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Three-scale analysis of the permeability of a natural shale
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The macroscopic permeability of a natural shale is determined by using structural measurements on three
different scales. Transmission electron microscopy yields two-dimensional (2D) images with pixels smaller than
1 nm; these images are used to reconstruct 3D nanostructures. Three-dimensional focused ion beam–scanning
electron microscopy (5.95- to 8.48-nm voxel size) provides 3D mesoscale pores of limited relative volume
(1.71–5.9%). Micro-computed tomography (700-nm voxel size) provides information on the mineralogy of
the shale, including the pores on this scale which do not percolate; synthetic 3D media are derived on the
macroscopic scale by a training image technique. Permeability of the nanoscale, of the mesoscale structures
and of their superposition is determined by solving the Stokes equation and this enables us to estimate the
permeabilities of the 700-nm voxels located within the clay matrix. Finally, the Darcy equation is solved on
synthetic 3D macroscale media to obtain the macroscopic permeability which is found in good agreement with
experimental results obtained on the centimetric scale.
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I. INTRODUCTION

Claystones and shales are low-permeability sedimentary
rocks. Due to this property, they are potential host rocks
for the long-term repository of long-lived and medium- to
high-activity nuclear waste in several industrialized countries
[1]. Understanding and predicting fluid transport through these
geomaterials is key to ensuring an adequate retention of ra-
dionucleides, together with a thoroughly designed engineered
barrier. Alternatively, shales may host natural gas [2], whose
recovery can be enhanced through the understanding and
prediction of fluid transport.

Shale pores are located within the clay matrix or at its inter-
face with nonporous minerals [3–11]. They are characterized
by a bimodal pore size distribution, with one main peak of
a few nm size, and the second of a few tens of nm size [2,8]
(unless otherwise stated, in this contribution, pore size refers to
pore diameter and not radius). These pores, located in the clay
matrix, most likely dominate the flow and transport properties
[6,8–10]. During sedimentation and compaction, clay minerals
are deposited along preferred orientations; it is also expected
that the pore space geometry is anisotropic [12], as are the
transport properties of the shale [13].

Characterizing the three-dimensional (3D) pore structure
of shales is a preliminary to an accurate prediction of their
transport properties from 3D numerical simulations (perme-
ability tensor). To our knowledge, due to the broad range of
pore sizes involved, and to the inherent heterogeneity of these
natural materials (which comprise swelling clay, soft and hard
minerals), 3D predictions of the shale transport properties from
the nano- to the macroscale have not been undertaken yet and
this is the major purpose of this paper.
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The 3D characterization of the pore space has been the sub-
ject of a number of studies. At least for the natural shale (NS)
studied herein, as well as for the Swiss Opalinus clay [4–6] and
for several Northern American shales [2], at present, no single
technique provides a full overview of its porosity for bulk
matter on the centimetric scale and above. A combination
of different techniques is recommended. These techniques
are either direct, i.e., imaging techniques, or indirect, i.e.,
they require a simplified model to derive pore characteristics.
Indirect techniques often rely either on gas adsorption (for the
smallest nanoscopic pores only) or on capillary intrusion of a
liquid fluid (for plurinanometric to millimetric pores only). The
sample preparation technique, involving small or powdered
samples, may also limit the applicability to bulk matter.

Direct 3D imaging provides all the necessary geometrical
parameters, but the physical size of the region of interest,
having fixed dimensions in terms of its number of voxels,
reduces with decreasing voxel size. This requires a character-
ization in a statistical sense, by involving the largest possible
number of imaged zones at each scale. Currently, for NS,
x-ray micro-computed tomography (micro-CT) provides data
for the 3D pore space down to a 700-nm voxel size [7].
This is insufficient to predict transport because no percolating
porosity is recorded at this scale, although the analyzed
sample is representative of a “macroscopic” structure (up
to about 180-μ wide), where all mineral phases (mainly a
clay matrix, carbonates, tectosilicates, and heavy minerals)
are present [7]. Higher resolutions are available with focused
ion beam–scanning electron microscopy (FIB-SEM) down to
10- to 20-nm voxel size, and transmission electron microscopy
(TEM) or scanning transmission electron microscopy (STEM)
techniques, down to below 1-nm pixel or voxel size [6,8–10].

In this research, synthetic images are derived on the
macroscopic scale by training image (TI) techniques [14,15]
from micro-CT data for NS [7]. At the mesoscale, also for
NS, four percolating FIB-SEM samples are available from
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Ref. [9], and at the nanoscopic scale, up to eight TEM images
are available from Ref. [8].

The major purpose of this paper is to use these data in order
to determine the overall permeability of natural shale NS by
three successive upscalings. All calculations are performed
using the assumption that the medium is continuous at all
scales. For fluid transport by convection, this is valid down to
a few-nm pore size whenever a simple liquid is considered as
shown repeatedly (cf. Ref. [16] for a review). No interactions
with the solids, nor any phenomenon specific to flow (e.g.,
slippage on the pore walls or Brownian motion), need to be
accounted for. Whenever a percolating pore structure is known
(at both the meso- and nanoscales), the Stokes equation is
solved by a Lattice Boltzmann Method (LBM) [17]. On the
larger macroscopic scale, when a local permeability field is
available, the macroscopic permeability is deduced by solving
the Darcy equation [18]. In the latter case, the clay matrix
is the only volume assumed permeable, together with the
nonpercolating pore volume (0.5%); all other minerals are
nonporous, and no interfacial porosity is accounted for.

The paper is organized as follows. Section II briefly recalls
the experimental measurements, which were performed in
order to characterize the clay matrix structures on the nano-,
meso-, and macroscales. The numerical techniques are also
briefly presented. Reconstruction techniques on the nano- and
on the macroscales are presented as well as the numerical
solutions of the Stokes and of the Darcy equations.

The major results are gathered in Sec. III. Permeabilities
on the nanoscale (Sec. A) and on the mesoscale (Sec. B)
are first determined. Then, permeabilities of combinations of
nano- and mesoscale structures are calculated in Sec. C. These
intermediate values are used to determine the macroscopic
permeability by solving the Darcy equation on a configuration
derived from micro-CT measurements in Sec. D. These data
and their comparison to permeability measurements on the
macroscale are discussed in Sec. IV. Finally, concluding
remarks are given in Sec. V.

II. METHODS

A. Experimental

First, the experimental permeability Kexp was measured
at 20◦C in Ref. [8] with ethanol, whose molecular size is
0.469 nm. The samples had a diameter of 37 mm and a height
ranging between 10 and 30 mm. Each sample was confined at
a hydrostatic pressure of 12 MPa (representative of the in situ
major principal stress) and injected with ethanol at a given
pressure gradient Results detailed in Ref. [8] and references
therein can be summarized as follows:

8×10−21 � Kexp � 6×10−20 m2. (1)

These experimental permeability values Kexp depend on the
considered core, i.e., they are attributed to variations in the
natural shale mineralogical composition.

For FIB-SEM imaging, two shale samples of core reference
EST26095 and EST27405 are used. The latter is simply
dried at 60◦C until constant mass. In contrast, the EST26095
sample is oven dried at 80◦C and impregnated with a low-
viscosity methyl methacrylate resin (MMA) [7,19]. MMA
shows excellent pore filling ability [19] due to a small molecule

size (0.19 nm3) and a very low viscosity (of about 0.6 cP
at 20◦C), which is smaller than that of water (1.0020 cP at
20◦C). Following impregnation, MMA is polymerized (into
PMMA) using γ radiation provided from a 60Co source [19].
For further sample polishing, PMMA limits the hardness
difference between the soft clay matrix and the hard minerals
(tectosilicates, carbonates, and heavy metals). Proper flatness
is also achieved more smoothly than without any impregnation.
On the whole, PMMA aims at limiting sample damage and
microcracking.

For TEM imaging, a shale sample of core reference
EST25679 is also dried at 80◦C and impregnated with PMMA
with the same method as for the EST26095 sample. The
EST25679 sample is thinned to several tens of microns, prior to
being ion milled using a Gatan Duomill apparatus, with a liquid
nitrogen-cooled specimen holder to limit sample damage, until
sample edges show electron transparency. This corresponds to
thicknesses below 100 nm.

All grayscale images acquired by FIB-SEM and TEM are
filtered, thresholded, and segmented with ImageJ software to
distinguish between the pores and the solids. For FIB-SEM,
the z axis is the direction perpendicular to imaging (it is the
direction for slicing the sample at 10- to 20-nm thicknesses),
whereas each image is in an xy plane. Full details on the
procedures are given in Refs. [8,9].

B. The main measurements

For NS, the average macroscopic porosity is measured
by different means [11,20] with an average of 18% ± 4. Its
value mainly depends on the location of the sample in the
geological layer. Moreover, at least three distinct scales can
be distinguished, i.e., a macroporosity (for pores bigger than
700 nm), a mesoporosity (for pores bigger than 10–20 nm and
up to 700–800 nm), and a nanoporosity (for pores bigger than
0.36 nm and up to 10–20 nm).

1. Macroporosity

Figure 1(a) is the starting point of the simulation on the
macroscopic level. The original measurements have been
performed by Ref. [7], with a voxel size of 700 nm and a total

FIG. 1. Macroscale. (a) Training image from Ref. [7]. (b) Cross
section of the simulated sample. Color code: black (macroscopic
isolated pore), yellow (clay matrix), gray (tectosilicates), red (car-
bonates), and deep blue (heavy minerals). Both samples measure
1 mm×1 mm.
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TABLE I. Overview of the 3D FIB-SEM samples (1).

Sample EST2-EST27405-1 EST3-EST27405-2

Sample orientation Perpendicular Perpendicular
wrt. bedding planes
Voxel size (nm3) 8.49×10.78×10 5.94×7.54×10
Volume (μm3) 6.55×7.97×1.03 3.99×5.95×1.17

(=53.8) (=27.8)
Porosity-Yen algorithm (%) 2.83 4.89
Surface connected z z
orientation
Connected porosity (%) 0.89 1.61

volume of 180 μ width. The medium is composed of several
mineral types represented by different colors (clay matrix,
tectosilicates, carbonates, and heavy minerals). The overall
porosity at that so-called macroscopic scale is 0.5%. The pores
are not connected. Therefore, the macroscopic permeability
due to these pores only is equal to zero. This requires us to go
one scale down at least in order to provide a percolating pore
network.

In the following, the three minerals that are tectosilicates,
carbonates, and heavy minerals are gathered into a single phase
whose permeability is zero; the volume fraction of these three
phases all together is equal to 39.5%. The phase of interest,
composed by the clay matrix, has an overall volume fraction
of 60%.

2. Mesoporosity

The main properties of the five available FIB-SEM samples
are given in Tables I and II. Their volumes range between
27.8 and 146.7 μm3, and their total porosity with this method
ranges between 1.71 and 5.9%. The voxel is parallelepi-
pedic and not cubic, with its smallest dimension ranging
between 5.94 nm (for EST3-EST27405-2) and 8.48 nm (for
EST2-EST27405-1, EST0-EST26095-1, EST1-EST26095-2,
and EST4-EST26095-3). The total number of voxels varies
between 48.7×106 (for EST1-EST26095-2) and 80.3×106

(for EST0-EST26095-1).
The reanalysis of the five available volumes with the code

described by Ref. [21] shows that only four are percolating,
three along the z axis and one along the y axis. The initial
representations of these four percolating samples are given
in Fig. 2. A connected pore network, devoid of cracks, is

FIG. 2. Initial measurements on the mesoscale obtained by FIB-
SEM. Three-dimensional data images are for (a) EST0-EST26095-1,
(b) EST1-EST26095-2, (c) EST2-EST27405-1, and (d) EST3-
EST27405-2.

obtained for two samples of five only (EST0-EST26095-1
along y and EST1-EST26095-2 along z), while the pore
network is connected through cracks for two other samples
of five (EST2-EST27405-1 and EST3-EST27405-2) [9].

3. Nanoporosity

Figure 3(a) shows an example of a TEM image. Several
subsamples of this image are taken within the clay aggregrates.
These subsamples display nanoscopic pores of the clay matrix
(from about 2 nm and up to several hundreds of nm; see
Table III). The bigger pores also visible in this image (e.g.,
between clay aggregates) are assumed to be identified by
FIB-SEM (down to 10- to 20-nm size) or micro-CT (down
to 700 nm). In Figs. 3(b)–(d), several segmented TEM crops
are presented, and for T10-1, the image before and after
segmentation is given. The pixel size varies from one image
to the other, between 0.36 nm and 1.04 nm, depending on
the TEM image resolution. For all the crops considered
in Ref. [8], the image area ranges between 18.5×103 and
41.0×103 nm2 for pixel numbers of between 25.5×103 and
262×103. Porosity ranges between 10.1 and 25.2%, with an
average value of 14.9% and a median of 14.2%. Moreover,
the ratio between longest and shortest axis of an inscribed
ellipsoid, i.e., the pore elongation, is of about 10, with a median

TABLE II. Overview of the 3D FIB-SEM samples (2).

Sample EST0-EST26095-1 EST1-EST26095-2 EST4-EST26095-3

Orientation
wrt. bedding Parallel Parallel Parallel
planes
Voxel size (nm3) 8.48×10.77×20 8.48×10.77×20 8.49×10.78×20
Volume (μm3) 6.55×5.21×4.30(=146.7) 6.30×6.99×2.02(=88.9) 4.50×6.22×3.98(=111.4)
Porosity -Yen algorithm (%) 1.71 5.9 5.21
Percolating y z None
direction
Connected porosity (%) 2.25 2.14 0
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FIG. 3. (a) Example of a nanoscale image obtained by TEM on the natural shale of this study, and different crops located in the clay
aggregates. (b) Crop T10-1 (before and after segmentation) has the smallest porosity of 10.1% (pixel size 0.36 nm); (c) Crop T08-2 has an
intermediary porosity of 14.2% (pixel size 0.85 nm); (d) Crop T09-2 has the largest porosity of 25.2% (pixel size 1.04 nm).

value of 8.3 (i.e., 50/6). In 3D, by analogy with the 3D STEM
image of Opalinus clay presented in Ref. [6], it is assumed that
they have the shape of oblates.

It might be interesting to note that the FIB-SEM measure-
ments are nicely complemented by TEM. Whereas FIB-SEM
has lower pore size limits of 10–20 nm, 2D TEM images have
pore sizes ranging from 0.7 to 20 nm (as determined by 2D

TABLE III. Characteristics of the TEM images used for the
numerical simulations of transport.

Sample Pixel size Sample size Crop size Porosity
(nm2) (nm2) (nm2) (%)

T101 0.36×0.36 658×799 176×193 10.2
T082 0.85×0.85 1540×1886 140×132 14.2
T091 1.04×1.04 1903×2329 160×240 25.2

ellipse fitting in ImageJ), with percentages of pores smaller
than 20 nm ranging between 99.3 and 100%.

C. Conventions and notations

Three scales are distinguished in the analysis. The first
two correspond to the nano- and the mesoscales, which are
approximately equal to 2 and 20 nm. The macroscopic scale is
of the order of the size of the cross section displayed in Fig. 1,
i.e., 1 mm (voxel size 700 nm). It is derived from micro-CT
data and corresponds to the smallest scale, where all different
solid phases identified for NS are present.

Quantities such as porosity ε and permeability K are
given the subscripts n, m, M , and MA when they are
relative to the nanostructure (n), to the mesostructure (m),
to local variations at the macrostructure scale (M), or as an
average over the macrostructure considered as a homogeneous
medium (MA).
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D. Numerical

1. Reconstruction on the nanoscale

On the nanoscale, in the absence of 3D images, the pore
structure is reconstructed from the 2D TEM images, with the
same porosity and the same correlation function, by using a
technique based on truncated Gaussian fields [22]. A random
and discrete field Z(x) is derived from a Gaussian field X(x),
which is first correlated and then thresholded.

The general technique goes as follows. A Gaussian and
uncorrelated field X(x) is generated at the center of each
elementary cube. The independent random variables X(x) are
assumed to be normally distributed with a mean equal to 0
and a variance equal to 1. A Gaussian field Y (x) with a given
correlation function RY (u) is derived from the field X(x) by a
Fourier transform technique. Finally, the field Y (x) is thresh-
olded and yields a discrete field Z(x); the threshold is such that
the average value of Z(x) is equal to the desired porosity εn.
By construction, the 3D pore volume at the nanoscopic scale is
spatially periodic along the three dimensions of space. RY (u)
may be derived from RZ(u) either measured on thin sections
[22] or given by some analytical formula [23].

The nanoscale pictures displayed in Fig. 3 are not isotropic.
In order to generate flat-shaped nanopores, a correlation
function of the following form is used for the Gaussian field
Y (x):

RY (u) = RY (ux,uy,uz)

= exp{−(ux/lx)2 − (uy/ly)2 − (uz/ lz)
2}, (2a)

where lx � ly = lz. It is assumed that the y and z axes are
equivalent. In the rest of this paper, the three correlation lengths
are equal to

lx = 6a, ly = lz = 50a, (2b)

where a is the size of the cubic voxels, which is taken to be
equal to 2.12 nm. Therefore, in nm,

lx = 12.72 nm, ly = lz = 106 nm. (2c)

One should also note that the pixel size of the original 2D
TEM images is not 2.12 nm. However, in order to allow for
the superposition with the mesoscale pore structures (where
the voxel size is generally of 8.48 nm, i.e., 4 times the latter
value), the 3D synthetic TEM images are scaled by using
Eqs. (2a) and (2b), which account for the original TEM
images characteristics as detailed above. In the following, the
superposition of the mesoscale structure of EST3-EST27405-2
(smallest voxel size of 5.94 nm) to the nanoscale pore structure
is not undertaken. It is assumed that it would yield similar
results to those presented hereafter. Some calculations are also
undertaken by generating a 3D nanoscale pore structure with
a = 8.48 nm.

An example of 3D reconstruction is given in Fig. 4.
It is mostly composed of vertical oblates which are partly
connected to one another in all the directions of space. Cross
sections are also displayed; Figs. 4(b) and 4(d) are very similar
to the ones measured given in Fig. 3.

2. Sample rediscretization and percolating components

Since the original voxels are not cubic, several operations
were performed to prepare the measured samples to flow

FIG. 4. Reconstruction of the nanoscale structure. (a) A three-
dimensional nanostructure with lx=6a ly=lz=50a and ε=0.142;
this sample percolates along the three axes. Cross sections of the
simulated sample: (b) xy plane, (c) yz plane, and (d) zx plane.

calculations; they are illustrated in Fig. 5 on the example of
EST3-EST27405-2. First, the percolating part of the samples,
when it exists, was determined by the algorithm described in
Ref. [21]. The samples percolate along a single direction, only
which varies from sample to sample. Since the LBM code
described in Section 2.4.3 only operates on cubic voxels, the
parallelelipipedons are rediscretized into cubes of size 5.94

FIG. 5. Example of processing of the initial FIB-SEM sample
EST3-EST27405-2. (a) The initial sample. (b) The percolating part
of the pore structure is retained. (c) The parallelepipedic voxels are
rediscretized into cubes. (d) The mirror image of the percolating pore
structure is added along a percolating direction, here the z direction.
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FIG. 6. Mesoscale. The four percolating components of the initial
samples displayed in Fig. 2. Data are for (a) EST0-EST26095-1
(cubic voxel size 8.48 nm; percolation along the y axis), (b) EST1-
EST26095-2 (cubic voxel size 8.48 nm; percolation along the z axis),
(c) EST2-EST27405-1 (cubic voxel size 8.48 nm; percolation along
the z axis), and (d) EST3-EST27405-2 (cubic voxel size 5.94 nm;
percolation along the z axis). The last two samples percolate through
microcracks only.

nm (or 8.48 nm for EST0-EST26095-1, EST1-EST26095-2,
and EST2-EST27405-1). Finally, the mirror image of the
sample is added along the percolating direction; this addition
diminishes the bias introduced by the boundary conditions in
the calculated permeability. It is clear that the order of these
operations can be modified at will.

The four samples are processed by this series of operations
and the final results with cubic voxels are shown in Fig. 6.

3. Permeability derived from the Stokes equation

Whenever the pore structure is available, the corresponding
permeability can be derived by solving the Stokes equation.
This procedure is applied to the nanoscale and mesoscale
structures and to their superposition.

As mentioned in the Introduction, the use of the Stokes
equation in the nanoscale structure is questionable, because
the continuum assumption could break down. However, the
characteristic dimensions of the nanopores where the calcu-
lations are performed are given by (2c); they are more than
25 times larger than the ethanol molecule; they are also larger
than 10 nm. Moreover, because of the neutral nature of ethanol,
electrical effects are negligible and the Stokes equation does
not need to be completed by electrical forces. Therefore, for a
simple liquid such as ethanol, the permeability obtained by the
Stokes equation can be safely compared to the experimental
measurements (cf. Ref. [16] and references therein).

This equation is usually expressed as

−∇p + μ∇2v = 0, ∇ · v = 0 in Vp, (3)

where p and v denote pressure and velocity, respectively; μ is
the fluid viscosity; Vp is the pore volume.

This system should be supplemented by boundary condi-
tions. Assuming that the solid matrix is impermeable, the fluid
velocity should vanish on the solid surface Sp, which limits
the pore space

v = 0 on Sp. (4)

In addition, spatially periodic boundary conditions are applied
at the lateral boundaries of the sample. The driving force is a
macroscopic pressure gradient ∇p imposed on the sample.

The seepage velocity v is the average of the local velocity
over the pore volume and it is proportional to ∇p,

v = 1

Vp

∫
Vp

vd3x = − 1

μ
K · ∇p. (5)

The components of the permeability tensor K are denoted by
the names of the corresponding axes, for instance, the diagonal
component along the x axis is noted by Kxx .

The numerical resolution of the Stokes equation can be
done in different ways, namely a classical computational fluid
dynamic (CFD) technique applied to cubic voxels [22], a lattice
Boltzmann model [17] and the finite-volume technique applied
to tetrahedra [24].

In this contribution, the second technique is applied since
the corresponding code is parallel and thus significantly faster
for the sample volumes considered (in tens of million voxels).
According to the standard terminology, it is a D3Q19 code
working in three dimensions with 19 velocities. For a better
precision, the model is TRT, i.e., with two relaxation times. The
classical bounce-back condition is used at the solid interface.
More details can be found in Ref. [17].

