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Rayleigh-Taylor instability in accelerated elastic-solid slabs
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We develop the linear theory for the asymptotic growth of the incompressible Rayleigh-Taylor instability of
an accelerated solid slab of density ρ2, shear modulus G, and thickness h, placed over a semi-infinite ideal
fluid of density ρ1 < ρ2. It extends previous results for Atwood number AT = 1 [B. J. Plohr and D. H. Sharp,
Z. Angew. Math. Phys. 49, 786 (1998)] to arbitrary values of AT and unveil the singular feature of an instability
threshold below which the slab is stable for any perturbation wavelength. As a consequence, an accelerated
elastic-solid slab is stable if ρ2gh/G � 2(1 − AT )/AT .
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I. INTRODUCTION

Rayleigh Taylor instability (RTI) is a physical phenomenon
well known in fluid mechanics and studied in many different
scenarios that develops whenever a heavy fluid lays atop a
lighter one or when the light fluid pushes and accelerates the
heavier medium [1–22].

RTI is much less understood when it takes place in solid
media, although it is of great relevance to geophysical and
astrophysical problems, as well as in many experiments
on high-energy-density physics and in inertial confinement
fusion (ICF).

In fact, in the geophysical framework RTI plays a central
role in plate tectonics in which the lithospheric plates sink
into Earth’s mantle at the subduction zones [23–26]. In
astrophysics, it is considered that RTI in an elastic crust could
be behind the star quakes taking place in slowly accreting
neutron stars and could be responsible for the release of
gravitational energy in the form of γ -ray bursts [27–30].

In high-energy-density physics, RTI in solids is present
in many laboratory experiments involving the acceleration
of solid slabs by means of high explosives [31–34] and
intense laser beam [35–37], electrical current [38–40], and
ion beam [41–45] pulses. In these investigations RTI is of
importance either because it determines the performance of
such experiments or because it is used as a tool for assessing
mechanical properties of solids submitted to extremely high
strains and strain rates.

Besides, in the ICF scenario, the use of a hard solid ablator
like Be to control the RTI on the ablation surface is now
being examined [46]. A similar approach is being pursued in
magnetically driven ICF for the choice of the pusher [47], and
it could also be of relevance for the research on ICF driven by
ion beams [48].

Despite that in many of the above-mentioned situations the
whole RTI evolution will be dependent on the elastic-plastic
constitutive properties of the solid slab, the elastic behavior
will be dominant at the initial stages of the instability growth
[49]. Therefore, the analysis of the RTI in purely elastic solids
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is also of great importance as a preceding step to the study of
more complex situations, including the transition to the plastic
regime.

In this regard, the linear regime of RTI in Hookean elastic
solids has been theoretically studied in the past mainly by
means of approximate models [50–53]. However, only in
relatively recent times have these models become reasonably
accurate, even though they have typically been restricted to
the cases of semi-infinite media and/or Atwood number AT =
(ρ2 − ρ1)/(ρ2 + ρ1) = 1 (where ρ2 and ρ1 are, respectively,
the densities of the heavy and light media) [33,54–62].

The only exact linear analysis for the incompressible RTI
in accelerated elastic-solid slabs were performed by Plohr and
Sharp [63] for the particular case of AT = 1 and arbitrary
thick slabs, and by Terrones for AT � 1 in semi-infinite media
(solid-solid and solid-fluid interfaces) [64]. The work by Plohr
and Sharp applies to the situation of an elastic slab of shear
modulus G, density ρ2, and thickness h, pushed by a constant
pressure that produces an acceleration g, so that the top face of
the slab is a free surface. This theory predicts that the slab will
be stable for the perturbation wave numbers k � kc, where
kc is a cutoff wave number given by the following implicit
equation:

ρ2gh

G
= 2kch

[
1 −

(
kch

sinh kch

)2
]1/2

. (1)

In the limit of kh � 1 the above equation agrees with the
results of a previous analytical model for a very thin elastic
slab [33,54]. Of course, in the opposite limit, Eq. (1) recovers
the cutoff wave number obtained by Terrones (for AT = 1).

This result should be properly distinguished from the
outcome of the recent theoretical and experimental work
reported by Mora et al. for the RTI in a perfectly elastic
(Hookean) slab that is hanging from a horizontal rigid wall
under the action of the gravity g [65]. For AT = 1, they
find the existence of an instability threshold below which the
slab is stable for any perturbation wave number, provided that
ρ2gh/G � 6.223 [65,66] [it is not difficult to see that for AT <

1 this threshold turns out to be (ρ2 − ρ1)gh/G � 6.223]. What
seems to be a contradiction, as pointed out by Mora et al. [65],
between this result and the predictions of Eq. (1), reflects
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FIG. 1. Schematic of the two-interface system formed by the
elastic slab on the top of a semi-infinite ideal fluid.

actually the fact that in their case, a rigid-surface boundary
condition applies on the top face of the slab, while Plohr and
Sharp consider a free-surface boundary condition, which is
more suitable for a slab accelerated by a constant pressure or
by a lighter medium.

