion. In the case where F (x) = e−βx , we have

e−β[x0,...,xq ] =
∞∑

n=0

(−β)n[x0, . . . ,xq]n

n!
. (B5)

Moreover, it is easy to verify that

[x0, . . . ,xq]q+m =

⎧⎪⎨
⎪⎩

m < 0, 0
m = 0, 1

m > 0,
∑∑

kj =m

∏q

j=0 x
kj

j .

One may therefore write

e−β[x0,...,xq ] =
∞∑

n=0

(−β)n[x0, . . . ,xq]n

n!

=
∞∑

n=q

(−β)n[x0, . . . ,xq]n

n!

=
∞∑

m=0

(−β)q+m[x0, . . . ,xq]q+m

(q + m)!

=
∞∑

m=0

(−β)q

(q + m)!

∑
∑

kj =m

q∏
j=0

(−βxj )kj (B6)

as was asserted in Appendix A.

APPENDIX C: EVALUATION OF THE GBWS:
TECHNICAL DETAILS

The basic data structures we use to store the ODE
configuration C = (|z〉,Sq) are the classical configuration |z〉,
which is an array of N bits, and the indices for the sequence
of off-diagonal operators appearing in Sq . It is also useful to
store the following:

(i) The (q + 1) labels and indices of the classical energies
along the imaginary-time dimension.

(ii) The multiplicity table of classical energies {(mj,Ej )}
counting the number of times each energy level appears.

(iii) The pyramid: an ordered set of (q + 1)(q + 2)/2 real-
valued numbers. See Fig. 2 in the main text:

F [Ei, . . . ,Ei+j ]

= F [Ei+1, . . . ,Ei+j ] − F [Ei, . . . ,Ei+j−1]

Ei+j − Ei

. (C1)

1. The pyramid

As illustrated in Fig. 2 of the main text, the pyramid
provides a convenient way to calculate the divided difference
of e−β[E0,...,Eq ] or, equivalently, the effective classical energy
of the instantaneous configuration, namely, E(0,...,q) or EC . It
relies on the recursive relation given in Eq. (6), namely,

E(0,...,q) = Ē − 1

β
log

2q sinh β�E

β(Eq − E0)
, (C2)

where

2Ē = E(1,...,q) + E(0,...,q−1) and

2�E = E(1,...,q) − E(0,...,q−1),

with the initial conditions E(i) = Ei . In the main text, we
describe how the pyramid can be used to calculate the
effective classical energy EC associated with the instantaneous
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FIG. 12. Removal of a single energy level from the edge of the pyramid. The calculation of the effective classical energy upon a change
MC → MC − {E(z′)} requires no calculations if the removed energy level is from the edge of the pyramid. In order to illustrate this, let us
assume that the energy E(z′) = Ej (with multiplicity mj ) occurs at the rightmost edge of the pyramid P , as depicted in the left panel. The
removal of this energy from the base of the pyramid P eliminates the rightmost element for all higher levels of the pyramid, including the
topmost element, as depicted in the right panel. The new top element of the pyramid P ′ is the element labeled EC′ , which requires no further
calculation since it is inherited from the pyramid P .

configuration C. The base of the pyramid has q + 1 elements,
corresponding to the “initial” energies E(i) = Ei with i =
0 . . . q. These would be the classical energies E(zi) of the
intermediary classical states induced by the off-diagonal
operators in Sq acting on |z〉 sequentially. Let us denote
this as level zero. Level one of the pyramid, which has q

elements only, is now evaluated as follows. For each element
at level one, we invoke the recursion relation above using the
two elements below it (see Fig. 2 in the main text) at level
zero, i.e.,

E(i,i+1) = E(i) + E(i+1)

2

− 1

β
log

2 sinh β

2 (E(i+1) − E(i))

β(E(i+1) − E(i))
. (C3)

To avoid ill-defined ratios, we order the energies at level zero
such that repeated values are grouped together. In this case,
the evaluation of E(i,i+1) for E(i) = E(i+1) gives E(i,i+1) = E(i).
Similarly, level two elements are calculated via

E(i−1,i,i+1) = E(i−1,i) + E(i,i+1)

2

− 1

β
log

4 sinh β

2 (E(i−1,i) − E(i,i+1))

β(E(i+1) − E(i−1))
. (C4)

This procedure can be continued until the top level (level q)
of the pyramid is reached, which gives the value of EC =
E(0,....q) the effective classical energy of the configuration, from
which the GBW is calculated via Eq. (8).

2. Virtual vs actual moves

Naively, calculating the value of a GBW, or equivalently
the effective classical energy of a configuration, requires
(q + 1)(q + 2)/2 operations as the number of blocks in the
pyramid. However, small changes to an already evaluated
pyramid generate a new pyramid whose GBW is easier to
evaluate. For instance, the GBW associated with the removal
of a single energy value MC → MC − {E(z′)} requires no
calculations if the to-be-removed energy E(z′) appears at an
outer edge of the base level. This is illustrated in Fig. 12. (It
can be shown that similar tricks may be applied even if the
energy level to be removed is from the “bulk” of the pyramid.)
Similarly, the addition of a single energy level often requires
only O(q) operations.