It should be emphasized that in this LBM code the fluid is
treated as a continuum in contrast with some more elaborate
versions such as in Ref. [25].

Needless to say, the LBM code has been compared in the
past to the two other techniques just mentioned. The results for
plane Poiseuille flows can be briefly summarized. Whatever
the width b of the channel, the LBM and the second-order CFD
codes agree perfectly well. For b = 5 voxels, the difference
with the analytical solution is smaller than 2%. Perhaps, still
more remarkable, their common difference with the analytical
solution is equal to 11% for b = 2 voxels.

Permeabilities, which have the dimension of a length
squared, are usually made dimensionless by the voxel size
a and are denoted by a prime

K ′ = K

a2
. (6)

Since the algorithm assumes a spatially periodic structure, each
sample is completed by its mirror image along the direction
under consideration. This detail will be made clear in each
calculation.

4. Reconstruction on the macroscopic scale

Consider the porous medium displayed in Fig. 1(a). This
sample may be two or three dimensional and it contains several
minerals in addition to pores. Such a sample is called a TI,
whether it is two or three dimensional.

The main objective of Ref. [14] was to generate a simulated
medium (SM) based on such TIs. Following Ref. [22], a phase
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FIG. 7. Principle of the training image (TI) algorithm. Panel (a) is
the TI with black and white pixels. Panel (b) is the simulated medium
(SM); the three points x1,x2,x3 are known and the fourth one x has to
be determined. Panel (c) provides the Search Window in gray where
the point y is necessarily located. (d) In the TI, for this choice of
y, the three points x1,x2,x3 are white; therefore, y has to be chosen
differently. (e) For this choice of y, the three points x1,x2,x3 have
the right gray level when compared to (b); therefore, the black value
is chosen for x. (f) Assign the black value of y in (e) to point x in
the SM.

function Z(x) can be defined at each point x of the medium.
Suppose that Np different phases (possibly including the pore
space) can be distinguished in the medium. Then, at each pixel
or voxel centered at x and occupied by phase ip = 1, . . . ,Np,
Z(x) is defined as

Z(x) = ip. (7)

The methodology to generate SM was devised by Ref. [15]
and is briefly described now with the help of Fig. 7. The TI is
displayed in (a); it has two colors, black and white. Suppose
that three points x1,x2,x3 are known in the SM and that one
wants to determine the value (or the color) of a fourth one x as
indicated in Fig. 7(b). Now, let us choose a point y at random
in the TI and look at the values of three points x1,x2,x3 in the
TI which occupy the same relative positions with respect to y
in the TI as with respect to x in the SM.

First, a remark can be made to save some computer
time. Because of the relative positions of the known points
(x1,x2,x3) and of the fourth point y to be scanned, y is
necessarily located in a portion of the TI which is called the
Search Window (ScW) [see the gray zone in Fig. 7(c)].

Second, find in the TI a configuration where the three points
x1,x2,x3 have the same relative positions and the same colors
as in the SM. This is done by choosing a point y at random
in the ScW (which corresponds to the point to fill) and by
looking at its three neighbors (they correspond to the points
1–3) in the same relative positions as in the SM. In Fig. 7(d),
the point to fill is indicated by y; the three points x1,x2,x3

are all white and therefore do not have the right color. Then,
let us make a different choice in the TI; in Fig. 7(e), the three
points have the right gray level and the value black in the TI
is chosen for point y. The corresponding choice is indicated
in Fig. 7(e). When no match is found at the beginning of the
process, another choice of points x1,x2,x3 is made; towards

the end, the fourth point is chosen according to the remaining
probabilities.

When this step is completed, the process is iterated and the
SM progressively filled.

The 3D macroscopic sample, which cross section is
displayed in Fig. 1(b), was generated by using this technique.

5. Permeability on the macroscopic scale

On the macroscopic scale illustrated in Fig. 1, the medium
is no longer composed of solid and pores. Rather, it is a
continuum with a locally variable permeability KM (x) yielding
the local macroscopic permeability. For instance, in Fig. 1(b),
the voxel permeability depends on the mineral present in this
voxel as detailed in Sec. 2.1. Then, the local seepage velocity
vM is related to the local pressure gradient by Darcy’s law,

vM = −KM (x)

μ
∇p. (8a)

Since for an incompressible fluid the seepage velocity satisfies
the continuity equation, one has

∇ · (KM (x)∇p) = 0. (8b)

Usually, the total block of volume V is submitted to a
macroscopic pressure gradient ∇p. The resulting macroscopic
seepage velocity v is defined as follows, and it is related to ∇p

by the macroscopic permeability K MA,

v = 1

V

∫
V

vMd3x = − 1

μ
K MA · ∇p. (9)

The elliptic equation (8b) is discretized by the so-called box
integration method [26] and the resulting linear system is
solved by a conjugate gradient method, as detailed in Ref. [18].

III. RESULTS

A. Permeability on the nanoscale

Two sets of nanoscale structures were generated, which
follow the Gaussian correlation function (2) for five values
of porosity εn. These two sets only differ by the size of the
generated media. For set 1, one has NCX = 451 pixels, NCY =
419 pixels, NCZ = 484 pixels (i.e., 91.5 million pixels) while
for set 2 NCX = NCY = NCZ = 400 pixels (i.e., 64 million
pixels). The generated samples are spatially periodic. The
directions y and z are expected to be statistically equivalent
since the correlation lengths ly and lz are equal (2b). Results
are gathered in Table IV.

The samples for the lowest value of the porosity εn=10.2%
do not percolate, while the samples for εn = 13.0% (and
more) percolate. As expected, permeability increases with
porosity. The discrepancies between the two sets for the same
porosity are always small; however, it is interesting to note
that they decrease when εn increases; it is a well known fact
in percolation theory that statistical fluctuations are important
close to the percolation threshold. Of course, the permeabilities
are anisotropic; Knyy and Knzz are statistically equivalent,
while Knzz is consistently greater than Knxx . Since the results
for Knzz are very close for sets 1 and 2, it was not found useful
to redo them for the other axes.
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TABLE IV. Dimensionless permeabilities on the nanoscale. Data are for: a = 2.12 nm; set 1: NCX = 451, NCY = 419, NCZ = 484; set 2:
NCX = NCY = NCZ = 400.

Porosity Percolation
Set 1 Set 2

εn axis K ′
nxx K ′

nyy K ′
nzz K ′

nzz for 4003

0.102 None – – –
0.130 y, z 0 0.850×10−3 0.65×10−3 0.677×10−3

0.142 x, y, z 0.487×10−2 0.124×10−2 =K ′
nyy 0.137×10−2

0.200 x, y, z 0.686×10−2 0.138×10−1 =K ′
nyy 0.132×10−1

0.252 x, y, z 0.802×10−2 0.404×10−1 =K ′
nyy 0.392×10−1

Finally, the data of Table IV can be converted into dimen-
sional values; the lower and higher values of permeability are
determined and yield the inequalities

3×10−21 � Knxx, Knyy � Knzz � 1.8×10−19 m2. (10)

On the nanoscale, permeability varies by almost two orders of
magnitude depending on the flow direction.

B. Permeability on the mesoscale

On the mesoscale, percolation of the FIB-SEM pore
volumes occurs only along a single direction as already
pointed out in Section 2, either along z (for EST1-EST26095-
2, EST2-EST27405-1, and EST3-EST27405-2) or y (for
EST0-EST26095-1). Each sample is mirrored with respect
to the plane perpendicular to the percolating direction. The
mesoscopic permeability Km varies between 2.8×10−20 m2

and 1.20×10−18 m2, depending on the nature of the percolating
volume (Table V). As discussed in Sec. 3.2, the largest
values of Km obtained with EST2-EST27405-1 and EST3-
EST27405-2, correspond to percolating volumes identified as
cracks.

It is interesting to note that the largest value 1.8×10−19 m2

of Kn is larger than the smallest value 2.8×10−20 m2 of Km.
This means that the nanoscale porosity can have a significant
contribution to the overall permeability.

C. Superposition of the nanoscale and of the mesoscale
pore structures

The current discretization voxels of the nano- and
mesoscales are 2.12 and 8.48 nm. A rediscretization of the
full mesoscale structures with a = 2.12 nm would yield very
large data sets that we cannot presently process. Therefore, it
was chosen to work with various subsamples of the mesoscale
structures. An example of the effect of a coarse discretization
with a = 8.48 nm will also be provided.

TABLE V. Permeability results of the mesoscale.

Sample a (nm) K ′
myy K ′

mzz Km (m2)

EST0-EST26095-1 8.48 8.38×10−4 0 6.03×10−20

EST1-EST26095-2 8.48 0 3.89×10−4 2.80×10−20

EST2-EST27405-1 8.48 0 37.9×10−4 27.3×10−20

EST3-EST27405-2 5.94 0 340×10−4 120×10−20

1. Superposition of the nanoscale and of the percolating
part of the mesoscale pore structures

The superposition of the nano- and mesopores is performed
as follows. Let Zn(x) be the phase function of the nanopores,
i.e.,

Zn(x) = 1 if x belongs to a nanopore

= 0 otherwise. (11)

Let Zm(x) be the phase function of the mesopores with a defi-
nition analogous to the previous one. Then, the nanopores and
the mesopores are superposed. More precisely, the resulting
solid phase is the intersection of the nano and the meso solid
phases. Hence, Z(x), the phase function of the superposition,
is given by

1 − Z(x) = [1 − Zn(x)][1 − Zm(x)] (12a)

or, equivalently,

Z(x) = Zn(x) + Zm(x) − Zn(x)Zm(x). (12b)

A first series of calculations was performed as follows. A
small part of the percolating structure of the sample EST2-
EST27405-1 was selected as displayed in Fig. 8(a). It should
be reminded that this is a cracked mesoscopic sample. First,
it is rediscretized in voxels of size a = 2.12 nm and mirrored
with respect to the xy plane. Then, it is superposed to the
reconstructed nanostructures which were described in Sec. A
[see Fig. 8(b)]. The total porosity and the open porosity, which
is equivalent to the percolating porosity, are systematically

FIG. 8. Superposition of the nano- and of the percolating
mesoscale structures. a = 2.12 nm. (a) Part of EST2-EST27405-1.
(b) Superposition with a nanoscale structure with a porosity equal to
14.2%.
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TABLE VI. Superposition of the nanoscale and of the percolating
mesoscale structure (a subsample of EST2-EST27405-1 illustrated in
Fig. 9). a = 2.12 nm.

εn Percolation Total porosity Open porosity K ′
nmzz Knmzz (m2)

0.102 0 y z 0.200 0.147 3.87 1.74×10−17

0.130 0 y z 0.225 0.199 3.90 1.75×10−17

0.142 x y z 0.236 0.218 3.92 1.76×10−17

0.200 x y z 0.288 0.282 4.02 1.81×10−17

0.252 x y z 0.334 0.332 4.14 1.86×10−17

determined and the permeability calculations are done only on
this latter portion of the pore space.

The results are gathered in Table VI. For low-nanoscale
porosities, the open porosity is very different from the total
porosity. For high-nanoscale porosities, the two values are very
close, which means that most of the porosity is connected.