It may be of interest to mention that the threshold reported
by Mora et al. has recently been found also for the case of an
elastoplastic solid slab. However, in such a case the value of
G determining the instability threshold is approximately half
of its maximum value (corresponding to very small strains)
[67]. Here it is important to remark that this threshold has no
relation with the cutoff wave number kc, although such a cutoff
can manifest itself as an instability threshold in experiments
in which the finite lateral size of the recipient containing the
medium determines a minimum allowed perturbation wave
number larger than kc.

In summary, from the comparison of the results by Plohr
and Sharp with those of Refs. [65–67], we should infer that the
free-surface boundary condition on the top face of the elastic-
solid slab must be responsible for preventing the existence of a
threshold for the RTI, at least for the case of AT = 1. However,
though the appearance of such an instability threshold when
AT < 1 may seem somewhat unexpected, it is possible to
demonstrate its existence by using relatively simple physical
arguments.

To this end, let us consider an elastic-solid slab of density
ρ2 and shear modulus G laying atop a lighter ideal fluid of
density ρ1 < ρ2. In equilibrium the slab occupies the region
−h � y � 0, and its weight is supported by the ideal fluid
below occupying the semispace y � 0, as shown in Fig. 1.
When a small perturbation of amplitude ξa is applied to
the bottom interface at y = 0, the top interface at y = −h

undergoes a perturbation amplitude ξb in such a way that the
slab thickens in the valleys by the amount �h = ξa − ξb, so
that its weight per unitary surface increases by ρ2g�h. In
addition, just beneath the bottom interface, on the light fluid
side, the pressure increases by ρ1gξa (Fig. 1).

Therefore, if the slab is unstable for some perturbation
wavelength, then it must be ρ2g�h > ρ1gξa . That is, if
the slab is unstable, it must undergo a minimum widening
�h = β(ρ1/ρ2)ξa , with β > 1, in order to sink into the lighter
medium. Such a widening generates an elastic force per unitary
surface Syy ≈ 2G�h/h on the interface that tends to stabilize
it in such a manner that, to keep the perturbation growing, it
must be less than the buoyancy force. Namely, (ρ2 − ρ1)gξa >

Syy , and the slab will be unstable if the following condition is
satisfied:

ρ2gh

G
> β

1 − AT

AT

. (2)

In other words, when the condition given by Eq. (2) is not
fulfilled, the elastic-solid slab turns out to be stable for any
perturbation wavelength, and it determines a threshold for
the RTI. We can also notice that for AT = 1 the previous
conditions is always satisfied and no threshold exists, in
agreement with the results of Refs. [33,63].

In this work we present a formal normal modes analysis
for the linear and incompressible RTI taking place in a
perfectly elastic-solid slab accelerated by a less dense ideal
fluid extending very far from the interface with the slab. For
this, the top free-surface boundary condition on the top face
of the slab is adopted.

In Sec. II we obtain the linearized equations for the
momentum and mass conservation. Thus, in Sec. II A we first
obtain the perturbed velocity field by using the Helmholtz
decomposition in the rotational and the irrotational parts,
which are expressed in terms of potential functions [4,68].
Then we use the Bernoulli gauge to obtain the boundary
conditions on both faces of the slab. In Sec. II B these
boundary conditions are used to derive the dispersion relation.
In Sec. III A the dispersion relation is first solved for the case
of zero growth rate in order to get the cutoff wave number
beyond which the slab is stable. We also find the instability
threshold giving the condition for making the slab stable for
any perturbation wavelength. In Sec. III B the growth rate γ is
calculated as a function of k, AT , and h. Concluding remarks
are presented in Sec. IV.

II. INSTABILITY LINEAR ANALYSIS

We consider a Hookean solid slab of density ρ2, thickness
h, and shear modulus G that overlays an ideal fluid of density
ρ1 < ρ2 occupying the semispace y � 0. The slab occupies
the region −h � y � 0, and we assume that the region above
the slab y � −h is empty.

The equations for momentum and mass conservation,
respectively, read as

ρ
d �v
dt

= −�∇p + ρ �g + �∇ · ��σ ′, (3)

dρ

dt
+ ρ �∇ · �v = 0, (4)

where �v, ρ, and p are, respectively, the fluid velocity, density,
and pressure; �g = gêy = −�∇ϕ is the gravity acceleration (êy

is the unitary vector in the vertical direction, and ϕ is the
gravitational potential); and ��σ ′ is the deviatoric part of the
stress tensor σik = −p δik + σ ′

ik (δik is the Kronecker δ). For

063115-2



RAYLEIGH-TAYLOR INSTABILITY IN ACCELERATED . . . PHYSICAL REVIEW E 96, 063115 (2017)

a Hookean solid, it reads as follows:

∂σ ′
ik

∂t
= G

(
∂vi

∂xk

+ ∂vk

∂xi

)
. (5)

Here, for simplicity, we have switched to the index notation for
Cartesian tensors, so that i = 1,2,3 indicate, respectively, the
space coordinates x,y,z. We will use interchangeably vector
and tensor notations for the convenience of the calculations
presentation. In addition, dM/dt represents the total material
derivative of any magnitude M:

dM

dt
= ∂M

∂t
+ (�v · �∇)M. (6)

In order to linearize the previous equations around the
equilibrium state, we proceed in the usual manner by writing
every magnitude M (�v, ρ, p, ��σ ′) as M = M0 + δM , where M0

and δM � M0 are, respectively, the equilibrium value and the
perturbation of M .

Then, for the solid slab in the region −h � y � 0, we have

ρ2
∂(δ�v2)

∂t
= −�∇(p2 + ρ2 δϕ2) + �∇ · ��S, (7)

�∇ · (δ�v2) = 0, (8)

where Sik ≡ δσ ′
ik , the subindex “2” denotes the solid medium

magnitudes, and we have assumed incompressible perturba-
tions (δρ = 0).

A. The velocity field

For obtaining the perturbed velocity field we use the
Helmholtz decomposition [4,68], and for this we write the
velocity field as the sum of an irrotational part δ�v φ

2 = �∇φ2,
determined by the scalar function φ, plus a rotational part δ�v ψ

2
given by the zero divergence vector ψ2êz:

δ�v2 = �∇φ2 + �∇ × (ψ2êz). (9)

By substituting Eq. (9) into Eq. (8), we find that φ2 must satisfy
the Laplace equation:

∇2φ2 = 0. (10)

Similarly, substitution of Eq. (9) into Eq. (7) yields

�∇
(

γφ2 + δp2

ρ2
+ δϕ2

)
+�∇×

[(
γψ2 − G

γρ2
∇2ψ2

)
�ez

]
= 0,

(11)

where we have taken φ2 ∝ ψ2 ∝ eγ t , with γ being the
instability growth rate. As shown in Ref. [4], Eq. (11) can
be decoupled by adopting the so-called Bernoulli gauge, for
which each term between parentheses must cancel separately:

γφ2 + δp2

ρ2
+ δϕ2 = 0, (12)

γ 2ψ2 = G

ρ2
∇2ψ2. (13)

By considering two-dimensional perturbations, we can write
φ2 ∝ eqy sin kx and ψ2 ∝ eq ′y cos kx, and Eqs. (10) and (13)
yield, respectively,

q = ±k, q ′ = ±λ, λ =
√

k2 + γ 2ρ2

G
. (14)

Therefore, we can express the potential functions φ2 and
ψ2 in the convenient forms

φ2 = a cosh ky + b cosh k(h + y)

sinh kh
eγ t sin kx, (15)

ψ2 = c sinh λy + d sinh λ(h + y)

sinh λh
eγ t cos kx, (16)

and the velocity field is obtained from Eq. (9):

δv2y = ∂φ2

∂y
− ∂ψ2

∂x
, δv2x = ∂φ2

∂x
+ ∂ψ2

∂y
. (17)

In a similar manner, for the ideal fluid beneath the slab we
can write (y � 0)

φ1 = a1e
−kyeγ t sin kx, δv1y = ∂φ1

∂y
, δv1x = ∂φ1

∂x
, (18)

where he subindex “1” denotes the magnitudes in the light
ideal fluid.

B. Boundary conditions and dispersion relation

In order to find the instability growth rate γ , we need to
impose adequate boundary conditions on the surfaces y = 0
and y = −h, which will allow for calculating the constants a,
b, c, d, and a1.

1. Tangential stress continuity at y = 0 and y = −h

The tangential stress at these surfaces is given by the
perturbation S(ν)

xy of the deviatoric part,

S(ν)
xy = G

γ

[
∂(δvνx)

∂y
+ ∂(δvνy)

∂x

]
, (19)

where ν = 1,2,3 indicates the regions y � 0, −h � y � 0,
and y � −h, respectively. Since region ν = 3 is empty and
region ν = 1 is an ideal fluid, these two boundary conditions
read

S(2)
xy (y = 0) = 0, S(2)

xy (y = −h) = 0. (20)

Then, from Eqs. (15) to (17) we get the following relationships:

d = − 2k2

λ2 + k2
b, c = − 2k2

λ2 + k2
a. (21)

2. Normal velocity continuity at y = 0

Normal velocity continuity at y = 0 reads as

δv2y(0) = δv1y(0). (22)

From Eqs. (15) to (17), it yields

a1 = −(b + d). (23)
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3. Normal stress continuity at y = 0 and y = −h

The normal stress continuity of δσ (ν)
yy = −δpν + S(ν)

yy is
required at both interfaces:

−δp2 + S(2)
yy = −δp1, at y = 0, (24)

−δp2 + S(2)
yy = 0, at y = −h. (25)

Then, from Eq. (12) we have

−δp2 = γρ2φ2 − ρ2gδv2y

γ
, (26)

where we have used that δϕν = −gην and η̇ν = γ ην = δvνy .
Therefore, we get an equation for the boundary condition

at y = −h,

γφ2 + 2G

γρ2

∂(δv2y)

∂y
− gδv2y

γ
= 0, (27)

and from Eqs. (15) to (17), it turns out (y = −h):

γ

(
a coth kh + b

sinh kh

)
+ 2kG

γρ2

[
k

(
a coth kh + b

sinh kh

)

+ λ

(
c coth λh + d

sinh λh

)]
+ kg

γ
(a + c) = 0. (28)

In a similar manner, the boundary condition at y = 0 is
written in the form

γφ2 + 2G

γρ2

∂(δv2y)

∂y
− gδv2y

γ
= ρ1

ρ2

(
γφ1 − gδv1y

γ

)
, (29)

and again, from Eqs. (15) to (17), it turns out (y = 0)

γ

(
b coth kh + a

sinh kh

)
+ 2kG

γρ2

[
k

(
b coth kh + a

sinh kh

)

+ λ

(
d coth λh + c

sinh λh

)]
− kg

γ
(b + d)

= ρ1

ρ2

(
γ + kg

γ

)
a1. (30)

4. Dispersion relation

The set formed by Eqs. (21), (23), (28), and (30) can be
written in a more compact form as

a(C + B) + bA = 0, (31)

aA + b

[
C − B + ρ1

ρ2

(
B + γ 2ρ2

G

)]
= 0, (32)

where B = ρ2kg/G, and A and C are defined as in Ref. [63]:

A = (λ2 + k2)2 csch kh − 4k3λ csch λh

λ2 − k2
, (33)

C = (λ2 + k2)2 coth kh − 4k3λ coth λh

λ2 − k2
. (34)

As expected, Eqs. (31) and (32) reduce to the system obtained
in Ref. [63] for ρ1 = 0. Then, from the condition that the
determinant of such a system must be equal to zero, we obtain

the following dispersion relation:

C2 − A2 = B2 − ρ1

ρ2
(C + B)

(
B + γ 2ρ2

G

)
. (35)

III. THEORY RESULTS

A. Cutoff wave number and instability threshold

Since we expect a cutoff wave number kc above which the
slab becomes stable [33–64], we start by solving Eq. (35) for
the particular case of γ = 0. Then, by using the L’Hôpital rule,
we get expressions for A and C at γ = 0 (k = kc),

A = 2k2
c (kch cosh kch + sinh kch)

sinh2 kch
, (36)

C = k2
c (2kch + sinh 2kch)

sinh2 kch
, (37)

and Eq. (35) for γ = 0 turns out

2AT

1 + AT

α2 − 1 − AT

1 + AT

w(2w + sinh 2w)

sinh2 w
α

−4w2

[
1 −

( w

sinh w

)2
]

= 0, (38)

where α = ρ2gh/G ≡ k0h (k0 = ρ2g/G) and w = kch.
We have represented α(w) for different values of the

Atwood number AT in Fig. 2(a), where we can see that it has a
minimum value α∗ = 2(1 − AT )/AT , indicating the instability
threshold below which the slab is stable for all the perturbation
wavelengths. The analytical expression of this threshold is
easily obtained from Eq. (38) by taking the limit w � 1.

Figure 2(b) shows the dimensionless cutoff wave num-
ber κc = kc/k0 = w/α as a function of the dimensionless
thickness α = k0h of the slab. For all the values of AT , the
normalized cutoff wave number (1 + AT )κc/AT follows the
same behavior as for the case with AT = 1 provided that α is
well above the threshold value α∗ (α � 1.5 to 3α∗, depending
on AT ). Then, it decreases and drops suddenly to zero for
α = α∗.

In conclusion, for α < 2(1 − AT )/AT , the elastic slab
is stable for any perturbation wavelength, such as it was
qualitatively discussed in Sec. I [Eq. (2) with β = 2].

B. Instability growth rate

We can calculate the instability growth rate γ as a
function of the perturbation wave number k, with the Atwood
number AT and the slab thickness h as parameters. For
this, it is convenient first to use the following dimensionless
magnitudes:

κ = k

k0
, σ = γ√

k0g
, k0 = ρ2g

G
. (39)

After some somewhat tedious but straightforward algebra,
we get the following equation for the dimensionless growth
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FIG. 2. (a) Slab thickness α = k0h as a function of the cutoff
wave number w = kch for several values of the Atwood number AT .
(b) Normalized cutoff wave number (1 + AT )κc/AT (κc = kc/k0 =
w/α) as a function of the dimensionless slab thickness α = k0h for
several values of AT .

rate σ :

(2κ2 + σ 2)4 + 16κ6(σ 2 + κ2) − 8κ3
√

σ 2 + κ2(2κ2 + σ 2)2

× (coth ακ coth α
√

σ 2+κ2 − csch ακ csch α
√

σ 2+κ2)

= κ2σ 4 − 1 − AT

1 + AT

σ 2(κ2 + σ 2)[κ + (2κ2 + σ 2)2 coth ακ

− 4κ3
√

σ 2+κ2 coth α
√

σ 2+κ2]. (40)

As for the case with AT = 1 [63], this is a biquartic
transcendental equation for σ as a function of κ , with the
parameters AT and α, and it can be shown to have a unique
real and positive root for any value of the arguments when the
slab is unstable.

We have represented σ (κ) in Fig. 3 for three different
Atwood numbers (AT = 1, 0.8, and 0.4) and for several values
of the dimensionless thickness α larger than the threshold
value α∗. In Fig. 3(a) we show the case for AT = 1, already
presented in Ref. [63]. As it was discussed in Ref. [69], the
growth rate is independent of the slab thickness for the smallest
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FIG. 3. Asymptotic growth rate σ = γ /
√

k0g as a function of
the wave number κ = k/k0 for several values of α = k0h and for
(a) AT = 1, (b) AT = 0.8, and (c) AT = 0.4.

perturbation wave numbers κ when the elasticity effects are
not yet important, in agreement with the corresponding results
for an ideal-fluid slab (G = 0). In fact, for such a case, Eq. (40)
reduces to the well-known result obtained first by Taylor,
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which for AT = 1 yields the classical growth rate [2,20]:

σ 2 = 2AT κ

1 + AT + (1 − AT )coth ακ
. (41)

Then, when κ increases the elastic force provides the
stabilization that reduces the growth rate and makes it equal
to zero for κ = κc. However, we can see in Fig. 3(a) that
the stabilizing effect of the elasticity becomes less effective
as the slab becomes thinner, and this is because the elastic
force is actually determined by the total strain across the slab
thickness rather than by the local strain on the slab interfaces
[69]. Therefore, since the local strain becomes more uniform
through the slab thickness for the thinner slabs, the total strain
decreases and the stabilizing elastic force is reduced.

Such a behavior persists for AT < 1 as far as the dimen-
sionless thickness α is appreciably larger than the threshold
value α∗ [Fig. 3(b)]. In such a case, the growth rate for
the smallest wave numbers is smaller for thinner slabs
for which the stabilizing effect of the slab thickness observed
for an ideal fluid still prevails [Eq. (41)]. Again, though, when
κ increases, the loss of the elasticity effectiveness starts to
make the thicker slabs more stable [curves (a), (b), and (c) of
Fig. 3(b)]. However, the existence of the instability threshold
for AT < 1 finally leads to a sudden increase of the elastic
force as α approaches the threshold value α∗, producing a
strong reduction of the growth rate [curves (d) and (e) of
Fig. 3(b)], which eventually becomes null for α = α∗. Such a
behavior is more evident for smaller values of AT [Fig. 3(c)].

As was qualitatively discussed in Sec. I, the increase of
the elastic force for the thinnest slabs (when AT < 1) is the
consequence of the minimum total strain �h/h necessary to
sustain the instability growth, which not only prevents the
further reduction of the elastic force but produces a sudden
increase of it as the slab becomes thinner. This effect is absent
when AT = 1 when no minimum value of �h exists, and it is
instead stronger for smaller values of AT for which α∗ becomes
larger.
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FIG. 4. Growth rate σ = γ /
√

k0g as a function of the wave
number κ = k/k0 for several values of AT and α = k0h = 4.

In Fig. 4 we show the effect of changing the Atwood number
for a fixed value of α > α∗ (for all the values of AT ). In this
case the instability growth rate decreases with AT such as can
be expected.

Finally, it may be worth mentioning that in Eq. (40) σ 2

always is a real number, so the onset of instability oscillatory
motions (overstability) does not occur, such as is typical in
other RTI-related problems. We have checked this condition
in all our calculations presented in Figs. 2 to 4. However,
a mathematically rigorous demonstration valid also for the
present case with arbitrary values of AT can be found in
Ref. [67] (see also Ref. [70] for a similar conclusion on RTI
in viscous fluids).

IV. CONCLUDING REMARKS

We have developed the linear theory for two-dimensional
perturbations of the incompressible RTI of an elastic-solid slab
overlaying a semi-infinite ideal fluid. This extends the previous
work by Plohr and Sharp [63] for AT = 1, to arbitrary values
of the Atwood number.

A singular feature is found that shows the existence of a
threshold for the occurrence of the instability, according to
which the relatively thinner slabs are stable for any perturba-
tion wavelength. This characteristic of RTI in elastic solids, at
first glance unexpected, can, however, be demonstrated on the
basis of qualitative physical arguments.

It represents the corresponding counterpart for slabs with
a top free surface, to the instability threshold recently
reported for elastic-solid slabs with a top rigid surface
[65–67]. However, it represents an important advance in the
understanding of RTI in solids for situations of interest in
many research fields in which the top free-surface boundary
condition represents a more realistic description of the physical
situation.

In particular, it is expected to have an impact on the design
of laboratory experiments on high-energy-density physics
in which it should also affect the stability region of an
elastic-plastic solid slab [49,57]. In fact, if the transition to
the plastic regime occurs for relatively thin solid slab being
below the threshold, the instability condition would be ruled
only by the yield strength in a manner similar to the one
stipulated by the Drucker criterion on the initial perturbation
amplitude [49,71,72].

In the design of the Laboratory of Planetary Sci-
ences (LAPLAS) experimental setup, planned at the GSI
Helmholtzzentrum für Schwerionenforschung in Darmstadt,
Germany, for the research on high-energy-density physics in
the framework of the Facility for Antiproton and Ion Research
(FAIR), a cylindrical shell with a W pusher (G = 160 GPa,
ρ2 = 19.3 g/cm3) is imploded by heating the surrounding
region (the absorber) by means of an intense ion beam
pulse with an annular focal spot. The absorber is also made
of the same heavy material, and it is tamped to avoid the
outwards expansion so that typical pressures p0 = ρ2gh of
about 2 Mbar are generated for pushing and accelerating
the solid pusher. The numerical simulations show that the
pusher remains in solid state and that the condition α < α∗ is
always satisfied during the implosion process [73]. Then, the
implosion stability would be assured provided that a symmetry
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level (determined by the yield strength of the pusher) better
than 1% is achieved [41,42,44,45].

Experiments with high explosives could also take advantage
of the instability threshold by designing them with slab
materials having the highest shear modulus and using explo-
sives with densities as high as possible to drive the slab accel-
eration, so that AT remains reasonable small during the whole
process [31–33].

In inertial confinement fusion, it has been recently reported
that in order to control the RT instability and to achieve
ignition, it may be necessary to use a hard solid ablator (Be)
to drive the ablative implosion and keep it below the melting
curve [46]. Since the ablation process determines a density
gradient of the ablated plasma, an effective Atwood number
will be defined for every perturbation wave number [18–22].
Therefore, the instability threshold we have described here
would set a new cutoff wave number, associated with the
ablator shear modulus G, competing with the classical ablative
cutoff wave number.

To conclude, it may be of interest to make a short comment
about some limits of the validity of the present theory.

In the first place, we have assumed that perturbations are
imposed on an equilibrium situation consisting of a purely
elastic layer laying atop a semi-infinite ideal fluid. The physical
realization of this configuration requires that the hydrostatic
pressure ρ2gh be less than the yield strength Y that determines
the elastic limit beyond which Hooke’s law is not applicable
any longer, and the transition to a plastic regime takes place
[49–53,57–62,74–76]. Since it is typically Y ∼ 0.01G, the
slab would be perfectly stable for practically any Atwood
number less than 1 [Eq. (2)].

Instead, if during the instability evolution this hydrostatic
pressure increases with time beyond the elastic limit, then
a transition to the plastic regime will take place. Although
the analysis of such situation is beyond the scope of the
present work, if the pressure remains below the threshold
given by Eq. (2), we can speculate on the basis of the results
of Ref. [49] that the stability boundary will be determined
only by Drucker’ criterion on the perturbation amplitude

[49,71,72], independently of the particular perturbation
wavelength, provided that we remain in the linear regime.
However, more research is necessary in order to completely
understand this elastic-plastic transition.

Another discussion that may be pertinent regards the
incompressible linear analysis we have performed. We have
just assumed that density perturbation can be neglected (δρ =
0), and we have not addressed the hydrostatic equilibrium
configuration which will be determined by the particular
equation of state of the media. The previous condition of
incompressible perturbations requires that the characteristic
velocity γ /k be less than the sound speed cs in the solid slab.
Introducing the dimensionless magnitudes defined in Eq. (39),
we have (σ/κ)2G/(ρ2c

2
2) < 1, a condition that is well satisfied

in most of practical situations for the whole range of unstable
perturbation wave numbers considered in Figs. 3 and 4.

Regarding the hydrostatic equilibrium, the particular equa-
tion of state will determine density profiles ρ(y) within the
media, which we have not considered in order to keep the
theory as simple as possible. Although strong gradients are not
expected in the solid slab, they will have some effect on the
instability growth rate. However, such effects do not represent
any serious limitation to the present theory since density
gradients could be taken into account in an approximate
manner by considering an effective Atwood number defined
by the local values of the density on each side of the interface
at a distance of the order of k−1, or h (whatever is the smallest
one in the solid slab), from the interface: ρ1 = ρ(y = k−1), and
ρ2 = ρ(y = −ymin), where ymin is smallest between k−1 and
h. Such a procedure provides a quick evaluation of the gradient
effects, and it is known to yield pretty good results [22,77].

ACKNOWLEDGMENTS

This work has been partially supported by the Ministerio de
Economía y Competitividad of Spain (Grants No. ENE2013-
45661-C2-1-P and No. ENE2016-75703-R) and by the BMBF
of Germany.

[1] L. Rayleigh, Scientific Papers (Cambridge University Press,
Cambridge, UK, 1900), Vol. II, pp. 200–207.

[2] G. I. Taylor, Proc. R. Soc. London, Ser. A 201, 192
(1950).

[3] S. Chandrasekhar, Hydrodynamics and Hydromagnetic Stability
(Dover, New York, 1961), pp. 428–480.

[4] R. Menikoff, R. C. Mjolness, D. H. Sharp, C. Zemach, and B. J.
Doyle, Phys. Fluids 21, 1674 (1978).

[5] D. H. Sharp, Phys. D (Amsterdam, Neth.) 12, 3 (1984).
[6] H. J. Kull, Phys. Rep. 206, 197 (1991).
[7] N. A. Inogamov, Astrophys. Space Phys. 10, 1 (1999).
[8] K. O. Mikaelian, Phys. Rev. A 26, 2140 (1982).
[9] K. O. Mikaelian, Phys. Rev. A 28, 1637 (1983).

[10] K. O. Mikaelian, Phys. Rev. E 54, 3676 (1996).
[11] K. O. Mikaelian, Phys. Rev. A 42, 7211 (1990).

[12] A. R. Piriz, O. D. Cortazar, J. J. L. Cela, and N. A. Tahir, Am.
J. Phys. 74, 1095 (2006).

[13] Y. Y. Lau, J. C. Zier, I. M. Rittersdorf, M. R. Weis, and R. M.
Gilgenbach, Phys. Rev. E 83, 066405 (2011).

[14] M. R. Weis, P. Zhang, Y. Y. Lau, I. M. Rittersdorf, J. C. Zier, R.
M. Gilgenbach, M. H. Hess, and K. J. Peterson, Phys. Plasmas
21, 122708 (2014).

[15] M. S. Plesset and C. G. Whipple, Phys. Fluids 17, 1
(1974).

[16] W. Harrison, Proc. London Math. Soc. s2, 396 (1908).
[17] S. Parhi and G. Nath, Int. J. Eng. Sci. 29, 1439 (1991).
[18] R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon,

Phys. Plasmas 2, 3844 (1995).
[19] V. N. Goncharov, R. Betti, R. L. McCrory, P. Sorotokin, and

C. P. Verdon, Phys. Plasmas 3, 1402 (1996).

063115-7

https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1063/1.862107
https://doi.org/10.1063/1.862107
https://doi.org/10.1063/1.862107
https://doi.org/10.1063/1.862107
https://doi.org/10.1016/0167-2789(84)90510-4
https://doi.org/10.1016/0167-2789(84)90510-4
https://doi.org/10.1016/0167-2789(84)90510-4
https://doi.org/10.1016/0167-2789(84)90510-4
https://doi.org/10.1016/0370-1573(91)90153-D
https://doi.org/10.1016/0370-1573(91)90153-D
https://doi.org/10.1016/0370-1573(91)90153-D
https://doi.org/10.1016/0370-1573(91)90153-D
https://doi.org/10.1016/S0927-6505(98)00035-8
https://doi.org/10.1016/S0927-6505(98)00035-8
https://doi.org/10.1016/S0927-6505(98)00035-8
https://doi.org/10.1016/S0927-6505(98)00035-8
https://doi.org/10.1103/PhysRevA.26.2140
https://doi.org/10.1103/PhysRevA.26.2140
https://doi.org/10.1103/PhysRevA.26.2140
https://doi.org/10.1103/PhysRevA.26.2140
https://doi.org/10.1103/PhysRevA.28.1637
https://doi.org/10.1103/PhysRevA.28.1637
https://doi.org/10.1103/PhysRevA.28.1637
https://doi.org/10.1103/PhysRevA.28.1637
https://doi.org/10.1103/PhysRevE.54.3676
https://doi.org/10.1103/PhysRevE.54.3676
https://doi.org/10.1103/PhysRevE.54.3676
https://doi.org/10.1103/PhysRevE.54.3676
https://doi.org/10.1103/PhysRevA.42.7211
https://doi.org/10.1103/PhysRevA.42.7211
https://doi.org/10.1103/PhysRevA.42.7211
https://doi.org/10.1103/PhysRevA.42.7211
https://doi.org/10.1119/1.2358158
https://doi.org/10.1119/1.2358158
https://doi.org/10.1119/1.2358158
https://doi.org/10.1119/1.2358158
https://doi.org/10.1103/PhysRevE.83.066405
https://doi.org/10.1103/PhysRevE.83.066405
https://doi.org/10.1103/PhysRevE.83.066405
https://doi.org/10.1103/PhysRevE.83.066405
https://doi.org/10.1063/1.4904210
https://doi.org/10.1063/1.4904210
https://doi.org/10.1063/1.4904210
https://doi.org/10.1063/1.4904210
https://doi.org/10.1063/1.1694570
https://doi.org/10.1063/1.1694570
https://doi.org/10.1063/1.1694570
https://doi.org/10.1063/1.1694570
https://doi.org/10.1112/plms/s2-6.1.396
https://doi.org/10.1112/plms/s2-6.1.396
https://doi.org/10.1112/plms/s2-6.1.396
https://doi.org/10.1112/plms/s2-6.1.396
https://doi.org/10.1016/0020-7225(91)90049-9
https://doi.org/10.1016/0020-7225(91)90049-9
https://doi.org/10.1016/0020-7225(91)90049-9
https://doi.org/10.1016/0020-7225(91)90049-9
https://doi.org/10.1063/1.871083
https://doi.org/10.1063/1.871083
https://doi.org/10.1063/1.871083
https://doi.org/10.1063/1.871083
https://doi.org/10.1063/1.871730
https://doi.org/10.1063/1.871730
https://doi.org/10.1063/1.871730
https://doi.org/10.1063/1.871730


S. A. PIRIZ, A. R. PIRIZ, AND N. A. TAHIR PHYSICAL REVIEW E 96, 063115 (2017)

[20] V. N. Goncharov, P. McKenty, S. Skupsky, R. Betti, R. L.
McCrory, and C. Cherfils-Clérouin, Phys. Plasmas 7, 5118
(2000).

[21] J. G. Wouchuk and A. R. Piriz, Phys. Plasmas 2, 493 (1995).
[22] A. R. Piriz, J. Sanz, and L. F. Ibañez, Phys. Plasmas 4, 1117

(1997).
[23] E. B. Burov and P. Molnar, Earth Planet. Sci. Lett. 275, 370

(2008).
[24] W. Gorczyk, B. Gobbs, and T. Gerya, Tectonophysics 514, 146

(2012).
[25] W. Gorczyk and K. Vogt, Gondwana Res. 27, 196 (2015).
[26] S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs,

and Neutron Stars. The Physics of Compact Objects (Wiley-
VCH, Weinheim, Germany, 2004).

[27] O. Blaes, R. Blandford, P. D. Madau, and P. Koonin, Astrophys.
J. 363, 612 (1990).

[28] O. Blaes, R. Blandford, P. D. Madau, and L. Yan, Astrophys. J.
399, 634 (1992).

[29] P. C. Mock and P. C. Joss, Astrophys. J. 500, 374 (1998).
[30] D. Kobyakov and C. J. Pethick, Phys. Rev. Lett. 112, 112504

(2014).
[31] J. F. Barnes, P. J. Blewet, R. G. McQueen, K. A. Meyer, and D.

Venable, J. Appl. Phys. 45, 727 (1974).
[32] J. F. Barnes, D. H. Janney, R. K. London, K. A. Meyer, and

D. H. Sharp, J. Appl. Phys. 51, 4678 (1980).
[33] S. M. Bakhrakh, O. B. Drennov, N. P. Kovalev, A. I. Lebedev,

E. E. Meshkov, A. L. Mikhailov, N. V. Neumerzhitsky, P. N.
Nizovtsev, V. A. Rayevsky, G. P. Simonov, V. P. Solovyev,
and I. G. Zhidov, Lawrence Livermore National Laboratory
Report No. UCRL-CR-126710, 1997 (unpublished); available
at https://www.osti.gov/scitech/servlets/purl/515973

[34] D. H. Kalantar, B. A. Remington, J. D. Colvin, K. O. Mikaelian,
S. V. Weber, L. G. Wiley, J. S. Wark, A. Loveridge, A. M.
Allen, A. A. Hauer, and M. A. Meyers, Phys. