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Exponential integrators in time-dependent density-functional calculations
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The integrating factor and exponential time differencing methods are implemented and tested for solving the
time-dependent Kohn-Sham equations. Popular time propagation methods used in physics, as well as other robust
numerical approaches, are compared to these exponential integrator methods in order to judge the relative merit
of the computational schemes. We determine an improvement in accuracy of multiple orders of magnitude when
describing dynamics driven primarily by a nonlinear potential. For cases of dynamics driven by a time-dependent
external potential, the accuracy of the exponential integrator methods are less enhanced but still match or
outperform the best of the conventional methods tested.
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I. INTRODUCTION

Time-dependent density functional theory (TDDFT) [1,2]
has become widely used [3] in the simulation of molecules,
two-dimensional materials, and bulk materials. Applications
of TDDFT include the calculation of optical properties [4–8],
charge transfer dynamics [9,10], excitations [11,12], field
emission [13–16], ultrafast strong field processes [17–27],
and ion collisions [28–30]. Efficient computer codes for
TDDFT calculations have been developed by several groups
[12,31–34].

Many of these calculations require long time stability and
accuracy, but as we have shown in a recent paper [35], initial
stability does not guarantee that the numerical solution does
not gradually deteriorate from the correct one. Part of the prob-
lem is due to the handling of the nonlinear, density-dependent
part of the potential. In quantum mechanical calculations, this
nonlinear part is time propagated using the time evolution
operator together with the rest of the Hamiltonian. The only
difference is that an extra self-consistency step is added to each
time step [12,36] in order to ensure that the density and the
Hamiltonian are instantaneously self-consistent.

Various mathematical approaches have been developed for
the solution of nonlinear differential equations. In order to
solve the initial value problem

dy

dt
= f (y,t) y(t = 0) = y0, (1)

one can separate the linear, Ly, and nonlinear, N (y,t), terms
as

dy

dt
= Ly + N (y,t). (2)

The way in which the linear and nonlinear terms each govern
the solution depends on the type of the operators and can be
very different. The best approach for solving the problem is
to develop separate approximations that are best suited to the
linear and nonlinear part individually.

Three robust numerical methods have been developed and
tested for this purpose, the implicit-explicit (IMEX) [37],
the integrating factor (IF) [38], and the exponential time
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differencing (ETD) methods [38]. The latter two methods are
collectively known as exponential integrators. The IMEX mul-
tistep method solves the stiff linear part of the equation with an
implicit scheme and the nonlinear part with an explicit scheme.
The implicit approaches are more stable but computationally
more demanding; the explicit method is only conditionally
stable. The IF method introduces a new variable by factoring
out the stiff part of the equation, and only the nonlinear part has
to be solved by time stepping. In the ETD method, the exact
integration of the linear part is followed by an approximate
integration of the nonlinear part. These approaches have been
tested for dissipative and dispersive partial diffential equations;
examples include the Allen-Cahn, Burgers, Cahn-Hilliard,
Kuramoto-Sivashinsky, Navier-Stokes, and Swift-Hohenberg
equations [38–42]. The ETD approach seems to be the most
accurate in test calculations [38,41].

In this paper we will implement and test the exponen-
tial integrator approaches in TDDFT calculations. There
are three important distinctions between the differential
equations solved in TDDFT and the first-order nonlinear
differential equations considered in the mathematical liter-
ature: (1) the coupled nature of the TDDFT equations, (2)
the time-dependent external potential, and (3) the Hartree
and exchange-correlation potentials. The density calculated
from the orbitals couples the TDDFT equations through the
nonlinear potential. The external potential is a time-dependent
linear part of the differential equation; no such term has been
used in the nonlinear ODE studies. The Hartree and exchange-
correlation potentials make Eq. (2) an integro-differential
equation. In order to test the ETD and IF approaches, we will
compare them to the IMEX and conventional time evolution
schemes popular in physics. We will use one-dimensional
models which will allow for large spatial simulation boxes,
avoiding artificial reflection, and long time propagation for
clean, stringent comparison. At the same time, we expect
that these test systems present the same possible problems
(nonlinearity, coupling) as one must face in larger systems.

While the application of time evolution operators and
split operator representations date back to the 1950s, ETD
[38,41,43,44] and IF [41,45] methods are relatively new.
That may explain why they are not used in time-dependent
quantum mechanical calculations. We hope that the examples
presented in this paper will pave the way for the application of
exponential integrator approaches in TDDFT calculations.
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In Sec. II, the formalism behind the time evolution operator
approach as well as the IMEX, IF, and ETD methods is pre-
sented. Section III, then, describes a collection of techniques
tested in the present work for solving the TDDFT equations.
Numerical results are presented in Sec. IV, demonstrating the
advantages and disadvantages of these methods for various
test cases of induced dynamics. Finally, in Sec. V, a summary
of our findings is presented.

II. FORMALISM

Consider the time-dependent Kohn-Sham (TDKS) equa-
tions

i
∂

∂t
�(r,t) = H(r,t)�(r,t)

= L(r,t)�(r,t) + N(�,t), (3)

where {� = �1,�2,. . .} is the set of Kohn-Sham orbitals,

L = T + V (4)

is the linear part, comprised of kinetic matrix, T, and linear,
time-independent potential, V, and

N(�,t) = VN(�,t)�(r,t) (5)

is the nonlinear part of the Hamiltonian’s action on the
orbitals. The nonlinear part depends on all orbitals, coupling
the differential equations. The nonlinear potential, VN, is the
sum of the Hartree and exchange-correlation contributions,
plus the time-dependent potential. The latter is a linear term,
but in the rest of the formalism it is more convenient to absorb
it into VN, keeping L time-independent.

A. Time evolution operator approach

The formal solution of Eq. (3) can be obtained by using the
time evolution operator

�(r,t) = U(t,0)�(r,0). (6)

The time evolution operator is defined as

U(t,0) = T exp

[
−i

∫
H(r,t ′) dt ′

]
, (7)

where T denotes time ordering. Two important properties
of the time evolution operator are the following: (1) it is
unitary for Hermitian Hamiltonians and (2) it has time reversal
symmetry.

In practice, the above expression for U(t,0) is split into a
product of multiple time evolution operators, each correspond-
ing to a short time step �t ,

U(0,t) =
∏
n

U(tn,tn+1), tn = n�t, (8)

U(tn,tn+1) = exp [−iH(tn)�t], (9)

so that the Hamiltonian at time tn remains nearly commutative
with the Hamiltonian at time tn+1. Various schemes have
been developed for the construction of the time propagator
[46–54] including polynomial propagators [55,56], exponen-
tial propagators [57,58], subspace propagation [26,55,59–69],
and split-operator techniques [55]. The overwhelming major-
ity of TDDFT and other time-dependent Schrödinger equation

based calculations use the time evolution approach and only
differ in the representation of the exponential operator. In these
approaches, the linear and nonlinear parts are not separated,
and the separation of slowly and rapidly varying parts is not
exploited.

B. Implicit-explicit schemes

Various IMEX schemes [37] have been developed to solve
nonlinear differential equations. In these approaches the linear
part is advanced with an implicit scheme—for example,
with the Adams-Moulton method [see Eq. (B8)]—while the
nonlinear part is handled with an explicit multistep method—
for example, the Adams-Bashforth formula [see Eq. (B7)]. The
implicit scheme is stable, so larger time steps may be used;
the explicit scheme is only conditionally stable and requires
smaller time steps. Appendix B 3 gives a brief summary of
these approaches.

C. Integrating factor method

The idea of the integrating factor approach is to multiply
the differential equation by some integrating factor, thereby
introducing new variables. Ideally, one changes the variables
to solve the linear part exactly and uses some technique to
solve the remaining nonlinear part. In the context of the TDKS
equations, one may define

�(r,t) = e−iLt�(r,t), (10)

where the integrating factor is defined as eiLt [38–42,45]. By
multiplying Eq. (3) by the integrating factor, one has

i
∂

∂t
�(r,t) = e−iLtN(eiLt�,t). (11)

This approach is closely related to the interaction picture in
quantum mechanics.

The aim of the transformation is to ameliorate the stiff
linear part of the differential equation. One can then use a
time stepping method, for example Runge-Kutta or Adams-
Bashforth formulas, to advance the equation in time. Stiffness
related to the time-dependent Schrödinger-equation is recently
investigated in Ref. [59] in great detail. Stiffness itself is not
clearly defined in the mathematical literature [59,70], but, in
general, differential equations are called stiff when an implicit
Euler method is more efficient than the explicit Euler method.
This situation most likely happens in cases of differential
equations whose Jacobians have at least one eigenvalue with a
very negative real part or very large imaginary part [71]. In the
case of the time-dependent Schrödinger equation, or Kohn-
Sham equation, the large eigenvalues come primarily from the
kinetic energy and from the laser field. If a finite difference
scheme is used to discretize the differential equation, as in
the present work, the spatial derivative matrix has eigenvalues
with very different values, and the ratio of largest to smallest
eigenvalues is very large, leading to a stiff problem. The
degree of stiffness depends on the grid spacing of the spatial
discretization. If one decreases the grid spacing, the range
in magnitudes of the kinetic energy matrix eigenvalues will
considerably increase.
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The disadvantage of the method is that it changes the
fixed points of the original differential equation, and the local
truncation error is larger than in other methods such as ETD
[38]. The change of the fixed points does not seem to present
problems in the present numerical calculations; however, in
stability analysis one has to linearize the equation around
different fixed points which may hinder the comparison of
convergence and the assessment of stability of the solutions.
One may also wonder if the change of fixed points, together
with some truncation error, will cause stability issues in long
time propagations for certain nonlinear problems.

D. Exponential time differencing

The exponential time differencing method has been used
as early as in the 1960s for ordinary differential equations
[72,73]. It surfaced in computational electrodynamics in the
1990s [43] and was rediscovered for numerical solutions of
nonlinear differential equations later [38,44,74–76].

Using the identity

i
∂

∂t
[eiLt�(r,t)] = eiLt

[
−L�(r,t) + i

∂

∂t
�(r,t)

]
, (12)

we can rewrite Eq. (3) as

i
∂

∂t
[eiLt�(r,t)] = eiLtN(�,t). (13)

By integrating this equation from tn to tn+1 and rearranging
the terms, one arrives at

�(r,tn+1) = e−iL�t�(r,tn) − ieiL(tn+1)
∫ tn+1

tn

eiLτ N(�,τ )d τ.

(14)

This equation is exact. The difference between the ETD and IF
methods is that for ETD, the variable change is not complete—
one keeps � as the variable.

In the above derivation, it has been assumed that the
linear term, L, is time-independent and that all time-dependent
terms, including those that are linear, have been incorporated
within N(�,t). However one may, instead, include linear
time-dependent terms, VL(t), within L and arrive at the same
conclusion as Eq. (14) if it can be assumed that VL(tn) ≈
VL(tn+1). This is shown in Appendix A.

In practice, one solves the integral appearing in Eq. (14)
by using some approximation. In the evaluation of the
integral, matrix-valued functions arise [e.g., f (L) = L−1], as
will be shown below. These functions, together with matrix
exponentials, must be evaluated efficiently for applications
[77,78]. One can calculate the exponential by Taylor expansion
and obtain other needed functions by recurrence relations [44].
Krylov subspace methods seem to be optimal for large matrices
[79]. In this case, the matrix functions are efficiently evaluated
in a Krylov subspace, a process similar to Lanczos time-
propagation [80]. In the present work, the matrix exponentials
are calculated via a diagonalization of the L matrix; this
process contributes negligible error.

The Cauchy formula

f (L) = 1

2πi

∫
�

f (t)(tI − L)−1 dt, (15)

TABLE I. The main computational effort per time step is
matrix vector multiplication (operations) and solution of the Poisson
equation (Hartree). All matrices dependent upon L are considered
to be constant in time so that they must be calculated only once.
The table is separated into three sections: time evolution methods
(top), in which the complete Hamiltonian is used to propagate the
wave function, IMEX methods (middle), and exponential integrator
methods (bottom), both of which split the Hamiltonian in into linear
and nonlinear parts.

Method Operations Hartree Accuracy

Taylor 4 1 O(�t4)
SPO 1 1 O(�t3)
CN 2 1 O(�t2)

RK2 2 2 O(�t2)
RK4 4 4 O(�t4)

AB2AM2 2 1 O(�t3)
IFAB2 3 1 O(�t3)
IFRK2 3 2 O(�t3)
IFRK4 3 4 O(�t4)
ETD1 2 1 O(�t2)
ETD2 3 1 O(�t3)

ETDCN 3 1 O(�t3)
ETDRK2 3 2 O(�t3)
ETDRK4 8 4 O(�t4)
Krogstad 9 4 O(�t4)

where I is the identity matrix, as suggested in Ref. [41],
can also be used to evaluate these functions. The advantage
of this approach is that by using the trapezoidal rule on a
complex contour, numerical instabilities arising from possible
small eigenvalues may be avoided. This method can also be
implemented within the Krylov subspace approach by defining
L on the Krylov vectors [81]. Accurate rational approximations
[82] and polynomial representations [83] have also been
developed. Note that if L is time-independent, the calculation
of the exponential and other functions of L need to only be
done once.

III. SOLUTION OF THE TDDFT EQUATION

In this section we describe prototypical approaches for
solving the TDKS equations. The first three approaches—
Taylor, split operator, and Crank-Nicolson—are time evolution
operator approaches and are widely used in time-dependent
quantum mechanical calculations. The IMEX, IF, and ETD
methods have not been tested for TDDFT. In these cases, we
use the time propagating schemes developed in Refs. [38,41].
These approaches are simple to derive using popular integra-
tion schemes (see Appendix B). A summary of the operation
count, number of times the Hartree potential must be calculated
per time step, and accuracy order with respect to time step
size may be found in Table I. We note that each propagation
technique is expected to scale linearly with the number of
electrons, with the exception of Runge-Kutta–type methods,
in which case the scaling is affected by the number of times
the Hartree potential must be updated.
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A. Taylor time propagation (Taylor)

One propagation scheme of particular note is the fourth-
order Taylor propagation [84,85]. In this scheme the exponen-
tial of the Hamiltonian [see Eq. (9)] is approximated using a
fourth-order Taylor expansion such that

�(r,tn+1) ≈
4∑

k=1

1

k!
[−i�tH(r,tn)]k�(r,tn). (16)

Taylor propagation of the TDKS equations has proven highly
successful in many applications [13–16,18–23,29], and its
popularity is due to the simplicity of its implementation: only
matrix-vector multiplication is needed, while inversion and
diagonalization is avoided. One drawback of this approach is
that the Taylor propagator is only conditionally stable [55].
One also notes that the Taylor approximation breaks the
unitarity of the propagator.

B. Split operator time propagation (SPO)

The split operator approach has a long history, first
appearing in Ref. [86] and independently as “Sprang splitting”
in Ref. [87]. The idea is to split the Hamiltonian into kinetic
and potential energy parts and approximate the propagator
with a product of the exponentials of these operators. This
approach was first used in physics in Ref. [53], and it was later
developed for TDDFT using higher order decompositions in
Ref. [36].

This approach is a derivative of the time evolution operator
approach, in which the discrete time step propagator [Eq. (9)]
is approximated as

e−iHn�t ≈ e−iT�t/2e−iVn�te−iT�t/2 (17)

or, similarly,

e−iHn�t ≈ e−iVn�t/2e−iT�te−iVn�t/2. (18)

The above expressions are accurate to order O(�t3) [88]. Such
splitting is chosen so that each matrix exponential is diagonal in
either real space or reciprocal space, facilitated by fast Fourier
transforms. The split operator has the advantage of maintaining
unitarity and being unconditionally stable [55]. We note that
this approach may also be applied to approximating the matrix
exponential, e−iLt , appearing in the IF method.

C. Crank-Nicolson time propagation (CN)

By adding the forward and backward Euler approaches (see
Appendix B 1), one gets the unconditionally stable Crank-
Nicolson propagation scheme,

yn+1 = yn + �t

2
[f (yn,tn) + f (yn+1,tn+1)], (19)

which is O(�t2) accurate in time. Here{
I + i�t

2
[L + VN(�n+1,tn+1)]

}
�n+1

=
{

I − i�t

2
[L + VN(�n,tn)]

}
�n (20)

or, in the limit of small �t in which VN(�n+1,tn+1) ≈
VN(�n,tn),

�n+1 =
{

I + i�t

2
[L + VN(�n,tn)]

}−1

×
{

I − i�t

2
[L + VN(�n,tn)]

}
�n. (21)

This method has the advantage of preserving the unitarity of
the time propagator. A disadvantage of the CN approach is
the need for the calculation of matrix inverses. While iterative
calculations of matrix inverses is possible for large sparse
matrices, the application of the CN method is not viable in
grid-based TDDFT calculations for large systems.

D. Second-order implicit-explicit scheme (AB2AM2)

As an example to test an IMEX method, we use second-
order integration (see Appendix B 3). The linear terms will
be handled using the second-order Adams-Moulton method
(trapezium rule) and the nonlinear terms with the second-
order Adams-Bashforth method. Adding Eqs. (B8) and (B7)
results in

�n+1 = �n − i�t

2
(L�n + L�n+1)

− 3i�t

2
N(�n,tn) + i�t

2
N(�n−1,tn−1). (22)

This can be solved for �n+1 as

�n+1 =
(

I + i�t

2
L

)−1{(
I − i�t

2
L

)
�n

− i�t

2
[3N(�n,tn) − N(�n−1,tn−1)]

}
. (23)

This approach is O(�t3) accurate in time.

E. Integrating factor method with explicit multistep (IFAB2)

The integrating factor equation [Eq. (11)] can be solved
using the most popular integration schemes (see Appendix B).
Using the Adam-Bashforth method, as described in Eq. (B7),
one has

�n+1 = eiL�t�n + 3i�t

2
eiL�tN(�n,tn)

− i�t

2
e−2iL�tN(�n−1,tn−1). (24)

This approach is also O(�t3) accurate in time.

F. Integrating factor method with second-order
Runge-Kutta (IFRK2)

By applying the second-order Runge-Kutta (RK2) method
to Eq. (11) and transforming the new variable, �, back to
�, one achieves a new time propagation update scheme of
accuracy O(�t3),

�n+1 = eiL�t�n − i

�t
[N(�a,tn) + eiL�tN(�n,tn)], (25)
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where

�a = eiL�t�n + M1N(�n,tn). (26)

G. Integrating factor method with fourth-order
Runge-Kutta (IFRK4)

The above approach can be extended for fourth-order
Runge-Kutta (RK4) by preparing four vectors

�1 = N(�n,tn), (27)

�2 = N
[

eiL�t/2

(
�n + �t

2
�1

)
,tn+1/2

]
,

�3 = N
[

eiL�t/2�n + �t

2
�2,tn+1/2

]
,

�4 = N[eiL�t�n + �t�3,tn+1], (28)

which leads to (see Appendix B 2)

�n+1 = eiL�t�n + �t

6
( �1 + �2 + �3 + �4). (29)

H. Exponential time differencing with constant
nonlinear term (ETD1)

Assuming that the nonlinear term is constant during the
time step tn → tn+1, .

N(�,τ ) = N(�n,tn) (tn < τ < tn+1), (30)

the time propagation in Eq. (14) becomes

�n+1 = eiL�t�n + M1N(�n,tn), (31)

where

M1 = L−1(eiL�t − I). (32)

This version of ETD is used in computational electrodynamics
[43] and is O(�t2) accurate in time.

I. Exponential time differencing with linearly raising
nonlinear term (ETD2)

A better approximation is to take the nonlinear term as

N(�,τ ) = N(�n,tn) + �N
�t

(τ − tn) (tn < τ < tn+1), (33)

where �N = [N(�n,tn) − N(�n−1,tn−1)]. Now the time prop-
agation in Eq. (14) becomes

�n+1 = eiL�t�n + M1N(�n,tn) − i

�t
M2�N, (34)

where

M2 = L−1(M1 + i�tI). (35)

The method is O(�t3) accurate.

J. Exponential time differencing with constant nonlinear term,
separating the wave function (ETDCN)

Exploring another possibility by assuming that the nonlin-
ear potential is constant during the time step tn → tn+1,

VN(�,τ ) = V(�n,tn) (tn < τ < tn+1), (36)

one can integrate Eq. (14) using the trapezoidal rule, and the
time propagation becomes

[I + iV(�n,tn)�t]�n+1 = eiL�t [I − iV(�n,tn)�t]�n. (37)

This is similar to Crank-Nicolson propagation but with an extra
eiL�t factor. By evaluating the inverse of the leftmost operator,
one may arrive at a time evolution method which approximates
the discrete time step propagator,

�n+1 = [I+iV(�n,tn)�t]−1eiL�t [I−iV(�n,tn)�t]�n. (38)

K. Exponential time differencing with second-order
Runge-Kutta (ETDRK2)

The next level of approximation is to use a RK2 time step
ETD by introducing

N(�,τ ) = N(�n,tn) + �Na

�t
(τ − tn) (tn < τ < tn+1), (39)

where �Na = [N(�a,tn) − N(�n−1,tn−1)] and

�a = eiL�t�n + M1N(�n,tn). (40)

This results in

�n+1 = �a − i

�t
M2�Na. (41)

Note that in the context of TDDFT, N(�a,tn) means that
the Hartree and exchange-correlation potentials must be
calculated using the density defined by �a . The accuracy is
O(�t3).

L. Exponential time differencing with RK4 (ETDRK4)

The most accurate and stable approach is considered to be
the RK4 method which is O(�t3) accurate [38]. This approach
is a bit more involved than the previous ones. One must define
the following vectors:

�a = ϕ0

(
h

2
L

)
�n + h

2
ϕ1

(
h

2
L

)
N(�n,tn),

�b = ϕ0

(
h

2
L

)
�n + h

2
ϕ1

(
h

2
L

)
N(�a,tn+1/2),

�c = ϕ0

(
h

2
L

)
�a+h

2
ϕ1

(
h

2
L

)
[2N(�b,tn+1/2)−N(�n,tn)],

(42)

where h = −i�t and the ϕ functions are defined in Appendix
C. One can then construct

�n+1 = e−iL�t�n+h[ϕ1(hL)K1+ϕ2(hL)K2+ϕ3(hL)K3],

(43)

where

K1 = N(�n,tn),K2 = −3N(�n,tn) + 2N(�a,tn+1/2)

+ 2N(�b,tn+1/2) − N(�c,tn+1),

K2 = 4[N(�n,tn) − N(�a,tn+1/2)

− N(�b,tn+1/2) + N(�c,tn+1)]. (44)
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In this case the small eigenvalues lead to numerical problems in
the calculation of the inverse matrix, and, following Ref. [38],
we simply eliminate these small eigenvectors from inverse.

M. Krogstad time propagation (Krogstad)

The ETDRK4 approach was further developed in Ref. [45]
using a truncated Taylor expansion of the nonlinear part in
order to increase the accuracy. It only differs from the ETDRK4
method in the definition of the �a , �b, and �c functions:

�a = ϕ0

(
h

2
L

)
�n + h

2
ϕ1

(
h

2
L

)
N(�n,tn),

�b = ϕ0

(
h

2
L

)
�n + h

2
ϕ1

(
h

2
L

)
N(�n,tn)

+hϕ2

(
h

2
L

)
[N(�a,tn+1/2) − N(�n,tn)],

�c = ϕ0(hL)�n + hϕ1(hL)N(�n,tn)

+ 2hϕ2(hL)[N(�b,tn+1/2) − N(�n,tn)]. (45)

IV. NUMERICAL RESULTS

To test these approaches we use a simple one-dimensional
helium atom model that has been often used in similar test
calculations [89]. The Hamiltonian in atomic units is

H = −1

2

d2

dx2
+V (x) + E(t)x + VH [ρ(x,t)]+Vex[ρ(x,t)].

(46)

In this equation, V (x) is a soft Coulomb potential given as
[90,91]

V (x) = − 2

(a2 + x2)1/2
, (47)

where a has been set to unity. The two-electron density is
defined as either

ρ(x,t) = 2|�1(x,t)|2 (model A) (48)

or

ρ(x,t) = |�1(x,t)|2 + |�2(x,t)|2 (model B), (49)

where �1 and �2 are initialized as the ground and first
excited state orbitals, respectively, of the ground state Kohn-
Sham potential at t = 0. Model A is an uncoupled system,
while, in model B, the two states are coupled, leading to
more complicated nonlinear effects. The Hartree potential is
calculated as

VH (x) =
∫

dy
ρ(y)√

(x − y)2 + a2
, (50)

where the potential is softened using the same value for a. The
exchange-correlation potential is given by the exact-exchange
approximation [91]

Vex(x) = − 1
2VH (x). (51)

The time-dependent term E(t)x corresponds to the con-
tribution of the electric field, used to represent a laser
pulse, under the dipole approximation. This term may be

incorporated within either the linear part—time-dependent
L—or the nonlinear part—time-independent L. In the case
of the latter, the two parts take the form

L = −1

2

d2

dx2
+ V (x), (52)

N(�,t) = {E(t)x + VH [ρ(x,t)]+Vex[ρ(x,t)]}�(x,t). (53)

Two different types of TDDFT calculations were performed
using our model one-dimensional helium system. In the first,
the system was placed in an excited state at the beginning of
the simulation. Such an excited state causes fluctuations in the
electron density, and this change in density, in turn, causes the
nonlinear potential to change rapidly. In these calculations,
no additional time-dependent potential was added, resulting
in only the nonlinear potential being time-dependent. These
simulations were carried out within a computational box of
width 160 Bohr, and a complex absorbing potential (CAP)
[92] was added, so as to allow some ionization which occurs
early in the simulation. In simulations of the second type,
the electrons were subject to a time-dependent laser potential,
represented using the dipole approximation, Vlaser = E(t)x,
where the form of the electric field was chosen as a variation
of the smooth turn-on pulse [93],

E(t) =
⎧⎨
⎩E0 sin

(
πt

2Tc

)
sin(ωt), if 0 � t � Tc,

E0 sin(ωt), otherwise.
(54)

In these calculations, the parameters ω and Tc were set
to 0.148 and 6/ω, respectively. Simulations were carried
out for maximum electric fields, E0, of both 0.1 a.u. and
1.0 a.u. and a computational box of width 400 Bohr. The
initial states, �(x,t = 0), were calculated by diagonalizing the
Hamiltonian [Eq. (46)] with E(t = 0) = 0. The Hamiltonian
was represented using a pseudospectral basis [93].

A benchmark calculation was performed using the Taylor
time propagator with a time step of 0.00001 a.u. (1000 times
smaller than necessary for stability). The wave function from
various methods is compared to the benchmark at various times
using the Tanimoto index [94]

σi(t) = IBi(t)

IBB(t) + Iii(t) − IBi(t)
, (55)

where

Iij (t) =
∫

|�∗
i (t)�j (t)| dx, (56)

with B indicating the wave function from the benchmark
calculation. This metric ranges in value from 0 to 1, with
1 indicating a perfect match. The wave functions are not
normalized prior to comparison since this similarity method
will take into account whether or not the functions differ
by a constant. The time-averaged agreement between the
benchmark and propagated wave function is tracked by σT .
In practice, we determine the time-averaged agreement within
a given range, Ti to Tf ,

σ(Ti→Tf ),i =
∫ Tf

Ti

σi(t) dt. (57)

The time-averaged error of � is then taken to be 1 − σT .
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FIG. 1. The time-averaged error of various methods for integrat-
ing the TDKS equations when electrons are initialized in an excited
state. The time interval considered was between Ti = 10 a.u. and
Tf = 100 a.u. Time evolution operator approaches are shown above,
while IMEX, IF, and ETD approaches are shown below. CN is shown
in the latter for comparison.

A. Excited state superposition

We first consider a one-orbital case, defined as an equal
combination of the ground and first excited states at t = 0.
The system, upon such initialization, is free to develop without
external perturbation. The nonlinear term is, therefore, the
only part that is time-dependent. The performance of various
methods for integrating the TDKS equations is shown in Fig. 1
for a simulation up to Tf = 100 a.u.

Considering the Taylor, CN, and SPO methods from this
set of calculations, the error in each appears comparable for
all that are stable. The Taylor time propagation yields results
comparable to CN and split operator for time step sizes up to
�t = 0.02 a.u., after which it fails. To maintain 99% accuracy
of the wave function, the largest time step size possible for the
time evolution operator methods is determined to be around
0.2 a.u. As for the the simple Runge-Kutta methods (see Fig. 1),
these have less error than the time evolution operator methods;
they are limited by the maximum time step size.

FIG. 2. The time-dependent energy (above) and norm (below) of
the IFRK4 integration method using time step sizes of 0.5 and 0.7 a.u.
as compared to a benchmark calculation.

When comparing the time evolution operator and simple
Runge-Kutta methods to the IF and ETD methods, the latter
are seen to perform much better, with less error and larger
allowed time step sizes. Of methods that use RK2-type time
integration or are O(�t3) accurate, the IFRK2 and IFAB2
methods perform marginally better than the ETDRK2 method.
For each, the maximum time step size maintaining 99%
accuracy is around 0.2 to 0.3 a.u. Of methods that use RK4-type
time integration or are O(�t4) accurate, IFRK4 does best, with
Krogstad outperforming ETDRK4 integration and a maximum
time step size for each methods near 1.0 a.u. While the norm
of the wave function is not conserved for all methods up
to this maximum time step size, a CAP was used in these
calculations; therefore, the norm is expected to deviate from
unity, regardless. The energy oscillates quickly with a period
of 5 a.u., shown in Fig. 2. Nevertheless, the IFRK4 method is
capable of accurately producing the proper energy curve for
even large time step sizes of 0.7 a.u. while the norm deviates
by only about 5 × 10−5 fs−1.

For longer simulations, the nonlinear nature of the TDKS
equations requires accurate integration in time. As a rigorous
test of the methods considered in this work, a long (Tf =
1000 a.u.) simulation was performed using the same initial
state as described above. A comparison of all methods for the
longer simulation is shown in Fig. 3. The trends are similar to
the shorter simulation, though some of the methods are more
effected by the error accrued in time.
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FIG. 3. The time-averaged error of various methods for integrat-
ing the TDKS equation over a long time period. The time interval
considered was between Ti = 10 a.u. and Tf = 1000 a.u. Time
evolution operator approaches are shown above while IMEX, IF,
and ETD approaches are shown below. CN is shown in the latter for
comparison.

For the longer time trials, the time evolution operator
approaches fail to correctly integrate the wave function over
the course of the simulation. This is because the Hamiltonian
is assumed to be constant between time steps and the error
associated with this approximation accrues throughout the
simulation and is exacerbated by the nonlinear potential. The
time evolution operator methods can be improved by using
predictor-corrector schemes; Taylor and SPO with predictor-
corrector perform similarly to RK4; see Fig. 3. The energy
as a function of time is shown in Fig. 4 for several methods
towards the end of the simulation. The energy difference is
quite noticeable in both CN and Taylor methods, though they
match well with one another. This result indicates that even
trusted methods, like CN, may fail for longer simulation times
due to the inclusion of a nonlinear potential.

For the IF and ETD methods, the longer simulation shows
that RK2-type methods do not perform as well as their
RK4 counterparts. The maximum time step sizes for the
ETDRK2, IFRK2, and IFAB2 methods are near 0.08 a.u. For

FIG. 4. The energy as a function of time for various methods.
The time evolution operator methods (Taylor and CN) drift slowly
away from the exact solution; however, they overlap one another.
The divergence of such methods from the converged solution is more
noticeable for longer simulations.

the ETDRK4 and Krogstad methods, the maximum time step
size is near 0.3 a.u., while IFRK4 seems to perform well until
0.5 a.u.

B. Laser with one orbital

The collection of methods was also tested with applications
to laser-driven dynamics. In these simulations, the wave
function was initialized in the ground state, with the density
defined using model A, and a time-dependent electric field
of the form shown in Eq. (54) was applied. The associated,
additional term in the Hamiltonian, Vlaser = E(t)x, was first
included in the nonlinear part such that L and N were of the
forms given in Eqs. (52) and (53). Secondly, this linear term
was added to the linear part for comparison of accuracies.
In the latter scenario, the matrix-valued functions containing
L were updated at each time step. While, in principle, the
external electric field would be expected to cause ionization, a
large simulation box length of 400 Bohr was used, so no CAP
was deemed necessary.

The accuracy of the various time evolution methods is
shown in Fig. 5. These methods performed much better here
than in the case of the excited state superposition. It is likely
because the orbitals develop more slowly under the influence
of the ramped laser, which drives their dynamics in this case,
rather than the nonlinear part. This allows the approximation
of a constant Hamiltonian at each time step to better describe
the dynamics.

1. Laser potential in nonlinear part

By including the potential from the laser in the nonlinear
part, the linear part remains time-independent, and matrix-
valued functions containing L may be precalculated before
time propagation and used throughout. The errors related
to the various IMEX, IF, and ETD methods for an external
field strength of 0.1 a.u. are shown in Fig. 6. Methods
using RK4-type integrations, other than Krogstad, exhibit
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FIG. 5. The time-averaged error of various methods for integrat-
ing the TDKS equation when electrons are driven by an external
electric field of strength 0.1 a.u. The time-dependent potential from
the electric field was included in the linear part. The time interval
considered was between Ti = 10 a.u. and Tf = 100 a.u.

stability for time step sizes up to 0.1 a.u., whereas those using
RK2-type integration remain stable only for time step sizes
below 0.03 a.u. For stable time step sizes, these methods yield
accuracies within an order of magnitude of the CN method.
However, it appears that the separate numerical integration
of the time-dependent nonlinear part hinders the IF and ETD
methods such that they are outperformed by the CN method
for all choices of time step size. ETDCN is able to match the
accuracy of CN for time step sizes up to 0.7 a.u. due to its time
evolution form.

FIG. 6. The time-averaged error of various methods for integrat-
ing the TDKS equation when electrons are driven by an external
electric field of strength 0.1 a.u. The time-dependent potential from
the electric field was included in the nonlinear part. The time interval
considered was between Ti = 10 a.u. and Ti = 100 a.u. CN is shown
for comparison.

FIG. 7. The time-averaged error of various methods for integrat-
ing the TDKS equation when electrons are driven by an external
electric field of strength 0.1 a.u. The time-dependent potential from
the electric field was included in the linear part. The time interval
considered was between Ti = 10 a.u. and Tf = 100 a.u. CN is shown
for comparison.

2. Laser potential in linear part

By including the 0.1 a.u. field strength laser in the linear
part, the stability of the IF and ETD methods is significantly
improved, as shown in Fig. 7. Here, there is a clear grouping of
O(�t3) and O(�t4) methods. RK4-type methods are shown
to outperform CN for choices of time step size up to about
0.8 a.u.

Ideally, the norm of the wave function should remain at
unity; however, for some methods, this value deviates. The
norm conservations of the IMEX, IF, and ETD methods are
shown in Fig. 8. Here the RK4-type methods perform best for

FIG. 8. The difference of the norm from unity for various methods
when electrons are driven by an external electric field of strength
0.1 a.u. The time-dependent potential from the electric field was
included in the linear part. The time interval considered was between
Ti = 10 a.u. and Tf = 100 a.u.
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FIG. 9. The time-averaged error of various methods for integrat-
ing the TDKS equation when electrons are driven by a strong external
electric field of strength 1.0 a.u. The time-dependent potential from
the electric field was included in the linear part. The time interval
considered was between Ti = 10 a.u. and Tf = 100 a.u. SPO is shown
for comparison. The second-order Runge-Kutta method is excluded
from the top figure due to it being unstable for each choice of time
step size.

time step sizes below about 0.2 a.u., while ETDCN does so
otherwise. Overall, IFRK4 maintains a slight advantage over
the other RK4 exponential integrator methods. In principle,
for cases such as this one where a CAP is not necessary, one
may renormalize the orbitals at each time step, eliminating this
divergence as a source of error.

When a stronger laser field is considered, all methods
generally perform worse, as presented in Fig. 9. For the
time evolution operator methods, this is due to the large
magnitudes of the rapidly changing Hamiltonian which break
down approximations of the exponential time propagator.
Among these, the SPO approach performs best due to its
analytic expression of the matrix exponential form. We note
that these calculations were performed using the length gauge
convention for the laser potential. By using velocity gauge
with the SPO, one may better represent dynamics induced by

FIG. 10. The time- and orbital-averaged error for model B using
various methods for integrating the TDKS equation when electrons
are driven by an external electric field of strength 0.1 a.u. The time
interval considered was between Ti = 10 a.u. and Tf = 100 a.u. Time
evolution operator approaches are shown above while IMEX, IF, and
ETD approaches are shown below. CN is shown in the latter for
comparison.

high intensity lasers due to the method’s equivalent formalism
to propagation using a basis defined by free electrons reacting
to an external field—the Volkov basis [89]. In the case of the IF
and ETD methods, this degradation in accuracy is due to the
breakdown of the approximation that the L matrix and its
related matrix-valued functions are constant for the duration
of any given time step. While SPO performs best of the
time evolution methods, IFRK4 is able to match or beat
it for all choices of time step size, while other RK4-type
methods maintain similar accuracy. Notably, ETDRK2 and
IFRK2 do very well in this case, with the latter being nearly
indistinguishable from its RK4-type counterpart.