The dimensionless permeability K ′
mzz of the mesoporosity

alone in the subsample displayed in Fig. 8(a) is equal to 3.77;
the corresponding dimensional permeability Kmzz is equal
to 1.7×10−18 m2. For εn = 0.102, the resulting permeability
K ′

nmzz is equal to 3.87 and therefore very close to K ′
mzz. For

larger values of εn, the differences are more significant, but
the order of magnitude remains the same, and the difference
between Knmzz and Kmzz is very limited.

In dimensional terms, the permeabilities vary between
1.7×10−17 and 1.9×10−17 m2. These values are large, but
they are consistent with the fact that the sample is cracked.

Since this subsample illustrated in Fig. 8(a) is very small,
a larger portion was selected in the same EST2-EST27405-1
sample and it is displayed in Fig. 9(a); the size of this portion
was chosen to be compatible with our computing possibilities
which are of the order of 106 voxels. Now, the initial voxel
size a = 8.48 nm is kept and the nanostructure is generated
with this value, and therefore with dimensionless correlation
lengths equal to (1.5, 12.5, 12.5) in correspondance with what
has been done before [see Fig. 9(b)]; this coarse discretization
does not seem to influence the appearance of the nanostructure.

The dimensionless permeability K ′
mzz of the mesoscopic

pore volume alone is equal to 0.133×10−1. The dimensionless
permeability K ′

nzz of the nanoscopic pore volume of porosity

FIG. 9. Superposition of the nano- and of the percolating
mesoscale structures. a = 8.48 nm. (a) part of EST2-EST27405-1.
(b) Superposition with a nanoscale structure with a porosity equal to
20%. Dimensionless correlation lengths are equal to (1.5, 12.5, 12.5)
in correspondence with what has been done before.

EST2-EST27405-1 EST1-EST26095-2 

(a) (b) 

(a1) 

(a1) 

(b1) 

(b2) 

(b1) (b2) 
FIG. 10. Superposition of the nano- and of the total mesoscale

structures. a = 2.12 nm. The portion (a1) of EST2-EST27405-1 is
nonpercolating. The portions (b1) and (b2) of EST1-EST26095-2
are percolating and nonpercolating, respectively. The portion (b1) is
mirrored along the zaxis in order to avoid bias in the determination
of permeability.

0.2 alone is equal to 0.489×10−2; it should be compared with
the permeability calculated with a voxel size equal to 2.12
nm; therefore, it should be multiplied by a factor 4 and it
yields 0.0196 to be compared to 0.0132 (see Table IV); this
discrepancy shows the necessity of a fine discretization for a
good precision, but the orders of magnitude are kept. When
the meso- and nanostructures are combined, the overall and
open porosities are equal to 0.222 and 0.213, respectively. The
dimensionless permeability K ′

nmzz is equal to 0.236×10−1,
which is this time significantly greater than K ′

mzz alone; the
corresponding dimensional value is equal to 1.7×10−18 m2.
Therefore, the nanopores cannot be neglected to estimate the
overall permeability of the NS shale.

2. Role of the nonconnected mesoporosity

In the two previous examples, only the connected meso-
porosity was considered. In this subsection, the role and the
interaction of the complete mesoporosity with the nanoporos-
ity is investigated. Two samples and three subsamples were
selected as sketched in Fig. 10. The portion (a1) of EST2-
EST27405-1 is nonpercolating. The portions (b1) and (b2)
of EST1-EST26095-2 are percolating along the z axis and
nonpercolating, respectively. All these subsamples are re-
discretized with a = 2.12 nm. The portion (b1) is mirrored
along the z axis in order to avoid bias in the permeability
determination. This mirroring operation is useless for (a1) and
(b2) since the nanostructure is spatially periodic.

Results are displayed in Table VII, to which the dimen-
sionless permeability K ′

b1mzz = 0.503 of subsample (b1) alone
should be added. The first important feature in this table is that
the permeability of the percolating sample (b1) superposed to
the nanoporosity is always larger than the permeability of the
other samples by at least one order of magnitude. The second
important feature is that the nanoporosity does not influence
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TABLE VII. Superposition of the nanoscale and of the total mesoscale structure. a = 2.12 nm. The portion (a1) of EST2-EST27405-1 is
nonpercolating. The portions (b1) and (b2) of EST1-EST26095-2 are percolating and nonpercolating, respectively.

Nano EST2-27405-1 (b1) (b2)

ε K ′
zz ε K ′

zz ε K ′
zz ε K ′

zz

0.130 0.677×10−3 0.196 0.487×10−2 0.252 0.580 0.157 0.166×10−2

0.142 0.137×10−2 0.207 0.843×10−2 0.261 0.594 0.169 0.290×10−2

0.200 0.132×10−1 0.260 0.408×10−1 0.310 0.691 0.225 0.188×10−1

0.250 0.392×10−1 0.308 0.988×10−1 0.355 0.820 0.275 0.505×10−1

much the permeability of (b1), since it varies between 0.503
(for εn = 0) and 0.820 (for εn = 0.250). This is not true for the
permeability of the nonpercolating subsamples (a1) and (b2)
which varies by an order of magnitude when εn increases from
0.130 to 0.250.

If we go back to dimensional values, when the mesoporosity
is percolating, then the permeability is of the order of
2×10−18 m2, while it is of the order of 4×10−20 m2 for
nonpercolating mesoporosities.

D. Permeability on the macroscopic scale

This permeability is determined by solving the elliptic
equation (8) on a synthetic 3D medium obtained by the direct
sampling method [14] from actual microtomography images
of the same shale as in Ref. [7]. The medium is schematized by
three phases. Phase 1 corresponds to the macropores (volume
percentage 0.5), with an infinite permeability Kpore = ∞;
Phase 2 corresponds to the porous clay matrix, with a volume
percentage of 60 and a permeability Knm0 given by the previous
simulations; Phase 3 consists of the nonporous minerals,
with a volume percentage of 39.5 and zero permeability
Knonporous = 0.

