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We present a concise yet effective central-moments-based lattice Boltzmann method with an accelerated
convergence to the steady state through preconditioning. It is demonstrated that the proposed scheme reduces
to a slight modification of the unaccelerated one, as the preconditioning affects only the equilibrium state.
Different from previous efforts carried out within the lattice Boltzmann community, the present scheme is built
on an original model. In fact, the corresponding collision operator loses the pyramidal orchestrated nature that is
typical of the cascaded scheme, hence we coin the name “noncascaded.” Our model is very general, characterized
by highly intelligible formulations, simple to implement, and it can be derived for any lattice velocity space.
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I. INTRODUCTION

Originated from the lattice gas automata, the lattice
Boltzmann method (LBM) is nowadays a consolidated ap-
proach to simulate viscous flows [1–3]. Instead of solving
the macroscopic-based Navier-Stokes equations, the problem
reduces to predict the mesoscopic motion of distributions (or
populations) of fictitious particles, namely fi , colliding and
streaming along the link of a fixed Cartesian lattice. The
governing lattice Boltzmann equation (LBE) is explicit in time
and it recovers the solution of the Navier-Stokes equations for
incompressible flow with second-order of accuracy [4]. In the
classical formulation, the collision process leads populations
to relax to an equilibrium state with a common unique
rate and it is known as the Bhatnagar-Gross-Krook (BGK)
approximation [5]. Among the most attractive features, the
algorithmic simplicity of the BGK LBM has promoted its
phenomenal success.

The LBM is an intrinsically time-dependent scheme. As a
consequence, it has been widely adopted to simulate unsteady
phenomena, e.g., suspensions flows, turbulence, and fluid-
structure interaction [6–11]. Unfortunately, it requires a very
large number of time steps to obtain steady-state predictions
[12] as it needs to pass through a transient phase. This
drive-through-transient penalty can dramatically impact on
the computational cost. Moreover, aiming at recovering the
solution of the incompressible Navier-Stokes equations, one
is tempted to carry out simulations at a Mach number (Ma) as
small as possible. In fact, the LBE introduces a compressibility
error that is proportional to Ma2 [13]. However, at low Ma,
a very large disparity arises between the speed of sound
and the fluid convection, thus further delaying the reach of
the steady state. A possible solution to this issue can be
found in time-independent LB schemes [14–16]. Moreover,
the possibility to use larger time steps has been discussed in
[17–21] by means of an implicit LBE. However, the price to
pay is the loss of the natural simplicity of the BGK scheme.

From a more formal viewpoint, one should consider that
the LBE is hyperbolic with an explicit time marching scheme.
Vanishing Mach scenarios correspond to high values of the
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condition number, i.e., the ratio of the maximum to minimum
eigenvalues of the hyperbolic system, that scales as ∼Ma−1.
The application of a preconditioner in fluid dynamics has
proved to reduce the condition number, as it is able to damp
the difference in the propagation speed of two quantities [22].
Pointing out this effect, Guo et al. [23] suggested to relax popu-
lations to an equilibrium state modified by a factor γ , with 0 <

γ � 1. This seminal contribution demonstrated that it is pos-
sible to drastically accelerate the convergence to steady state,
while keeping all the attractive characteristics typical of the
BGK LBM. Later, Premnath et al. [24] extended this approach
to multiple-relaxation time (MRT) in the presence of forcing
terms. Another MRT effort has been carried out by Izquierdo
and Fueyo [25], who also have proposed optimal values of the
preconditioning factor [26]. Interestingly, Izquierdo and Fueyo
[26] indicated that a preconditioning technique should possess
some highly desirable properties, such as an ideal acceleration
ratio, a general formulation, and a simple implementable
procedure. Moreover, it should preserve the collide-and-stream
process for a given LB model. The aim of the present paper is to
propose an approach exhibiting all these compelling features.

Here, we derive a LB scheme with preconditioning in the
framework of a collision operator written in terms of central
moments (CMs). In 2006, Geier et al. [27] introduced the
so-called “cascaded” collision operator. This name comes
from the particular hierarchical structure of the kernel, where
the postcollision state of a certain moment at a given order
depends on lower order ones, and not vice versa. Building
on this concept, many works demonstrated that the cascaded
operator can impressively enhance the stability of the LBM
[27–35]. Within this approach, a very recent and notable
contribution has been proposed by Hajabdollahi and Premnath
[36] to improve the low-Mach steady-state convergence of the
LBM. With respect to this valuable effort, we adopt a recently
introduced nonorthogonal CM-based model that loses the
pyramidal topological pattern of the collision process [37–40].
Therefore, it can be interpreted as a “noncascaded” CM-
based approach. Furthermore, our model entails an intelligible
analytical formulation that can be easily extended to any
lattice velocity space, as demonstrated. Moreover, the practical
implementation does not represent a hard task. In addition, we
demonstrate that preconditioned raw-moments-based kernels
can be derived as a particular case of our algorithm. Numerical
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tests highlight the very good numerical properties in terms
of accuracy and convergence of our approach, with the
preconditioning factor being able to remarkably accelerate the
convergence to the steady state.

The rest of the paper is organized as follows. In Sec. II,
preconditioned approaches are discussed with particular em-
phasis on the proposed noncascaded model. Then, results from
numerical tests are shown in Sec. III. Finally, some conclusions
are drawn in Sec. IV.

II. PRECONDITIONED CMS-BASED LBM

In this section, first the BGK model by Guo et al. [23] is
recalled. Then, our proposed scheme is presented.

A. BGK formulation by Guo et al.

Let us focus on a two-dimensional context, where the
D2Q9 LB model is adopted to predict the evolution of the
populations |fi〉 = [f0, f1, f2, f3, f4, f5, f6, f7, f8]�. Here
and henceforth, let us use the symbols |•〉 and � to denote
a column vector and the transpose operator, respectively.
Moreover, the superscripts eq and � indicate equilibrium and
postcollision quantities, respectively. In addition, the index i

varies as i ∈ [0 : l], with l = 8 in this case. Lattice directions,
ci = [|cxi〉, |cyi〉], are defined as

|cxi〉 = [0, 1, 0,−1, 0, 1,−1,−1, 1]�,

|cyi〉 = [0, 0, 1, 0,−1, 1, 1,−1,−1]�. (1)

Let us denote the Eulerian basis as x = [x,y], the time as t ,
and the time step as �t . The BGK LBE reads as follows:

fi(x + �tci ,t + �t) = fi(x,t) + ω
[
f

eq

i (x,t) − fi(x,t)
]
,

(2)

that as usual is divided into two parts, namely collision,

f �
i (x,t) = fi(x,t) + ω

[
f

eq

i (x,t) − fi(x,t)
]
, (3)

and streaming,

fi(x + �tci ,t + �t) = f �
i (x,t), (4)

where ω is the relaxation frequency. To lighten the notation,
the dependence on space and time is implicitly assumed in the
rest of this section. The equilibrium state is defined as

f
eq

i = wiρ

[
1 + ci · u

c2
s

+ (ci · u)2

2γ c4
s

− u · u
2γ c2

s

]
, (5)

where cs = 1/
√

3 is the lattice speed of sound, u = [ux,uy] is
the velocity vector, and the weighting factors are w0 = 4/9,
w1...4 = 1/9 and w5...8 = 1/36 [13]. As usual, macroscopic
variables are available locally as the zeroth and first order
moments of the particle distribution functions, i.e.,

ρ =
∑

i

fi, ρu =
∑

i

fi ci , (6)

respectively.
By performing the Chapman-Enskog expansion, Guo et al.

[23] demonstrated that Eq. (2) recovers the preconditioned

Navier-Stokes equations, i.e.,

∂ρ

∂t
+ ∇ · (ρu) = 0,

∂(ρu)

∂t
+ 1

γ
∇ · (ρuu) = − 1

γ
∇p† + 1

γ
∇ · (ρνS), (7)

where p† = γ c2
s ρ is the pressure and S = ∇u + (∇u)�.

In order to elucidate the role of the preconditioning factor
γ , Eqs. (7) can be rewritten as

∂ Q
∂t

+ P A
∂ Q
∂x

+ P B
∂ Q
∂y

= P R, (8)

with R is a term related to the viscosity, P =
diag(1,γ −1,γ −1) is a preconditioning matrix, A = ∂ E/∂ Q,
and B = ∂ F/∂ Q. The remaining quantities are defined
as Q = [ρ,ρux,ρuy], E = [ρux,ρ(u2

x + c2
s ),ρuxuy]�, and

F = [ρuy,ρuxuy,ρ(u2
y + c2

s )]�. The stiffness of the problem
can be estimated by computing the eigenvalues λ of the
preconditioning matrix P A, i.e.,

λ(P A) = 1

γ
[ux,ux − c†s ,ux + c†s ], (9)

with c
†
s = ux

√
1 − γ + (γ cs/ux)2. It can be immediately

noted that γ = 1 leads to c
†
s ≡ cs , thus implying a very large

condition number for small values of Ma. Conversely, one
can achieve that c

†
s → ux if γ → 0. In other words, it is

possible to reduce the disparity between the fluid propagation
and the speed of the acoustic waves by properly tuning the
parameter γ . By adopting this method, a numerical simulation
is characterized by two Mach numbers: a real one, Ma = u/cs ,
and an effective one, Ma† = u/c

†
s , where u is a certain

characteristic velocity. Notice that the two dimensionless
quantities are related as Ma† = √

γ Ma.
Preconditioning for steady-state solutions. By collecting

the parameter γ , the preconditioned Navier-Stokes equations
can be equivalently rewritten as

∂ρ

∂t
+ ∇ · (ρu) = 0,

γ
∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p† + ∇ · (ρνS), (10)

where the existence of a preconditioned time derivative stems
out. In its discrete form and given the fact that usually γ 	 1,
the preconditioned time step may be some order of magnitude
higher than the unpreconditioned one. Consistently, it may play
a detrimental effect on the temporal accuracy of the explicit
time marching scheme, because the CFL condition may be vio-
lated. Conversely, the incidence of the parameter γ annihilates
at the steady state, where the time derivative vanishes (i.e.,
∂u
∂t

≡ 0) and the method recovers correctly the steady-state
Navier-Stokes equations. Therefore, the preconditioned LB
methods presented in [23,36] focus on stationary solutions, as
well as the algorithm proposed in the following.

B. Present two-dimensional model

In order to derive a CMs-based formulation, let us shift the
lattice directions by the local fluid velocity [27]:

|c̄xi〉 = |cxi − ux〉, |c̄yi〉 = |cyi − uy〉. (11)

063308-2



PRECONDITIONED LATTICE BOLTZMANN METHOD FOR . . . PHYSICAL REVIEW E 96, 063308 (2017)

Let us adopt the following basis:

T̄ = [T̄0, . . . , T̄i , . . . , T̄8], (12)

with

|T̄1〉 = |c̄ix〉, |T̄2〉 = |c̄iy〉,
|T̄3〉 = ∣∣c̄2

ix + c̄2
iy

〉
, |T̄4〉 = ∣∣c̄2

ix − c̄2
iy

〉
,

(13)
|T̄5〉 = |c̄ix c̄iy〉, |T̄6〉 = ∣∣c̄2

ix c̄iy

〉
,

|T̄7〉 = ∣∣c̄ix c̄
2
iy

〉
, |T̄8〉 = ∣∣c̄2

ix c̄
2
iy

〉
.

The column vector |T̄0〉 possesses nine unitary components.
Notice that the matrix T̄ allows us to perform the transfor-
mation from populations to moments. Then, a suitable set of
central moments is represented by

|ki〉 = [k0, . . . , ki, . . . , k8]�, (14)

whose members are defined as

|ki〉 = T̄ �|fi〉. (15)

Each moment relaxes to an equilibrium state, k
eq

i , defined
through Eq. (15) by replacing fi with f

eq

i [see Eq. (5)]. The
resultant expressions of the equilibrium CMs are the following:

k
eq

0 = ρ, k
eq

1 = 0,

k
eq

2 = 0, k
eq

3 = ρc2
s

[
2 + 3

(
u2

x + u2
y

)1 − γ

γ

]
,

k
eq

4 = ρ
(
u2

x − u2
y

)1 − γ

γ
, k

eq

5 = ρuxuy

1 − γ

γ
,

k
eq

6 = ρu2
xuy

2γ − 3

γ
, k

eq

7 = ρuxu
2
y

2γ − 3

γ
,

k
eq

8 = ρc4
s

[
1 + 3

(
u2

x + u2
y

)1 − γ

γ
+ 27u2

xu
2
y

2 − γ

γ

]
. (16)

Similarly to the preconditioned BGK LBM [23], it can
be immediately noted that these quantities reduce to the
unaccelerated one if γ = 1 [37]. By relaxing the moment ki

with a frequency ωi , the collision operator reads as follows:

k�
i = ki + ωi

(
k

eq

i − ki

)
, with i = 3 . . . 8. (17)

Only the frequencies related to k4 and k5, i.e., ω4 and ω5, are
linked to the fluid kinematic viscosity as

ν =
(

1

ω4,5
− 1

2

)
c2
s γ, (18)

with ω4,5 = ω4 = ω5. The frequency ω3 is related to the bulk
viscosity, whereas ω6, ω7, and ω8 are associated to third- and
fourth-order moments and can be set equal to 1 in order to
enhance the stability of the algorithm. Notice that k0, k1, and
k2 are invariant with respect to the collision, i.e.,

k0 = k
eq

0 = k�
0 = ρ,

k1 = k
eq

1 = k�
1 = 0,

k2 = k
eq

2 = k�
2 = 0. (19)

Let us collect postcollision central moments and popula-
tions as

|k�
i 〉 = [ρ, 0, 0, k�

3, . . . , k�
8]�, |f �

i 〉 = [f �
0 , . . . ,f �

8 ]�, (20)

respectively. The latter are readily available as

|f �
i 〉 = (T̄ �)−1|k�

i 〉, (21)

and, eventually, are streamed. In the Supplemental Material,
a script [41] allows the reader to perform the symbolic
manipulations to obtain all the involved quantities. Within the
typical time step (from t to t + �t), our proposed approach
unravels through the following actions:

(1) compute macroscopic variables, i.e., ρ and u;
(2) evaluate the precollision, |ki〉, and equilibrium, |keq

i 〉,
moments;

(3) apply the collision operator to obtain |k�
i 〉;

(4) reconstruct the postcollision population |f �
i 〉 by

Eq. (21);
(5) stream and advance in time.
A proof of consistency of our method can be shown by

simple algebraic manipulations. If one poses ω = 1, then
the postcollision populations will match the equilibrium ones
in the BGK model. A single-relaxation-time model can be
derived from our proposed one by setting ωi = ω = 1. In this
case, the postcollision CMs will be equal to their equilibrium
state. Now, if we reconstruct the populations, it is found that
they reduce exactly to those at the equilibrium. Therefore, we
have proved that the present scheme collapses perfectly into
the BGK one when all the moments relax at a common rate.

1. Noncascaded approach

As mentioned in the Introduction, central moments were
introduced by Geier et al. [27], who presented the concept
of “cascaded” method. This name stems from the fact that
the collision operator has a hierarchical structure. Conversely,
our noncascaded formulation loses the orchestrated nature of
the original scheme, resulting in a model possessing some
very attractive features. In fact, it is very general and shows
an easier-to-handle formulation, as it can be extended to any
lattice velocity space. Moreover, it can be adopted to recover
other different sets of equations, as shallow waters ones [42],
without involving any complicated derivation. In order to
exploit possible discrepancies in the results provided by the
two methods, we perform a comparison in the Appendix.

The key point of our approach lies in the definition of the
transformation matrix as the sum of two contributions, i.e.,

T̄ = T + S. (22)

The first term at the right hand side is computed without
shifting the lattice directions by the local fluid velocity.
Therefore, it represents a transformation matrix allowing us to
decompose the collision operator in the space of raw moments
[43]. In the D2Q9 space, the matrix T reads as follows:

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0
1 0 1 1 −1 0 0 0 0
1 −1 0 1 1 0 0 0 0
1 0 −1 1 −1 0 0 0 0
1 1 1 2 0 1 1 1 1
1 −1 1 2 0 −1 1 −1 1
1 −1 −1 2 0 1 −1 −1 1
1 1 −1 2 0 −1 −1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Conversely, the second term accounts only for the above-
mentioned shift. Clearly, one can observe that our proposed
CM-based model degrades into a raw-moments-based one
when T̄ = T (i.e., S = 0). In this sense, the matrix S can
be interpreted as a shift matrix, allowing us to move from the
frame at rest to the one comoving with the local fluid velocity.
Notice that the matrix T is related only to the desired lattice
velocity space. On the other hand, the other contribution shows
also a dependence on the space and time, i.e., S = S(x,t).
Aiming at developing a preconditioned scheme with raw
moments, we can appreciate the versatility and generality
of our scheme. In fact, the structure of the above-outlined
algorithm still persists, as one needs just to replace T̄ by T .
For the sake of completeness, we report in the following the
equilibrium raw moments |keq

i 〉:
k

eq

0 = ρ, k
eq

1 = ρux,

k
eq

2 = ρuy, k
eq

3 = ρc2
s

[
3
(
u2

x + u2
y

)
γ −1 + 2

]
,

k
eq

4 = ρ
(
u2

x − u2
y

)
γ −1, k

eq

5 = ρuxuyγ
−1,

k
eq

6 = ρc2
s uy, k

eq

7 = ρc2
s ux,

k
eq

8 = ρc4
s

[
3
(
u2

x + u2
y

)
γ −1 + 1

]
. (23)

It may be immediately noted that the adoption of central
moments generates the presence of third- and fourth-order
velocity terms in the equilibrium terms, whereas raw ones
show a dependence on the velocity up to second order.

2. Extension to the three-dimensional space

Let us demonstrate that it is possible to extend the above-
outlined algorithm to the D3Q15 and D3Q27 lattice spaces,
where the Eulerian basis is x = [x,y,z], the velocity vector is
u = [ux,uy,uz], and Eqs. (11) are completed by

|c̄zi〉 = |czi − uz〉, (24)

|czi〉 being the components of the lattice velocities in the
z direction. In the Supplemental Material, two scripts [41]
allow the reader to derive the three-dimensional models.
We anticipate that (similarly to the two-dimensional case)
both collapse into the corresponding unaccelerated (i.e.,
unpreconditioned) ones if γ = 1.

First, let us focus on the D3Q15 lattice velocity space,
where lattice directions are defined as

|cxi〉 = [0, 1,−1, 0, 0, 0, 0, 1,−1, 1,− 1, 1,− 1, 1,−1]�,

|cyi〉 = [0, 0, 0, 1,−1, 0, 0, 1, 1,−1,− 1, 1, 1,− 1,−1]�,

|czi〉 = [0, 0, 0, 0, 0, 1,−1, 1, 1, 1, 1,−1,− 1,− 1,−1]�,

(25)

and the weights are w0 = 2/9, w1...6 = 1/9 and w7...14 = 1/72.
Populations and moments can be collected as

|fi〉 = [f0, . . . ,fi, . . . ,fl]
�,∣∣f eq

i

〉 = [
f

eq

0 , . . . ,f
eq

i , . . . ,f
eq

l

]�
,

|f �
i 〉 = [f �

0 , . . . ,f �
i , . . . ,f �

l ]�,

|ki〉 = [ρ,0,0,0, . . . ,ki, . . . ,kl]
�,

∣∣keq

i

〉 = [
ρ,0,0,0, . . . ,k

eq

i , . . . ,k
eq

l

]�
,

|k�
i 〉 = [ρ,0,0,0, . . . ,k�

i , . . . ,k
�
l ]�, (26)

with l = 14. Notice that the condition

k3 = k
eq

3 = k�
3 = 0 (27)

completes Eqs. (19). With respect to the unpreconditioned
case [38], it can be noted that the algorithm implies only to
change the equilibrium central moments. These quantities (in
the preconditioned version) read as follows:

k
eq

4 = ρuxuy

1 − γ

γ
, k

eq

5 = ρuxuz

1 − γ

γ
,

k
eq

6 = ρuyuz

1 − γ

γ
, k

eq

7 = ρ
(
u2

x − u2
y

)1 − γ

γ
,

k
eq

8 = ρ
(
u2

x − u2
z

)1 − γ

γ

k
eq

9 = ρ

[
1 + (

u2
x + u2

y + u2
z

)1 − γ

γ

]
,

k
eq

10 = ρux

(
u2

x + u2
y + u2

z

)2γ − 3

γ
,

k
eq

11 = ρuy

(
u2

x + u2
y + u2

z

)2γ − 3

γ
,

k
eq

12 = ρuz

(
u2

x + u2
y + u2

z

)2γ − 3

γ
,

k
eq

13 = ρuxuyuz

2γ − 3

γ
,

k
eq

14 = ρc2
s

[
1 − (

u2
x + u2

y + u2
z

)2γ − 3

γ

+ 9
(
u2

xu
2
y + u2

yu
2
z + u2

xu
2
z

)2 − γ

γ

]
. (28)

Now, we can derive the model for the D3Q27 space. Again,
populations and CMs can be collected as in Eqs. (26) with the
care of posing l = 26. In this case, the lattice directions are

|cxi〉 = [0, 1,−1, 0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,

− 1, 0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1]�,

|cyi〉 = [0, 0, 0, 1,−1, 0, 0, 1, 1,−1,−1, 0, 0, 0, 0,

1,−1, 1,−1, 1, 1,−1,−1, 1, 1,−1,−1]�,

|czi〉 = [0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 1, 1, 1,−1,

1, 1,−1,−1, 1, 1, 1, 1,−1,−1,−1,−1]�, (29)

with the weights set to w0 = 8/27, w1...6 = 2/27, w7...18 =
1/54, w19...26 = 1/216.

Equilibrium CMs are

k
eq

4 = ρuxuy

1 − γ

γ
, k

eq

5 = ρuxuz

1 − γ

γ
,

k
eq

6 = ρuyuz

1 − γ

γ
, k

eq

7 = ρ
(
u2

x − u2
y

)1 − γ

γ
,

k
eq

8 = ρ
(
u2

x − u2
z

)1 − γ

γ
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k
eq

9 = ρ

[
1 + (

u2
x + u2

y + u2
z

)1 − γ

γ

]
,

k
eq

10 = ρux

(
u2

y + u2
z

)2γ − 3

γ
,

k
eq

11 = ρuy

(
u2

x + u2
z

)2γ − 3

γ

k
eq

12 = ρuz

(
u2

x + u2
y

)2γ − 3

γ
,

k
eq

13 = ρux

(
u2

y − u2
z

)2γ − 3

γ
,

k
eq

14 = ρuy

(
u2

x − u2
z

)2γ − 3

γ
,

k
eq

15 = ρuz

(
u2

x − u2
y

)2γ − 3

γ
,

k
eq

16 = ρuxuyuz

2γ − 3

γ
,

k
eq

17 = ρc2
s

[
1 + 2

(
u2

x + u2
y + u2

z

)1 − γ

γ

+ 9
(
u2

xu
2
y + u2

yu
2
z + u2

xu
2
z

)2 − γ

γ

]
,

k
eq

18 = ρc4
s

[
1 + 6u2

x

1 − γ

γ
+ 27

2 − γ

γ

(
u2

xu
2
y + u2

yu
2
z + u2

xu
2
z

)]
,

k
eq

19 = ρc2
s

(
u2

z − u2
y

)(
1 + 9u2

x − 18u2
xγ

−1 − γ −1
)
,

k
eq

20 = −ρc2
s uyuz

(
1 + 9u2

x − 18u2
xγ

−1 − γ −1
)
,

k
eq

21 = −ρc2
s uxuz

(
1 + 9u2

y − 18u2
yγ

−1 − γ −1
)
,

k
eq

22 = −ρc2
s uxuy

(
1 + 9u2

z − 18u2
zγ

−1 − γ −1
)
,

k
eq

24 = ρc2
s uy

[(
u2

x + u2
z

)2γ − 3

γ
+ 6u2

xu
2
z

2γ − 5

γ

]
,

k
eq

25 = ρc2
s uz

[(
u2

x + u2
y

)2γ − 3

γ
+ 6u2

xu
2
y

2γ − 5

γ

]
,

k
eq

26 = ρc6
s

[
1 + 3

(
u2

x + u2
y + u2

z

)1 − γ

γ

+ 27
(
u2

xu
2
y + u2

yu
2
z + u2

xu
2
z

)2 − γ

γ
+135u2

xu
2
yu

2
z

3 − γ

γ

]
,

(30)

showing fifth- and sixth-order velocity terms. The rest of the
algorithm remains totally unaltered.

III. NUMERICAL EXPERIMENTS

Here, we investigate the properties of the D2Q9 scheme
outlined in Sec. II B against two well-known benchmarks, i.e.,
the Poiseuille flow and the lid-driven cavity. We choose these
cases because they are the most popular and consolidated
ones among those admitting a stationary solution. The fluid
is initially at rest and the density field is initialized as
ρ(x,t = 0) = ρ0, with ρ0 = 1. Moreover, velocity boundary
conditions are assigned by the regularized technique [44]. We

assume that the steady state is reached when the residual error
between two subsequent time steps, i.e.,

ε(t) =
√∑

x[u(x,t) − u(x,t − �t)]2√∑
x u(x,t)2

(31)

is less than 1 × 10−12, with u(x,t) = √
ux(x,t)2 + uy(x,t)2.

A. Poiseuille flow

A channel of length Lx and height Ly is considered. At
the west and east sections, a parabolic constant horizontal
rightward velocity profile is imposed in the form

ux(y) = 4U0

Ly

(
y − y

Ly

)
, (32)

where y ∈ [0 : Ly] spans the height of the channel and U0 =
1 × 10−3. No-slip walls are imposed at the bottom and top
sections. The Reynolds number is set to Re = U0Ly

ν
= 100.

Let us collect the numerical solution in terms of velocity in a
vertical midsection in the vector σ num, whereas the vector σ an

stores the analytical one given by Eq. (32). Consistently, it is
possible to evaluate the L2 norm of the relative error between
numerical findings and reference ones as

e = ‖σ an − σ num‖
‖σ an‖ . (33)

We perform a convergence analysis by varying Ly and its
results are shown in Fig. 1. Different values of γ are adopted,
i.e., γ = 0.01, 0.05, 0.1, 0.5, and 1.

Except for the lowest value of the preconditioning factor,
curves show an optimal convergence value of 1.98, that is fully
consistent with the second-order-accurate nature of the LBM.
We attribute the poor performance achieved at γ = 0.01 to the
fact that the preconditioning factor should not be indefinitely
reduced. In fact, the simulation becomes progressively more
unstable as the effective Mach number Ma† = U0/c

†
s grows

[23]. Moreover, it also deprecates the accuracy of the method
due to the presence of larger deleterious compressibility effects
∼(Ma†)2 deviating our numerical solution from the one of the
incompressible Navier-Stokes equations.

−3

−2

−1

0

0.5 1 1.5 2 2.5

lo
g 1

0
(e

)

log10(Ly)

FIG. 1. Poiseuille flow: Results from a convergence analysis with
γ = 0.01 (magenta), 0.05 (blue), 0.1 (green), 0.5 (red), and 1 (black).
The dashed line has slope equal to −2, corresponding to the optimal
convergence rate of the LBE. To interpret the figure in a print gray-
scale version, notice that the value of γ increases moving closer to
the dashed line.
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TABLE I. Poiseuille flow: L2 norm of the relative error between
numerical findings and analytical reference ones generated by the
setups RUN1 and RUN2.

log10(e)

log10(Ly) RUN1 RUN2

0.6990 −0.2338 −0.2339
0.9542 −0.5756 −0.5757
1.2304 −1.1135 −1.1136
1.5185 −1.7046 −1.7048
1.8129 −2.1878 −2.1893
2.1106 −2.6394 −2.6406
2.4099 −3.0607 −3.0611

At a first glance, the adoption of the preconditioning may
lead the reader to believe that it is equivalent to run an
unpreconditioned analysis at a higher value of the Mach
number. However, using larger velocities can be more prone
to numerical instability. On the other hand, simulations
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FIG. 2. Lid-driven cavity: Normalized profiles of the horizontal
component of velocity in the vertical midsection (left column) and
vertical component of the velocity in the horizontal midsection (right
column) at Re = 100 (top row), 400 (central row), and 1000 (bottom
row) for γ = 0.01 (magenta), 0.05 (blue), 0.1 (green), 0.5 (red), and
1 (black). Except for findings corresponding to the lowest value of the
preconditioning factor, all the curves are in a very good agreement
with reference benchmark values provided in [45] (circles). To
interpret the figure in a print gray-scale version, notice that the value
of γ increases moving closer to the circles.
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FIG. 3. Lid-driven cavity: Time evolution of the residual error
ε for different values of γ , i.e., 0.01 (magenta), 0.05 (blue), 0.1
(green), 0.5 (red), and 1 (black), at (a) Re = 100, (b) Re = 400,
and (c) Re = 1000. The remarkable speedup conferred by the
preconditioning factor can be appreciated. To interpret the figure
in a print gray-scale version, notice that the value of γ increases from
left to right.

characterized by lower Mach numbers can, in particular,
improve accuracy significantly by reducing compressibility
errors to better represent incompressible flow. However, in
such a case, the simulations can be relatively slow due to
the disparities in the characteristic speeds (i.e., eigenvalue
stiffness, as discussed). This can be significantly alleviated by
introducing the parameter γ that leads to a tunable effective
sound speed, and hence faster simulations to better represent
the incompressible flow limit. To stress this point, we rerun
these analyses by adopting a larger Mach number, i.e., U0 =
1 × 10−2, and by setting γ = 1. In Table I, we report the values
of e achieved by this setup, namely RUN1, and we compare it
to the case where U0 = 1 × 10−3, and γ = 0.1, namely RUN2.

In this case, the adoption of the preconditioning leads to a
slight enhancement of the accuracy.