C. Coupled system: Laser with two orbitals

As a more rigorous test of the nonlinear contribution, a
system comprised of two electrons in separate orbitals, coupled
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FIG. 11. The time-averaged error of orbital 1 for model B, using
various methods for integrating the TDKS equation when electrons
are driven by an external electric field of strength 0.1 a.u. The time
interval considered was between Ti = 10 a.u. and Tf = 100 a.u. Time
evolution operator approaches are shown above while IMEX, IF, and
ETD approaches are shown below. CN is shown in the latter for
comparison.

via the Hartree and exchange-correlation potentials, was time
propagated under the influence of an external electric field
using the collection of methods. This choice corresponds
to model B, introduced in Eq. (49). The laser potential is
included in the linear part, L, in the following results. Here,
the similarity, σT , is taken as the average of the two orbitals,
denoted as σT . This average error is presented for the case of
a peak electric field of 0.1 a.u. in Fig. 10. We can also compare
the time-averaged error associated with each orbital separately
to their respective benchmark; see Fig. 11 and Fig. 12.

We find that the second, higher energy orbital dominates
as the larger source of error for most methods, which is to
be expected due to its spatial extension and more complicated
nodal structure. The CN and SPO methods each take turns
performing best of the time evolution methods for different
choices of time step size and orbital. Of the IF and ETD
methods, IFRK4 and ETDRK4 similarly exhibit the most
accurate results for the second orbital, but the former gains an

FIG. 12. The time-averaged error of orbital 2 for model B, using
various methods for integrating the TDKS equation when electrons
are driven by an external electric field of strength 0.1 a.u. The time
interval considered was between Ti = 10 a.u. and Tf = 100 a.u. Time
evolution operator approaches are shown above while IMEX, IF, and
ETD approaches are shown below. CN is shown in the latter for
comparison.

advantage in its representation of the first orbital. The orbital-
averaged error indicates IFRK4 as the clear front-runner. All
methods which remain stable behave similarly in the range
of time step sizes below about 0.1 a.u.; however, above this
point, methods of O(�t3) begin to accumulate larger amounts
of error. Of these, IFRK2 performs best, with an time- and
orbital-averaged error similar to the RK4-type methods up to
time step sizes of about 0.3 a.u. The reason the integration
methods perform better, in general, for model B, is that the
dynamics of the nonlinear potential change more slowly than
for model A.

Similar to model A, for the case of an intense laser, the
general accuracy of each method is lessened, as shown in
Fig. 13. Again, SPO performs best of the time evolution meth-
ods, IFRK4 remains most accurate, and IFRK2 outperforms
or performs similarly to the RK4-type methods for any choice
of time step size.
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FIG. 13. The time- and orbital-averaged error for model B using
various methods for integrating the TDKS equation when electrons
are driven by an external electric field of strength 1.0 a.u. The time
interval considered was between Ti = 10 a.u. and Tf = 100 a.u. Time
evolution operator approaches are shown above while IMEX, IF, and
ETD approaches are shown below. SPO is shown in the latter for
comparison. The second-order Runge-Kutta method is excluded from
the top figure due to it being unstable for each choice of time step
size.

V. SUMMARY

We have implemented forms of IMEX and exponential
integrator methods within TDDFT calculations and have
compared the results to those of conventional time evolution
methods. The cases studied included dynamics driven primar-
ily by the nonlinear part of the Hamiltonian, as well as those
driven primarily by a time-dependent, linear laser potential.
We have found that of the time evolution methods, the CN and
SPO methods performed best for the various test simulations.
Typically these two approaches yielded similar results except
in the case of intense laser fields, in which the SPO showed a
definitive advantage. Of the IMEX and exponential integrator
methods, the RK4-type IF and ETD approaches yielded the
most accurate results for each of the test cases.

Comparing the leading methods of both groups, the RK4-
type exponential integrator methods were able to match or
exceed the accuracy of the leading time evolution methods
in each set of tests. For dynamics driven by a linear,
time-dependent potential, the RK4-type exponential integrator
methods were able to match the front-runners of the time
evolution group, CN or SPO, for both moderate and high laser
intensities. In cases where the dynamics were driven by the
nonlinear part of the Hamiltonian, the RK4-type exponential
integrator methods outperformed even the best suited time
evolution methods by orders of magnitude.

While the ETD method is typically seen as being the most
accurate of the exponential integrators in the mathematical
literature, in our results, the IF method performed uniformly
better, though slightly so. This may be due to a more
complicated structure of the nonlinear part in Eq. (14) for
TDDFT rather than in other equations investigated in the
literature where the nonlinear part is typically a yk term [in
Eq. (2)].

Beyond the success of the RK4-type exponential integrators
shown in this study, we note that they may further benefit from
the ability of Runge-Kutta approaches to propagate the wave
function using variable time step sizes. This implies the capa-
bility of dynamically adjusting the time step size throughout
simulations in order to best balance the computational cost
and accuracy. While the time step size has been kept fixed for
each calculation presented in this work, we propose such a
modification as a subject for future improvement.

In tests including a time-dependent, linear potential asso-
ciated with a driving laser field, the accuracy when including
this term in the linear part far exceeded that of the alternative
approach, that is, including it in the nonlinear part. This
implies that in order to achieve the best results, one must
update the matrix-valued functions containing the linear part
at each time step—an equivalent complication to that of
the CN method. While this process may be possible in the
case of a compact basis representation, such calculations
would be infeasible when dealing with large, sparse matrices
related to representations such as the real space grid approach.
The inclusion of Krylov subspace expansions, or alternative
approaches for the evaluation of these matrix-valued functions
in such a scenario remains a topic of future research. A split
operator approach, using fast Fourier transforms as explained
in Sec. III B, was tested as a means of approximating the
matrix exponential needed for the IFRK4 method. The results
of this approach yielded the same improvement of accuracy as
those presented above using a diagonalization of the L matrix.
Furthermore, we point out that developing a method based on
the formalism described in Appendix A may provide a means
towards improving upon this complication.
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APPENDIX A: ETD METHOD WITH A
TIME-DEPENDENT L

In the case of a time-dependent linear term, L(t), the general
form of Eq. (12) may be written as

i
∂

∂t
[eiF(t)�(r,t)] = eiF(t)

[
−L�(r,t) + i

∂

∂t
�(r,t)

]
, (A1)

where

F(t) =
∫ t

0
L(t ′) dt ′. (A2)

One may, then, use Eq. (3) in order to rewrite this and solve
for �(t + �t):

�(r,t + �t) = e−i[F(t+�t)−F(t)]�(r,t)

+ ie−iF(t+�t)
∫ t+�t

t

eiF(τ )N(�,τ ) dτ. (A3)

This form is exact for time-dependent L.
In the limit of small �t , one may approximate that L(t ′) is

approximately constant in the range t < t ′ < t + �t and that
this constant value is equal to L(t). This leads to the expression
of F(τ ) appearing in the rightmost integral being

F(τ ) =
∫ τ

0
L(t ′) dt ′ = L(t)τ − L(t)t + F(t). (A4)

Note that the above expression is made possible due to the fact
that τ takes values only between t and t + �t in the context
of the integral in Eq. (A3). One may similarly treat F(t + �t)
appearing in the exponential factor outside of the integral as

F(t+�t) =
∫ t+�t

0
L(t ′) dt ′ = L(t)(t+�t)−L(t)t+F(t).

(A5)

Last, it is simple to show that F(t + �t) − F(t) in the first term
of (A3) is equal to L(t)�t . After canceling extraneous factors,
one is left with Eq. (14).

In calculating the integral in Eq. (A3) one should use time
ordering because F(t) does not commute for t and t ′ [the same
way as in Eq. (7)]. The time ordering in most calculations
in the literature is neglected, assuming that if the time step is
small enough, the calculation will converge. If the Hamiltonian
is constant in the time interval, then the error of neglecting
the time ordering is second order in time. For very strong
time-dependent potentials, this may lead to inaccuracies. One
possible solution is to use iterative time ordering [95]

�k(r,t) = e−i[F(t)−F(tn)]�k(r,tn)

− ieiF(t)
∫ t

tn

eiF(τ )N(�k−1,τ ) dτ. (A6)

Using this equation, the time ordering is forced by iteratively
converging �k at each time step. This iterative solution
corresponds to the Dyson series and is equivalent [95] to
the Magnus expansion approach [96] to time ordering. We
have checked a few selected cases and this iteration converges
within just one step, even for large step sizes, so enforcing
time ordering is not necessary in the calculation.

APPENDIX B: FURTHER METHODS

We are interested in the solution of the initial value problem

dy

dt
= f (y,t) y(t = 0) = y0. (B1)

1. Euler method

Discretizing time with tn = n�t and defining yn = y(tn),
the simplest solution of this equation is given by the (explicit)
forward Euler method

yn+1 = yn + �tf (yn,tn). (B2)

Alternatively, one can use the implicit backward Euler method

yn+1 = yn + �tf (yn+1,tn+1). (B3)

Both approaches can be easily derived from first-order Taylor
expansions of y, and it is well known that the implicit approach
is more stable but computationally more expensive (one has
to determine the explicitly not known yn+1 on the right-hand
side). These approaches are O(�t2) accurate in time.

2. Runge-Kutta method

One may approximate the following step, yn+1, from the
current step, yn, by taking a weighted average of estimated
slopes evaluated at temporal increments between the two steps.
By choosing only one increment, one arrives at the above
described Euler method. For two increments, this is called the
second-order Runge-Kutta method

yn+1 = yn + �tk2, k1 = f (yn,tn),

k2 = f (yn + �t

2
k1,tn+1/2). (B4)

The fourth-order Runge-Kutta method is most widely used,
with an error of O(�t4):

yn+1 = yn + �t

6
(k1 + 2k2 + 2k3 + k4), k1 = f (yn,tn),

k2 = f (yn + �t

2
k1,tn+1/2), k3 = f (yn + �t

2
k2,tn+1/2),

k4 = f (yn + �tk3,tn+1). (B5)

3. Adams methods

One can integrate Eq. (B1) as

yn+1 = yn +
∫ tn+1

tn

dy

dt
dt = yn +

∫ tn+1

tn

f (y,t) dt. (B6)

Adams methods approximate the integrand with a polynomial
within the interval (tn,tn+1). Using a kth-order polynomial, one
defines a (k + 1)th order method. The explicit scheme is called
the Adams-Bashforth method and the implicit one is called the
Adams-Moulton method.

The second-order Adams-Bashforth method can be simply
derived by using a linear interpolation for f (y,t) and is defined
as

yn+1 = yn + �t

2
[3f (yn,tn) − f (yn−1,tn−1)]. (B7)

063307-13



DANIEL KIDD, CODY COVINGTON, AND KÁLMÁN VARGA PHYSICAL REVIEW E 96, 063307 (2017)

The approach is explicit and, as such, it is only conditionally
stable—that is, it requires small time steps.

The second-order Adams-Moulton method is based on the
trapezoidal rule and is given by

yn+1 = yn + �t

2
[f (yn,tn) + f (yn+1,tn+1)]. (B8)

This is a stable implicit scheme with longer allowed time
steps, but the trade-off is the higher computational cost. These
approaches are O(�t3) accurate in time.

APPENDIX C: THE ϕ FUNCTIONS

The ϕ functions are defined as

ϕ0(z) = ez, ϕn(z) = z−n

(
ez −

n−1∑
k=0

zk

k!

)
. (C1)

The first few functions are

ϕ1(z) = ez − 1

z
, ϕ2(z) = ez − 1 − z

z2
,

ϕ3(z) = ez − 1 − z − 1
2z2

z3
. (C2)

The ϕ functions satisfy the recurrence relation

ϕl(z) = zϕl+1(z) + 1

l!
,  = 1,2, . . . . (C3)

The efficient and accurate evaluation of these functions is an
important problem that has been addressed in the literature
[78,81]. One major issue is the cancellation error during
the direct evaluation of the ϕ functions [38,41]. Various
algorithms have been developed to cope with this problem.
The simplest one is to remove the lowest eigenvalues [38]
if matrix diagonalization is possible for the calculation of ϕ.
Another way is to use a Taylor series

ϕn(z) =
∑
k=n

zk−n

k!
. (C4)

Many more advanced algorithms, including Krylov subspace
evaluation [78,97] and other methods used to calculate matrix
exponentials [98] have also been developed.
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