In principle, the Stokes equation should be solved in the
macropores as it was done for the nano and mesopores. For
practical reasons, the physical situation was simplified and
the macropores were replaced by regions where the local
permeability is large with respect to Knm0. A dimensionless
permeability K ′′ is defined by

K ′′(x) = KM (x)

Knm0
. (13a)

It takes the following values:

K ′′(x) = κp in Phase 1,1 in Phase 2,0 in Phase 3, (13b)

where κp � 1 is the dimensionless value of the local perme-
ability in the macropores. Since the elliptic equation (8) as well
as its boundary conditions are linear, KM (x) can be replaced by
K ′′(x) and the equation solved. The resulting dimensionless
permeability K

′′
obtained by the Darcy equation (9) can be

used to derive the dimensional macroscopic permeability KMA,

KMA = Knm0 K
′′
. (14)

Several resolutions of (8) were done with κp = 0, 1, 10, 102,
103, 104, and 105. For instance, for κp = 105, the permeability

tensor is equal to

K
′′ =

⎛
⎝ 0.422 0.00645 −0.00391

0.00381 0.375 −0.00305
−0.00317 −0.00156 0.424

⎞
⎠. (15)

K
′′

is close to spherical since the off-diagonal components
are smaller than the diagonal ones by about two orders of
magnitude and since the diagonal components are close to one
another. This means that the medium is relatively isotropic.
These observations were verified for all the values of κp.
Therefore, the third of the trace was systematically derived
for the various values of κp,

K
′′
xx + K

′′
yy + K

′′
yy

3
= 0.372, 0.377, 0.389, 0.401, 0.405, 0.406, 0.407. (16)

Since the macropores have a small probability, their influence
on the overall permeability is weak, hardly 10%, when κp

varies from 0 up to infinity. The influence of the impermeable
phases is larger and therefore the dimensionless macroscopic
permeability can be approximated by

K
′′ = 0.41. (17)

This is a value slightly smaller than the probability of the
porous clay matrix in the sample which is equal to 0.6.

IV. DISCUSSION

Most of the results obtained in Sec. III are displayed in
Fig. 11. They clearly gather into two groups. The lower
permeabilities are obtained when the mesoporosity does not
percolate, in which case the permeability is of the order of
the nanoscale permeability Kn. The larger permeabilities are
obtained when the mesoscale porosity percolates; they are then
close to the mesoscale permeability.

These observations are consistent with Ref. [23] and
Ref. [27]. When two porous structures 1 and 2 with two very
different permeabilities K1 � K2 are mixed, the permeability
Kw of the whole can be schematized as follows. If the porous
structure 2 percolates, then Kw is close to K2; when the porous
structure 2 does not percolate, Kw is close to K1.

Another question is that of the representativeness of
the permeability predictions at the macroscopic scale. Due
to the limited nanoscale and mesoscale sample sizes, the
permeability provided at the macrocale is not representative
in a deterministic sense. Rather, we have provided a range of
nanoscale pore structures, with varying porosity (10 to 25.2%),
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0.1 0.2 0.3 0.4
10-21

10-20

10-19

10-18

10-17

FIG. 11. Dimensional permeability. Superposition of the
nanoscale and of the total mesoscale structures. Data are for
nanoporosity (solid black line), nanoporosity and nonpercolating
mesoporosity (a1) (blue dotted line), nanoporosity and nonpercolat-
ing mesoporosity (b2) (red broken line), nanoporosity and percolating
mesoporosity (b1) (red solid line with ◦), sample displayed in Fig. 9
(red cross).

another range of 3D pore structures at the mesoscale (by FIB-
SEM imaging), and, finally, a macroscale sample of 1 mm3

involving all the mineral phases possibly present in NS (and
bigger than the original micro CT images). Representativeness
is achieved in a statistical sense, where a range of macroscopic
permeability values is provided, in relation to the variability
of the pore structure at the two main scales where it is present
(nano and mesoscales). For undisturbed NS,

3×10−21 m2 � KMAyy � KMAzz � 1.8×10−19 m2. (18)

For NS cracked at the mesoscale,

2.8×10−19 m2 � KMAyy � KMAzz � 1.9×10−17 m2. (19)

With 2D TEM imaging, the anisotropy of the shale is not
preponderant over other parameters such as pore connectivity
at the mesoscale or the presence of microcracks.

These estimations are consistent with experimental mea-
surements at the centimetric scale for undamaged NS shale,
where Kexp varies between 8×10−21 m2 and 6×10−20 m2,
when measured with a neutral liquid fluid such as ethanol [8]
[cf. (1)]. When the size of the explored zones by FIB-SEM
and TEM is compared to the overall size of the sample, the
agreement is satisfactory.

V. CONCLUDING REMARKS

Compared to the mesoscopic permeability Knm of the
combined nanoscopic and mesoscopic pore structures, the
macroscopic permeability represents 40%, i.e., it is of the same
order of magnitude, although smaller. This means that small
scale pore structures actually drive the fluid transport through
the shale. Our calculations show that the contribution of the
nanoscopic pore structure cannot be neglected when assessing
the transport of undisturbed matter. However, whenever the
shale is cracked at the mesoscale, the permeability Knm is
of the same order as Km, i.e., the nanoscopic pore structure
can be neglected for assessing fluid transport. This should
be similar when discussing gas migration through liquid-
saturated shale; cracks, when present, are bound to drive gas
transport. However, it is expected that such conclusion cannot
be drawn for other phenomena relating to these shales, i.e., gas
transport, water sorption/desorption, ion diffusion, etc.
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