A key property of the divided difference of a function
is that it is invariant under reordering of the input values.
In the context of our “pyramid scheme” of calculating the
divided difference, this means that while the ordering of
groups of identical energies in the multiplicity table changes
the intermediate values of the pyramid, it does not change
the value of the topmost level of the pyramid. Therefore,
by manipulating the ordering of the energies such that
local changes to the multiset of energies (as occurs for the
local swap, block swap and annihilation and creation moves
described in the main text) occur at the edges of the pyramid,
it is possible to minimize the number of computations needed
to determine the topmost level of the pyramid from O(q2)
to O(q) or O(1). This allows us to calculate the weights of
proposed changes more efficiently than recalculating the entire
pyramid, although this procedure may leave some elements of
the pyramid undefined. These virtual moves are highly useful
both for updates as well as in measurement steps where virtual
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FIG. 13. Addition of an energy level to the pyramid. The
multiplicity table is such that the energy Ei appears mi times (the
multiplicity of the energy Ei), with

∑
i mi = q + 1. Let us consider

that a proposed move changes the multiplicity of the energy E2,
i.e., m2 → m2 + 1. In order to determine the pyramid P ′ associated
with this change, we perform the following manipulations to the
original pyramid P . The subpyramid associated with E2, . . . ,Ej

can be “flipped” such that the energy E2 appears at the edge of P

(dark-colored blocks on left panel). Because this manipulation does
not change the base of the subpyramid nor that of the entire P , the
values at the top level of subpyramid and P remain unaffected (the
unaffected blocks are the empty blocks on the right panel). However,
this move does change the values of other elements in P (purple
colored blocks), but we will not need to calculate them. Because E2

now appears at the edge of P , introducing an additional E2 to the
base of P (to generate P ′) requires us to recalculate the new elements
that appear at the edge of P ′, namely, only O(q) operations.

TABLE I. Computational complexity of virtual updates for local
changes to the multiplicity table. While naively the calculation of a
GBW requires O(q2) operations, changes to the GBW can be carried
out much more efficiently if the multiplicity table is only locally
perturbed.

Update Change to the energy Computational
multiset MC complexity (worst case)

Local swap MC → MC + {E(zi)} − {E(zj )} O(1)
Block swap MC → MC + {E(zi)} − {E(zj )} O(1)
Pair creation MC → MC + {E(zi),E(zj )} O(q)
Pair annihilation MC → MC − {E(zi),E(zj )} O(q)
〈Vk〉 measurement MC → MC − {E(z)} O(q)

rotations of Sq are useful. Only if the move is accepted do we
need to calculate these “missing,” or unevaluated, elements
of the pyramid. We call this process a “virtual move.” We
illustrate two such procedures in Figs. 13 and 14.

The computational complexity associated with calculating
the changes to the effective classical energy (equivalently, the
change to the GBW) due to the local updates and measure-
ments discussed in the main text is summarized in Table I.

3. Precision issues

The calculation of the effective classical energy EC and
GBWs using the recursion scheme described above may
require recursive operations on pairs of numbers of approx-
imately equal magnitude whose difference is an order of
magnitude closer to zero. If we restrict ourselves to a fixed
bit-precision representation of the numbers, the calculated
difference may be erroneous because of truncation errors.
In order to avoid this problem, it is necessary to check

FIG. 14. Removal of an energy level from the bulk of the pyramid. The multiplicity table is such that the energy Ei appears mi times
(the multiplicity of the energy Ei), with

∑
i mi = q + 1. Let us consider that a proposed move changes the multiplicity of the energy E2,

i.e., m2 → m2 + 1. In order to determine the pyramid P ′ associated with this change, we perform the following manipulations to the original
pyramid P . The subpyramid associated with E2, . . . ,Ej can be “flipped” such that the energy E2 appears at the edge of P (dark-colored blocks
on left panel). Because this manipulation does not change the base of the subpyramid nor that of the entire P , the values at the top level of
subpyrmaid and P remain unaffected (the unaffected blocks are the empty blocks on the right panel). However, this move does change the
values of other elements in P (purple colored blocks), but we will not need to calculate them. Because E2 now appears at the edge of P ,
introducing an additional E2 to the base of P (to generate P ′) requires us to recalculate the new elements that appear at the edge of P ′, namely,
only O(q) operations.
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periodically whether an increase in the bit precision used
changes the result. In our simulations, we initially use 53
bits for the significand (also known as mantissa), which is
the number used for “double” precision in the ANSI/IEEE-
754 standard, but increase the number of bits by factors
of 1.2 when necessary using the GNU Multiple-precision
Binary Floating-point Library with Correct Rounding
library [51].

APPENDIX D: CALCULATION OF Np(q) [EQ. (15)]

The calculation of Np(q), the number of Sq sequences
comprised of q off-diagonal σx

i operators (i = 1 . . . N) such
that each operator appears an even number of times is carried
out as follows [52]. By definition,

Np(q) =
∑

∑N
i=1 ki=q,kieven

(
n

k1k2 . . . kN

)
, (D1)

where ki is the number of times that operator σx
i appears

in the sequence. We note that
(

n

k1k2...kN

)
is the coefficient of

x
k1
1 x

k2
2 . . . x

kN

N in the expansion of (x1 + x2 + · · · + xN )q . The
sum of all these coefficients is obtained by substituting x1 =
x2 = · · · = xN . To eliminate odd powers k1, we can consider
the expansion of

1
2 [(x1 + x2 + · · · + xN )q + (−x1 + x2 + · · · + xN )q]. (D2)

Continuing this way, we eventually arrive at

Np(q) = 1

2N

∑
ti=0,1

[(−1)t1 + (−1)t2 + · · · + (−1)tN ]q, (D3)

which can be further simplified to

Np(q) = 1

2N

∑
k=0

(
N

k

)
(N − 2k)q . (D4)
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