B. Lid-driven cavity

The second test involves the lid-driven cavity flow, that is
known to lead to steady-state solutions if the Reynolds number

TABLE II. Lid-driven cavity: Number of time iterations tmax

required to achieve the steady state.

tmax

γ Re = 100 Re = 400 Re = 1000

0.01 88 377 214 081 429 533
0.05 399 783 900 854 2 297 688
0.1 765 730 1 725 743 4 411 387
0.5 3 461 015 8 023 043 21 407 581
1 6 605 328 14 906 996 36 943 554
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4

5

6

7

8

−2 −1 0

lo
g 1

0
(t

m
a
x
)

log10 (γ)

FIG. 4. Lid-driven cavity: Number of time iterations tmax required
to achieve the steady state at Re = 100 (red squares), 400 (blue
circles), and 1000 (green triangles) in log-log scale. The black dashed
line has slope equal to 1, highlighting that ε scale linearly with tmax,
i.e., tmax ∼ γ .

is lower than 7500 [45–47]. Let us consider a square domain
whose sides are discretized by L = 256 points. A constant
uniform horizontal rightward velocity ulid = 1 × 10−3 is
imposed at the top section, whereas the no-slip condition is
enforced at the remaining edges. Three values of the Reynolds
number, Re = ulidL

ν
, are adopted, i.e., Re = 100, 400, and

1000. By varying the preconditioning factor, we depict in Fig. 2
the velocity profiles in the horizontal and vertical midsections
of the cavity. In the region of the graphs with the higher
curvature, findings corresponding to γ = 0.01 largely deviate
from the reference values in [45]. This behavior is particularly
emphasized as Re grows, due to the rise of larger velocities
and velocity gradients. Conversely, the remaining curves show
results that are very close to the benchmark ones in [45]. In
particular, values corresponding to γ = 0.5 and 1 cannot be
distinguished.

It is of interest to highlight the benefit of the preconditioning
technique in terms of iterations needed to achieve the steady-
state convergence. Let us plot the time history of the residual
error in Fig. 3. Let us denote as tmax the time instant when
ε(t) < 1 × 10−12. For the dissected range of Re and γ , this
quantity is reported in Table II. It is possible to appreciate
that the preconditioning technique is able to greatly reduce the
number or required time iterations. The dependence of tmax on
γ is better highlighted in Fig. 4, where the logarithms of the
two quantities are sketched. Interestingly, we find the existence
of a linear dependence between the two, i.e., tmax ∼ γ .

This test is repeated by adopting the preconditioning BGK
method devised in [23]. Let us denote as qBGK and qCMs the

number of iterations corresponding to a BGK run and CM-
based one to reach ε < 1 × 10−9, respectively. Consistently,
we measure the (possible) speedup raised by the present
method with respect to the one by Guo et al. [23] as

δ = qBGK

qCMs
. (34)

The advantage of our model with respect to the other manifests
as δ > 1. The choice of a weaker threshold of the residual error
is dictated by the impossibility to annihilate it much more when
the BGK is adopted. In fact, this quantity tends to progressively
reduce until ε ∼ 10−9 and, then, it plateaus. Moreover, such a
trend is particularly emphasized as γ → 1 and Re grows. This
behavior should be addressed to the presence of two concurrent
causes. The former is the incidence of the round-off error, that
is more prominent when Ma vanishes, as explained in [12,48].
The latter is represented by the presence of higher-order modes
[49] deprecating the stability and the overall quality of the
solution. While the first source of error can be alleviated by
running a simulation at a higher Mach number (or better,
by adopting the preconditioning as already stated), the other
one requires the adoption of a more sophisticated collision
operator, such as the present noncascaded central-moments-
based one.

In Table III, we report the value of δ together with the
number of iterations. It is observed that the difference between
the two approaches is negligible at Re = 100. Interestingly,
our proposed scheme shows faster convergence to steady
state rather than the one experienced by the BGK kernel as
Re = 400 and γ increases. Nevertheless, the real advantage
of the present method arises at Re = 1000. Here, it reduces
the number of iterations of almost one order of magnitude
for the lowest value of the preconditioning factor. Moreover,
the BGK operator requires more than 5 × 107 time steps to
converge in the remaining case. Therefore, it is useless to
adopt the BGK in these contexts, as it will involve a number
of iterations considerably larger than the one required by the
CM-based kernel to reach a residual error that is three orders
of magnitude lower (i.e., 1 × 10−12).

Consistently, the proposed preconditioned CM-based col-
lision model represents an excellent candidate to perform
steady-state analyses characterized by high accuracy, conver-
gence, and stability properties.

Finally, we illustrate an example where a lid-driven cavity
is considered as it possesses a nonunitary aspect ratio. Let us
assume that the vertical dimension is equal to L/2. Moreover,
the Reynolds number is set to Re = 2000. The contour plot of

TABLE III. Lid-driven cavity: Number of time iterations tmax required to reach ε < 1 × 10−9 by adopting the preconditioning BGK method
[23] and our CM-based one. The speedup generated by the latter is denoted as δ.

Re = 100 Re = 400 Re = 1000

γ CMs BGK δ CMs BGK δ CMs BGK δ

0.01 54 952 54 954 ∼1 136 896 136 915 1.0001 185 085 3 962 779 21.411
0.05 235 277 235 281 ∼1 544 753 627 374 1.1517 1 003 575 too many
0.1 437 454 437 463 ∼1 1 007 404 1 424 871 1.4144 1 797 279 too many
0.5 1 808 175 1 808 180 ∼1 4 190 400 6 762 098 1.6137 6 351 567 too many
1 3 291 524 3 291 474 ∼1 7 686 059 11 753 537 1.5292 10 944 995 too many
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FIG. 5. Lid-driven cavity with nonunitary aspect ratio: Contour map of the magnitude of the velocity field u normalized with respect to
ulid at Re = 2000 for different values of γ , i.e., (a) 0.05, (b) 0.1, (c) 0.5, and (d) 1.

the magnitude of the velocity field is reported in Fig. 5 when
the steady state is reached. Independently from the value of
the preconditioning factor, our model is able to predict the
existence of a main large vortex placed in the right part of the
domain. More interestingly, we can capture the presence of
a smaller vortical structure located in the bottom right corner
of the cavity. As mentioned above, the simulation becomes
more accurate as γ → 1. Notice in fact the presence of a
low-velocity region close to the rightmost section that appears
progressively more prominent as γ increases.

IV. CONCLUSIONS

By adopting a nonorthogonal basis of central moments,
a preconditioned central-moments-based lattice Boltzmann
method has been presented. The main achievements of the
present paper can be summarized as follows:

(i) the proposed scheme is able to drastically accelerate the
convergence to the steady state;

(ii) the maximum number of iterations required to annihilate
the residual error scales linearly with the preconditioning
factor, i.e., tmax ∼ γ ;

(iii) consistent with the BGK counterpart, preconditioning
affects only the equilibrium state;

(iv) the theoretical formulation is intelligible and the
extension to three-dimensional lattice velocity spaces avoids
any complex algebra;

(v) all the implementations are simple.
Interestingly, our proposed methodology shows the optimal

characteristics of a preconditioning technique recommended
by Izquierdo and Fueyo [26].

Different from the work carried out by Hajabdollahi
and Premnath [36] within the cascaded scheme, our pro-
posed approach possesses distinct theoretical foundations. As
demonstrated, the present model lies within a noncascaded
framework. Our collision operator loses the pyramidal orches-
trated structure characterizing the approach by Geier et al. [27]
and two immediate consequences arise. The first is represented
by a simple algorithmic procedure. The second, and more
important one, is its generality as it can be developed for any
lattice velocity space and can be derived for whatever BGK
LBE.
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APPENDIX: CASCADED VS NONCASCADED

Here, we present the results of a numerical test which aims
at comparing the cascaded approach against the noncascaded
one proposed by the author, both without preconditioning.
Specifically, we elucidate their accuracy and convergence
properties against the Taylor-Green vortex problem [50]. This
case has been selected as it avoids the presence of velocity
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FIG. 6. Taylor-Green vortex: Results from a convergence analysis
carried out by the cascaded (C) noncascaded (N-C) methods.

boundary conditions, as well as it does not involve the adoption
of any forcing scheme. Consistently, it can be employed to
investigate the behavior of the sole collision operators.

Let us consider a square periodic domain discretized
by N × N lattice site. By imposing the following initial
conditions:

p(x,0) = p0

[
1 − u2

T G

4c2
s

[cos (2hx) + cos (2hy)]

]
,

u(x,0) = uT G[cos (hx) sin (hy), − sin (hx) cos (hy)],

the strain rate tensor S(x,t) and the velocity field decay
with a characteristic time T = (2h2ν)

−1
, where uT G = 0.001,

h = 2π/N , and p0 = ρ0c
2
s . The analytical solution of the

problem reads as follows:

u(x,t) = u(x,0)e−t/T , (A1)

Sxx(x,t) = uT Ghe−t/T sin (hx) sin (hy), (A2)

TABLE IV. Taylor-Green vortex: Logarithm of the L2 norm of
the relative error between numerical findings and analytical reference
ones generated by the noncascaded method in the computation of u,
i.e., e(u), and S, i.e., e(S). The convergence rate is denoted as CR
and it is computed by multiplying the slope of the fitting line by -1.

log10(N ) log10[e(u)] log10[e(S)]

0.9031 −0.9948 −1.2834
1.2041 −1.5919 −1.8884
1.5051 −2.1929 −2.4896
1.8062 −2.7952 −3.0888
2.1072 −3.3983 −3.6846
2.4082 −4.0027 −4.2754
2.7093 −4.6130 −4.8589

CR 2.00 1.98

Syy(x,t) = −Sxx(x,t), (A3)

Sxy(x,t) = Syx(x,t) = 0. (A4)

Let us consider a Reynolds number Re = uT GN

ν
equal to 100.

We perform a convergence analysis by adopting different grid
sizes, i.e., N = [8, 16, 32, 64, 128, 256, 512]. The L2 norm of
the relative error between numerical findings and analytical
reference ones is computed by Eq. (33).

In Fig. 6, the logarithm of err is reported as a function
of the logarithm of N . Both the computations of S and u
exhibit an excellent convergence rate (see Table IV), that
is fully consistent with the second-order accurate nature of
the LBE. More interestingly, it must be noted that findings
are overlapped, thus showing that the two share the same
numerical properties.
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