
PHYSICAL REVIEW E 96, 063306 (2017)

Stable lattice Boltzmann model for Maxwell equations in media
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The present work shows a method for stable simulations via the lattice Boltzmann (LB) model for
electromagnetic waves (EM) transiting homogeneous media. LB models for such media were already presented
in the literature, but they suffer from numerical instability when the media transitions are sharp. We use one of
these models in the limit of pure vacuum derived from Liu and Yan [Appl. Math. Model. 38, 1710 (2014)] and
apply an extension that treats the effects of polarization and magnetization separately. We show simulations of
simple examples in which EM waves travel into media to quantify error scaling, stability, accuracy, and time
scaling. For conductive media, we use the Strang splitting and check the simulations accuracy at the example of
the skin effect. Like pure EM propagation, the error for the static limits, which are constructed with a current
density added in a first-order scheme, can be less than 1%. The presented method is an easily implemented
alternative for the stabilization of simulation for EM waves propagating in spatially complex structured media
properties and arbitrary transitions.
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I. INTRODUCTION

The lattice Boltzmann (LB) equation was originally de-
veloped for fluid simulations [1]. This algorithm, referred
to as the lattice Boltzmann model (LBM) in the following,
belongs to the lattice gas automaton describing a discretized
microcanonical model of an incompressible fluid. The first
applications on fluid simulations showed that the LBM was
an efficient alternative to conventional numerical methods like
those based on the finite difference time domain [2]. Later
studies applied this approach to simulations of acoustics [3,4],
non-Newton fluids [5], various interactions with boundaries
[6–10] like reflection or pressure, multicomponent fluids [11],
phase transitions [12], convection [13], and heat transport [14].

The LBM is used for simulations of a special type of
ordinary differential equations (ODEs) including the limit of
the equation of continuum in its parameter space. Different
fields of physics with similarities in their ODEs compared to
the equations underlying the LBM have been simulated, such
as the Euler [15] or wave [16] equation, nonlinear and complex
equations [17] like the nonrelativistic Schrödinger equation
[18], or the one-dimensional relativistic Dirac equation [19] in
quantum mechanics.

Dellar [20] first described the kinematics of ferrofluids
via LBM and extended this model in following studies to
simulations of magnetohydrodynamics [21]. Later studies
considered other systems with properties that were described
by the Maxwell equations [22,23]. For example, Liu and Yan
[23] showed a LBM to improve the accuracy of the propagation
of electromagnetic waves including the interaction with media.
However, they showed only simulations in pure vacuum.

Mendoza and Muñoz [22] used a different approach for their
LBM to simulate the propagation of electromagnetic (EM)
waves into homogeneous media. They mentioned instabilities
of simulations that could, according to the authors, be avoided
by using smooth transitions between material properties.
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The propagation of EM waves in inhomogeneous media
has been shown by Hanasoge et al. [24] via the LB equation.
The authors mentioned difficulties in numerical stability
in the presence of sharp interfaces as well. They argue that
these instabilities are the result of higher-order terms in
the Chapman-Enskog expansion that may not be negligible
anymore in such cases of high media gradients. It is known
from other models that such instabilities are caused by the
stiffness issue arising from varying magnitudes of properties in
the time evolution schemes, such as multiphase flow [25,26]. In
this paper, we derive a LBM of Ref. [23] for electromagnetism
and suggest an extension that allows stable simulations of EM
waves that propagate in a composition of homogeneous media
modeled with arbitrary transitions including the limit of sharp
interfaces.

Section II introduces the Maxwell equations and the
evolution scheme of our LBM. The basic derivation of these
equations and the underlying assumptions can be found in
Appendix A. This LBM is analogous to the one described in
Ref. [23] and is here called an “unseparated” model with the
derivation of this model described in Appendix B. Then our
model called “separated,” an extension of the separated one in
the limit of pure vacuum, is presented (see also Appendix C
for more details as well). In Sec. III we show simulations
of examples that are easy to comprehend. The boundary
conditions of the first three examples are chosen to be periodic
to ensure the total energy to be conserved over a large number
of iteration steps. The first example analyzes the error of the
total energy of an EM wave propagating from vacuum into a
dielectric medium modeled with a sharp interface to show that
our LBM is of second-order accuracy. The second example
shows the evolution of total energy obtained from simulations
with different methods (separation, smooth transition, entropic
filter) suitable for stabilization as well as the unseparated
model proposed in this work. The third example shows the
amplitudes and velocities of the reflected and transmitted part
of an EM wave packet before and after it passes a dielectric
interface. We then show simulations with open boundary
conditions of an EM wave penetrating a conductor. A broad
range of conductivities for the limit of bad and good conductors
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FIG. 1. A D3Q7 lattice and the directions of the velocity vectors
vi accompanying to their fi within one cell.

is considered. Then the static limit of the electric field around
a point charge and the magnetic field around a current each
generated via a current density are shown. The properties of
our approach are summarized and discussed in Sec. IV.

II. LATTICE BOLTZMANN MODEL

The LBM [27] is an approximation of the Boltzmann
equation applied on a system that is divided into cells
via a lattice. The discretized Boltzmann equation can be
written as

fi(r + viδt,t + δt) = fi(r,t) +
∑

j

�ij (r,t), (1)

where fi equals a particle density given at the time t and
located in the cell denoted by the vector r . This density is
moving in direction vi to its neighboring cell and takes with
it a quantity defined by the collision matrix �ij . Typically
these cells are disposed into a grid that represent a lattice.
We use a lattice known as “D3Q7” [28] where “D” denotes
the dimension followed by its number and “Q” the number of
lattice vectors followed by its number; such a lattice is shown
in Fig. 1. A simple and commonly used case for �ij is given by
the Bhatnagar-Gross-Krook (BGK) collision operation with

�ij (r,t) = 1

τ

[
f

eq
i (r,t) − fi(r,t)

]
, (2)

where τ represents a relaxation time towards an equilibrium
f

eq
i . The Chapman-Enskog expansion allows the prediction of

the equation of continuum for τ = 1
2 [29] so that (1) reads

fi(r + viδt,t + δt) = 2f
eq
i (r,t) − fi(r,t), (3)

the so-called lattice BGK (LBGK) model. As a fixed value is
assigned to τ , this model does not belong to the relaxation-type
LBM in which τ represents properties of macroscopic trans-
port mechanisms, like viscosity in fluid dynamics. Therefore
this LBM works in a stream-and-compute local equilibria
procedure. An expansion of (3) with τ = 1

2 up to the second
order in δt approximates

∑
i

(
∂tf

eq
i +

∑
α

vαi
∂αf

eq
i

)
= 0, (4)

where vαi
represents the α component of vi (see Appendix A

for more details on the Chapman-Enskog expansion).
This equation of continuity is suitable for the simulation of

electrodynamics via the Maxwell equations.

A. Maxwell equations

The Maxwell equations are a set of two linear homogeneous
and two inhomogeneous differential equations∑

α

∂αBα = 0,
∑
β,γ

εαβγ ∂βEγ = −∂tBα,

∑
α

∂αDα = ρ,
∑
β,γ

εαβγ ∂βHγ = ∂tDα + jα, (5)

with the Levi-Civita tensor εαβγ in its standard definition, the
vector components α,β,γ ∈ {x,y,z} of the magnetic induction
B, electric field E, displacement field D, charge density ρ,
magnetic field H , and the current density j . The material
equations are defined as

Dα = ε0Eα + Pα → εrε0Eα, (6a)

Bα = μ0(Hα + Mα) → μrμ0Hα, (6b)

with the vacuum permittivity ε0 (permeability μ0), the rel-
ative permittivity εr (permeability μr ), and the vectors of
polarization P and magnetization M. The arrow denotes the
description for linear media. In the following, we set ε0 and
μ0 to one and therefore the speed of light in vacuum defined
by ε0μ0 = c−2 to one as well. As shown in Refs. [22,23], the
focus laid on the use of ∇ × E = −Ḃ and ∇ × H = j + Ḋ
as one can derive from them

∂t∇ · B = 0, (7a)

∂t (∇ · D − ρ) = 0 (7b)

by using the conservation of charge density Dtρ = 0. If they
are valid for one time step, they are valid for all time steps,
and all Maxwell equations are then fulfilled.

B. Macroscopic equations for propagation

According to Ref. [23], we use (A9) for the Maxwell
equations in (5) for each vector component of E and H . We
introduce the distributions eα,i(r,t), hα,i(r,t) from which the
macroscopic field components are computed:

εrEα(r,t) =
∑

i

eα,i(r,t), (8a)

μrHα(r,t) =
∑

i

hα,i(r,t). (8b)

Using (3) for the time evolution of these distributions, we
obtain

eα,i(r + viδt,t + δt) = 2e
eq
α,i(r,t) − eα,i(r,t), (9a)

hα,i(r + viδt,t + δt) = 2h
eq
α,i(r,t) − hα,i(r,t) (9b)

with their equilibria

e
eq
α,i = 1

6

⎛
⎝εrEα −

∑
β,γ

εαβγ vβ,iHγ

⎞
⎠, (10a)

h
eq
α,i = 1

6

⎛
⎝μrHα +

∑
β,γ

εαβγ vβ,iEγ

⎞
⎠. (10b)
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We refer to this LBM as an “unseparated” model because
of εr and μr are part of the streaming step in (10). Now, using
the equilibria (10) for the LB equations (9), we obtain the two
Maxwell equations

∂t [εrEα(r,t)] =
∑
β,γ

εαβγ ∂βHγ (r,t), (11a)

∂t [μr∂tHα(r,t)] = −
∑
β,γ

εαβγ ∂βEγ (r,t) (11b)

via the Chapman-Enskog expansion as derived in
Appendix B.

The propagation of an EM wave simulated with this LBM
remains stable in homogeneous media without transitions. We
chose the vacuum limit with εr = 1 and μr = 1 (vacuum)
for (10) and take additional distributions e

eq
α,0 and h

eq
α,0 that

belong to the zero vector in order to “separate” the interaction
with media. We do this by defining e

eq
α,0 = Pα := (εr − 1)Eα

and h
eq
α,0 = Mα := (μr − 1)Hα so that the equilibria of that

separated model are

e
eq
α,i =

{
1
6

(
Eα − ∑

β,γ εαβγ vβ,iHγ

)
if i �= 0

(εr − 1)Eα if i = 0
, (12a)

h
eq
α,i =

{
1
6

(
Hα + ∑

β,γ εαβγ vβ,iEγ

)
if i �= 0

(μr − 1)Hα if i = 0.
(12b)

With these equilibria, we obtain the same Maxwell equa-
tions (11) as shown in Appendix C. Both share the same scaling
properties like the iteration time step δt = 1

6 and the speed of
light in lattice units c̃0 := �Ncell/�Nit = 1

3 with the number
of lattice cell Ncell and iteration step Nit.

C. Extension to conductive media and currents

Adding the current density j as a source to the model is
done by using the Maxwell-Ampère law εrE + j = ∇ × H.
Here we take the commonly used first-order scheme [23,30]
approximation by updating

Eα → Eα + δtjα (13)

after each iteration step. This approach is suitable for external
sources. Conductive media, described by

j = σE (14)

with σ as scalar conductivity, can be treated in the same way
if σ is close to zero. Simulations with σ � 0 are less accurate,
and the simulation gets rapidly unstable. In order to avoid this
instability, we use the sequential Strang splitting [31] via

εr∂t∇ · E = −σ∇ · E (15)

with the solution

∇ · E(t + δt) = ∇ · E(t)e−σ/εr δt . (16)

We then make use of E(t + δt) = E(t)e−σ/εr δt , which holds

εr Ė(t + δt) + σE(t + δt) = εr Ė(t)e−σ/εr δt . (17)

After each iteration, we replace E → Ee−σ/εr δt and use this
new field in combination with εr Ė = ∇ × H for the next

iteration so that it depends on t + δt :

∇ × H(t) = εr Ė(t)e−σ/εr δt

≈ εr Ė(t) + σE(t). (18)

Considering ∇ × E = −μr Ḣ , we assume that only the spatial
distribution of E leads to temporal change of H since ∇ ×
(Ee−σ/εr δt ) ≡ ∇ × E. This approximation works well in the
case for small values of σ . As mentioned earlier, the agreement
between theoretical prediction and simulation under high
conductivities can be less accurate, but as shown later the
simulation remains stable even under unphysically high σ .

III. SIMULATION RESULTS

A. Error scaling

We now simulate the propagation of an EM wave in a
one-dimensional system with periodic boundaries to obtain
the error scaling of the presented LBM. The initial value for
the EM fields is zero except for

Ey(x,Nit = 0) ≡ Hz(x,Nit = 0) := e−250( x
Nx

− 1
4 )2

, (19)

in a lattice with a specific size defined by the number of cells
Nx that are used. The media parameters of the system are
defined with σ (x) = 0, μr (x) = 1 and

εr (x) =
{

1 if x < Nx

2

10 if x � Nx

2

(20)

for x ∈ [0,Nx]. In order to compare the unseparated model
described by (10) with the separated one described by (12),
we calculate the total energy, which reads

W := 1

2

Nx∑
x=0

[εr (x)E2(x) + μr (x)H2(x)] (21)

and compare the simulation results with the theoretical
prediction Wth by calculating the error

�W (Nit) := |W (Nit) − Wth| (22)

at each iteration step.
Figure 2 shows the time evolution of �W of the separated

and unseparated model. The size of the system defined by
(20) was chosen with Nx = 100. Both simulations started with
equal errors as the wave packet defined with (19) was almost
only in vacuum. At Nit = 400, the major part of the initialized
wave packet propagated into the dielectric. The error of the
unseparated model remains nearly unchanged at the first Nit =
4000 iteration steps but then tends to infinity very quickly. In
contrast, the error of the separated model starts to rise already
at the iteration step Nit = 400 but remains at the relative error
of about 10−4.

As we have used the linear ODE defined (A9), we expect
our LBM to remain of second-order accuracy in form of

�W ∝ (δx)2 (23)

with the spatial steps δx. Decreasing δx can be achieved
by increasing the number of grid cells with Nx . The initial
condition defined by (19) allows the relation Nx ∝ δx−1.
Figure 3 shows the relation �W ∝ δx1.98, which confirms
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FIG. 2. Error of total energy �W at iteration step Nit of the model
derived from Ref. [23] (unseparated) and our model (separated) of
an EM wave propagating into a dielectric medium. Both simulations
were defined via (19) and (20) and Nx = 100.

the expected second-order convergence of (23). Here we
repeated the simulation paradigm that was used for the simul-
ations shown in Fig. 2 for various Nx . The monitored error
then was averaged over the iteration period of Nit ∈ [0,104].

B. Numerical stability

For the investigation of numerical stability, we check if our
LBM is able to fulfill the conservation of energy. We therefore
chose a two-dimensional 200 × 200 lattice with periodic
boundary conditions in each direction. The third dimension
here is therefore represented via an infinite alignment of this
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 100  1000  10000

lo
g 1

0(
ΔW

)

Nx

absolute error ΔW
-1.98 log10(Nx)+1.84

FIG. 3. Average absolute error �W at different lattice sizes
defined by Nit and its regression curve. The error is obtained by
averaging �W over 104 iterations for each lattice size.
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FIG. 4. 200 × 200 lattice with dielectric media εr = 10 (gray
area) in vacuum. EM fields are generated by the current density
jz represented by the encircled black dot in the middle of the system
(100,100).

two-dimensional plane in which the EM fields are fueled by
the current density

jz = sin

(
Nit

π

50

)
(24)

radiating over the first 50 iterations. Figure 4 shows the
setup of the material properties with εr = 10 in the gray
area, εr = 1 elsewhere, and μr = 1 and σ = 0 globally. The
current density in the middle of the system is represented
by the little encircled black dot. After the first 50 iterations,
we expect the total energy, calculated analogously to (21),
to be constant in time. Here the results of three approaches
suitable for stabilization are shown in Fig. 5. The first one
(empty circles) is the separated LBM, which is compared
with the unseparated one (filled circles). The second method
(triangles) is the smoothed transition approach, as proposed
in Refs. [22,24]. Here we used a linear change of material
properties to represent the sharp interface between vacuum
and medium. The third one (diamonds) is the entropic filtering
as described in Refs. [32,33]. Here two different values for
the relaxation time τ were used. The damping of the entropic
filter with τ = 1.95−1 is too strong, since it causes the energy
to rapidly decrease in time. For τ = 1.99−1, the energy first
drops slightly too, to Nit = 400, but increases after that time
overexponentially. Better results can be achieved by using a
smooth transition. Here we compared the effects of five and 50
cells to smooth the sharp transition. As expected, the energy is
conserved far longer using 50 cells than five or no cells (black
squares of Fig. 5) for the transition.

Figure 6 shows the distribution of the energy density
between unseparated (left column) and the separated model
(right column) at different iteration steps. As shown in Fig. 5,
the energy of the unseparated model (black filled squares)
starts to increase significantly at about Nit = 300. This increase
is visible in Fig. 6 as noise at the edges of the dielectrica and in
the space between them. This noise keeps expanding between
these media (see Nit = 400) and spreads all over the whole
system as one can see at Nit = 500. In contrast, the separated
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FIG. 5. Comparison of different techniques to stabilize the total
energy W of an EM wave generated by an electric current jz =
sin (πNit/50) radiating in the middle of the system the first 50
iterations. The system is defined with periodic boundary conditions as
shown in Fig. 4. The simulation with sharp media transition using the
unseparated model is compared to the separated one, the smoothed
transition, and the entropic filtering method.

model with splitting remains stable with a reasonable energy
distribution.

C. Propagation of an electromagnetic wave

A well-known influence of media on the propagation of
EM waves is the reduction of velocity. First, we compare
simulation results of the separated model with the unseparated
one (derived from Ref. [23]). The top left panel of Fig. 7 shows
a Gaussian-shaped EM pulse that was initialized in vacuum
(left white area). This pulse then is moving into a dielectric
medium with ε′ = 9 (right gray area). The amplitudes of Hy

and Ez for the initial EM pulse were set to one. On a short time
scale (Nit = 1000) no significant differences were observed
between the two models. Thus, only the simulations of the
separated model are shown (top left panel of Fig. 7). The
transmitted maximum has an average amplitude of 0.4992 and
the reflected one has 0.5001. The analytical solution for the
transmitted Ez,T and reflected Ez,R amplitude of the EM wave
are given by [34]

Ez,T

Ez,0
= 2√

ε′
ε

+ 1
, (25a)

Ez,R

Ez,0
= 1 − Ez,T

Ez,0
, (25b)

from which we obtain an amplitude for the transmitted and
reflected electric field of 0.5, i.e., the simulations deviate from
the theoretical values by less than 1%. The panels below the
top one of Fig. 7 show snapshots at different time steps of the
separated (left) and the unseparated model (right). The right
one shows an increasingly unstable behavior with unexpected

300 300

400 400

500 500

FIG. 6. Snapshots of distributed energy density of the elec-
tromagnetic wave simulations with unseparated (left column) and
separated (right column) model at different iteration steps Nit The
fields are generated with a current that is placed in the middle of the
200 × 200 cells system in which the EM waves cross dielectric media
(not visible here; see Fig. 4).

oscillations, especially in vacuum (best seen in the bottom
right panel for Nit = 7000) that seems to be radiated from
the surface of the medium into the vacuum. Similar to Fig. 6,
these oscillations grow rapidly in the vacuum region near the
media but not inside the medium. The inside of the media
remains at that point nearly stable but on a longer time scale
the oscillations occur in here as well (not shown). Now, the
velocity of the EM pulse that travels from the beginning
of the simulation to the moment it crosses the dielectric
interface is determined. Figure 8 shows the position of the
extrema of the amplitudes of the electric field over the time
for the separated model. Until the iteration step Nit = 600, the
pulse propagates in vacuum only. From the relation between
spatial position and time, the speed of light in vacuum can be
obtained via linear regression as c̃0 = 0.3333 ± 0.08% (tilde
denotes lattice units). For the reflected part at Nit > 600,
we obtain c̃r = 0.3303 ± 0.25%. These predictions are in
good agreement with the theoretical values of c̃0 ≡ c̃r = 0.3.
Inside the medium, the velocity of the transmitted wave was
determined to be c̃t = 0.1114 ± 0.18% which is in good
agreement with the theoretical value of c̃t = 0.1. Here we
have shown the effects of media on the speed of light with
permittivity εr > 1 only, but the expectations with inclusion
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(a), (b),        Nit=1000

Ez(Nit)
Hy(Nit)

Ez(0)
Hy(0)

(a), Nit=3000 (b), Nit=3000

(a), Nit=6000 (b), Nit=6000

 0  100  200  300  400  500  600

(a), Nit=7000

 0  100  200  300  400  500  600  0  100  200  300  400  500  600

(b), Nit=7000

 0  100  200  300  400  500  600

FIG. 7. Comparison between simulations on the basis of Eq. (12) (a, left column) with those based on Eq. (10) (b, right column). An
one-dimensional Gaussian-shaped EM pulse travels through a 600-cells-wide lattice with periodic boundaries initialized in vacuum (ε = 1)
and crossing a dielectric (ε′ = 9, transparent gray area) interface starting at cell number 300 and ending at 600. Simulations at Nit = 0 and at
Nit = 1000 are almost identical between these two approaches. At Nit = 3000, one observes in (a) the first results of inaccuracies in the area
of cells 200 to 300 (outside dielectric) and inside noised curves around cell 500. This unphysical behavior grows in strength over time as one
can see at Nit = 6000 and clearly at Nit = 7000 as these inaccuracies tend to grow exponentially with iteration step.

of permeability μr > 1 are of comparable accuracy (not shown
here).

D. Skin effect

For an EM wave propagation inside a conductor, we chose
the well-known predictions of the skin effect to compare the
simulation results with. Therefore, we set the fields outside the
conductor at a fixed position to

E = E0 sin(ωt)ey, (26a)

H = H0 sin(ωt)ez, (26b)

with t = 1
3Nit and let the wave propagate in the x direction.

With a typical complex ansatz for the dependency of Ey and
Hz from t and x with exp[i(ωt − kx)], one obtains the complex

 50

 100

 150

 200

 250

 300

 350

 400

 0  200  400  600  800  1000  1200  1400

N
x

Nit

Ez,min
Ez,max

FIG. 8. According to case (a) of Fig. 7, the position of the
maximum and minimum of Ez in time is shown. Here Ez,min

corresponds to the reflected part of the EM wave. Ez,max of Nit < 600
belongs the initial EM wave and the transmitted one to Nit � 600.

solution for the wave vector

k = ω

c

[
1 +

(
σ

ωε

)2
]1/4

exp

[
− i

2
arctan

(
σ

ωε

)]
(27)

that leads to a phase shift and weakened amplitudes from which
one obtains

Ey(x) = E0 exp [−
(k)x] sin [ωt − �(k)x], (28a)

Hz(x) = H0 exp [−
(k)x] sin [ωt − �(k)x + �φ], (28b)

�φ = 1

2
arctan

(
σ

ωε

)
= �(k)�λ (28c)

with the depth from the surface of the conductor x, the skin
depth d := 
(k), the phase shift between Ey and Hz with �φ,
and the resulting shift of wavelength �λ. The impedance obeys

|Z| =:
E0

H0
= cμ

[
1 +

( σ

ωε

)2
]−1/4

. (29)

With an increased value of σ , the real part of (27) predicts a
shortened wavelength

λ = 2π

�(k)
, (30)

and the reduced speed of propagation cσ inside the conductor
follows

cσ =
[
1 + (

σ
ωε

)]−1/4

cos
[

1
2 arctan

(
σ
ωε

)]c0. (31)

Figure 9 compares the theoretical predictions of various
quantities with data and extrema (minimum and maximum
via error bars) obtained from simulations depending on the
conductivity in a one-dimensional system consisting of 1000
cells. We have chosen ω = 2π/1000, the initial amplitudes
(26) equal to one (outside the conductor) and σ = 10n with
n ∈ [−5,1] to cover a broad range of conductivities including
the limits of bad σ � ωε and good σ � ωε conductors (see
n ≈ 3 as a transition point). With cσ=10 reduced down to 3.54%
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FIG. 9. An EM wave with ω = 2π

1000 penetrating a conductor.
Theoretical prediction of the skin depth d , impedance |Z|, speed
of propagation cσ , wavelength λ, and phase shift �φ depending on
the conductivity σ are compared with simulation results. The error
bars refer to the minimum and maximum that were obtained during
the monitoring.

of c0, the waves need approximately 104 iterations to travel
through the system. We therefore considered only data after
N = 106 iterations (100 waves traveling through the system)
as we expect that the waves then are nearly infinitely expanded.
Monitoring the maxima and zeros of Ey and Hz over time, we
have chosen the biggest values at each position in time. From
these data, we determined values for the skin depth d via the
logarithm of the maxima, |Z| via their ratios, cσ the zero of
Ey over time, λ via differences of zeros of Ey and �φ via
differences of zeros between Hz and Ey . All these quantities
fit well with the prediction except for σ = 10, here especially
for cσ and �φ. Because of λ/2 being theoretically 17.7 cells
broad, the obtained data from simulation got more inaccurate
since we searched for cells with Ey most closely to zero only.
Similar to these inaccuracies, the rather big error bar of �φ

for σ = 10−5 is caused by the finite error of �λ = 1.
Good conductors, as shown in Fig. 10, are in good agree-

ment with the prediction. Here a snapshot of the simulation
already discussed in the context of Fig. 9 for σ = 0.1 is shown.
As the strong weakening leads to a rapid drop of the amplitudes
with the penetration depth, we amplified the data with the
theoretical term exp(0.017176716 x) to compensate for this

-6

-4

-2

 0

 2

 4

 0  100  200  300  400  500  600  700  800
lattice cell number in x-direction

Eye
dx

Hze
dx

theory Eye
dx

theory Hze
dx

FIG. 10. The amplitudes of an EM wave (initialized with ω =
2π/1000, Ey = 1, Hz = 1) propagating in a (good) conductor
with σ = 0.1 in the x direction is compared with the theoretical
prediction. The amplitudes Ey and Hz are amplified by exp(dx) with
d = 0.017176716, the real part of (27). The numerical noise being
amplified is visible at x = 650 and dominating the further curve.

attenuation. The phase shift between Ey and Hz is visible up
to the penetration depth of about x = 650, as well as their
wavelengths and their different amplitudes that are caused by
the impedance. At that depth, the theoretical amplitudes are
smaller (about 10−5 compared to the initial amplitude of one)
than the numerical noise, which has an approximately constant
amplitude at each point of the system.

E. Static limits

As the present model explicitly allows the derivation of
Maxwell equations that only describe the propagation with
(11), we now want to check if it implicitly contains the static
limit in the form of (7) too. The two-dimensional system
considered here contains 600 × 600 cells with open boundary
conditions in the x-y plane. Figure 11 shows the curve of the
field components Hy and Ex in the x direction.

For the magnetostatic case, a current in the z direction
flows perpendicular towards the plane of the lattice with
periodic boundary conditions in the z direction. Using the
finite Stokes integral to calculate the results using 60 different
circumferences, we obtained jz = 0.999969 ± 0.00113%. The
electrostatic case is constructed by setting a current jx from
the center to the border of the lattice in the x direction.
Only for the first 100 iterations, the current is set to 0.1;
elsewhere it is jx = 0. It then accumulates a charge with
a theoretical value of q = jx�T = jx

1
3�Nit = 10

3 . With the
use of the finite Gauß integral over 60 different surfaces, we
obtained q = 3.33438 ± 0.1221%. Both cases agree well with
the theoretical values derived from (7).
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FIG. 11. Comparison of the simulated electrostatic field compo-
nent Ex of a point charge and the magnetostatic field component Hy

of an electrical current with the theoretical prediction.

IV. DISCUSSIONS AND CONCLUSIONS

The LBGK model based on Refs. [20,21,23] shows an effi-
cient and simple way to simulate Maxwellian electrodynamics.
Simulations of EM waves propagating into homogeneous
media, however, are highly unstable, as shown in Fig. 2. Here
the curve labeled “unseparated” shows the overexponential
growth of the relative error of total energy in time. It is well
known that LBGK, in general, tends to instabilities in certain
limits of its applications [32,33,35–38]. The commonly used
approaches to stabilize LBMs are the so-called semi- or fully
implicit approximations for the Boltzmann equation [39]
that, in general, need additional computation locally [40] on
their distributions fi . Such an implicit scheme for the EM
propagation was used by Dellar [20] for only vacuum-like
conductors. His model, in which the relaxation time is related
to the conductivity, is not suitable for nonconductive media.
In that case, the relaxation time, which is reversely related to
the conductivity, tends to infinity in the limit of nonconductive
media. At that point, the contribution from the collision term
in the streaming step vanishes and the simulation returns un-
reasonable results. However, even if implicit schemes are able
to reduce the second-order truncation error, it is questionable
if this reduction is sufficient enough to avoid the mentioned
instabilities caused by the description of media in (10). Another
possibility for stabilizing of simulations with media transitions
is to smooth interfaces between different media [22,24]. Such
blurring of structures is impractical, since one has to increase
the lattice size to ensure a reasonable resolution of the
structure. This increases the required computation time and
calculation memory. The authors suggested another possibility
for stabilization by using a form of Boltzmann’s H theorem
[35]. However, for the H theorem, a nontrivial real root of a
nonlinear system of equations has to be found. Such solutions

(oftentimes being complex) are not always guaranteed. In
addition, finding this root also increases calculation time
substantially, which limits its use in practical aspects.

Another promising method is the “entropy trimming”
[32,33,41,42] or filtering. Here the nonequilibrium entropy
is reduced via an increased relaxation time at lattice points,
in which the nonequilibrium entropy exceeded a predefined
critical value. The disadvantage is that this violates (A9), and
the second-order contributions then play a physical role like
the viscous stress tensor in fluid dynamics. However, as the
present LBM has to avoid these higher-order contributions,
simulations will inevitably be not of second-order accuracy.
One might consider a multi-relaxation time-based model for
each field E and H as well. But as those parts of the Maxwell
equations that describe the propagation in media are a set
of linear differential equations, the use of a model suited for
nonlinear convection diffusion [43] would need a proper, quite
more complex or different collision model than the LBGK. The
development of such a model is not the aim of the present work.

We have shown an easy extension of a special limit
(vacuum) via additional and adapted LB equations that
contain media properties described by polarization and
magnetization. The presented model leads to stable simulation
results under arbitrary media transitions. We achieve the same
results by choosing the equilibria of these new distributions
only with spatial derivation for their underlying equation of
continuity, which therefore forces the partial time derivation
to be zero. Note the influence of the dimension on stability.
The unseparated model in Fig. 6 (two-dimensional), e.g., gets
unstable at Nit = 300, which is far earlier than in Fig. 7 (one-
dimensional) with Nit = 6000. In contrast to the unseparated
model, we did not find any hint that our separated model gets
unstable on larger iteration numbers in a three-dimensional
system. The description of conductive media in our study is
done via an extension of the elaborated model for propagation
(12). Here we used a sequential first-order Strang splitting.
The main advantage of this effective damping is to guarantee
numerical stability. The applied simulations for the skin
effect have shown to be accurate over a broad range of
conductivities. As expected, the limit of good conductors
suffers of accuracy. Here a combination with Ref. [20] could
lead to better results via the extension to homogeneous media.
For inhomogeneous media, one might consider [24] to be
used for simulations including nonconductive media. Overall,
the presented extension of the LBM for electrodynamics
allows now a reliable, stable, and therefore practical tool for
long-time simulations with arbitrary media transitions.
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APPENDIX A: CHAPMAN-ENSKOG EXPANSION

The Chapman-Enskog expansion is a method to derive the
differential equation that describes the evolution of a quantity
f being described by the Boltzmann equation. We chose the
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BGK model (2) for the Boltzmann equation (1) and obtain

fi(r + viδt,t + δt) = fi(r,t) + 1

τ

[
f

eq
i (r,t) − fi(r,t)

]
.

(A1)
A Taylor series expansion is now applied to the left-hand side
of (A1) that then reads

fi(r + viδt,t + δt) =fi(r,t) + δtDifi(r,t)

+ δt2

2
D2

i fi(r,t) + O(δt3)
(A2)

with the temporal step δt and the total temporal derivation

Di := ∂t +
∑

α∈{x,y,z}
vα,i∂α. (A3)

The Chapman-Enskog expansion now makes the ansatz that
fi and Di each are expressed as a power series of δt that reads

fi :=
∑
n=0

δtnf
(n)
i , (A4a)

Di :=
∑
n=0

δtnD
(n)
i . (A4b)

We then use Eqs. (A4) and (A2) and insert them into (A1).
Under the assumption Di ≈ D

(0)
i , we sort terms with same

potency of δt up to the second order and get the following
equations:

δ0
t : f

(0)
i = f

eq
i , (A5a)

δ1
t : f

(1)
i = −τD

(0)
i f

(0)
i , (A5b)

δ2
t : f

(2)
i = −τ

(
D

(0)
i f

(1)
i + 1

2
D

(0)2
i f

(0)
i + D

(1)
i f

(0)
i

)

=
(
τ 2 − τ

2

)
D

(0)2
i f

(0)
i − τD

(1)
i f

(0)
i . (A5c)

With these expressions for f
(n)
i , we get for (A4a)

fi = f
eq
i − τDif

eq
i δt +

(
τ 2 − τ

2

)
D2

i f
eq
i δt2 + O(δt3).

(A6)

Under the assumption of
∑

i fi = ∑
i f

eq
i , we obtain with (A6)

∑
i

f
eq
i =

∑
i

[
f

eq
i − τDif

eq
i δt

+
(
τ 2 − τ

2

)
D2

i f
eq
i δt2 + O(δt3)

]
(A7)

from which we derive

Di

∑
i

f
eq
i ≈ δt

(
τ − 1

2

)
D2

i

∑
i

f
eq
i . (A8)

Using τ = 1
2 and (A3) for (A8), we obtain

∑
i

(
∂tf

eq
i +

∑
α

vαi
∂αf

eq
i

)
≈ 0, (A9)

which approximates the equation of continuity for the quantity∑
i f

eq
i with second-order accuracy.

APPENDIX B: UNSEPARATED MODEL

Deriving the macroscopic field components of E and H
with (8) and their Boltzmann equations (9), we use the
suggested equilibria (10) from Ref. [23]. In order to obtain
the Maxwell equations via (A9), we use a set of streaming
vectors vi as shown in Fig. 1 that fulfill the needed relations
in form of

6∑
i=1

vα,i = 0, (B1a)

6∑
i=1

vα,ivβ,i = 6δαβ. (B1b)

Following Appendix A, we obtain for (A9) by replacing
fi with eα,i and f

eq
i with (10a) and the usage of (B1a)

approximately

0 =
6∑

i=1

1

6
(∂t +

∑
η

vη,i∂η)

⎛
⎝εrEα −

∑
β,γ

εαβγ vβ,iHγ

⎞
⎠

=
6∑

i=1

1

6

[
εr∂tEα −

∑
β,γ

εαβγ vβ,i∂tHγ

+
∑

η

⎛
⎝εrvη,i∂ηEα −

∑
β,γ

εαβγ vβ,ivη,i∂ηHγ

⎞
⎠]

≡
6∑

i=1

1

6

⎛
⎝εr∂tEα −

∑
β,γ,η

εαβγ v2
β,iδβη∂ηHγ

⎞
⎠.

(B2)

Using (B1b) for (B2) and summing up over all i, we obtain
(11a) in the form

0 = εr∂tEα −
∑
β,γ

εαβγ ∂βHγ . (B3)

To obtain (11b), we repeat the procedure for (B2) and (B3) by
replacing fi with hα,i and f

eq
i with (10b) and then obtain

0 =
6∑

i=1

1

6
(∂t +

∑
η

vη,i∂η)

⎛
⎝μrHα +

∑
β,γ

εαβγ vβ,iEγ

⎞
⎠

=
6∑

i=1

1

6

⎡
⎣μr∂tHα +

∑
β,γ

εαβγ vβ,i∂tEγ

+
∑

η

⎛
⎝μrvη,i∂ηHα +

∑
β,γ

εαβγ vβ,ivη,i∂ηEγ

⎞
⎠

⎤
⎦

= μr∂tHα +
∑
β,γ

εαβγ ∂βEγ . (B4)

APPENDIX C: SEPARATED MODEL

The separation is an extension of the unseparated model
derived in Appendix B in the limit of vacuum. Here all nonzero
vectors vi shown in Fig. 1 have been used. This extension
now uses the zero vector that is assigned to the additional
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distributions eα,0 and hα,0. These quantities hold the influence
of polarization

Pα := (εr − 1)Eα ≡ e
eq
α,0 (C1)

and magnetization

Mα := (μr − 1)Hα ≡ h
eq
α,0 (C2)

caused by the interaction of EM fields with media. The
additional Boltzmann equations then read

eα,0(r,t + δt) =2e
eq
α,0(r,t) − eα,0(r,t),

hα,0(r,t + δt) =2h
eq
α,0(r,t) − hα,0(r,t)

(C3)

and obey, following the derivation in Appendix A,

0 =
6∑

i=1

(
∂t +

∑
η

vη,i∂η

)
[(εr − 1)Eα] = (εr − 1)∂tEα,

0 =
6∑

i=1

(
∂t +

∑
η

vη,i∂η

)
[(μr − 1)Eα] = (μr − 1)∂tHα.

(C4)

Referring now to Appendix B in the limit of vacuum (εr := 1
and μr := 1 for i ∈ [1,6]), we add (C1) to (8a) that then reads

εrEα =
[

6∑
i=1

eα,i

]
+ eα,0. (C5)

Accordingly to (B2), we obtain for (C5) the differential
equation

0 =
⎡
⎣∂tEα −

∑
β,γ

εαβγ ∂βHγ

⎤
⎦ + (εr − 1)∂tEα

= εr∂tEα −
∑
β,γ

εαβγ ∂βHγ .

(C6)

Analogously for Hα , we add (C2) to (8a) and obtain

μrHα =
[

6∑
i=1

hα,i

]
+ hα,0, (C7)

which leads by following (B4) to

0 =
⎡
⎣∂tHα +

∑
β,γ

εαβγ ∂ηEγ

⎤
⎦ + (μr − 1)∂tHα

= μr∂tHα +
∑
β,γ

εαβγ ∂βEγ .

(C8)

Both Eqs. (C6) and (C8) equal the propagating part of the
Maxwell equations in (11). Note that εr and μr here are
assumed to be constant.
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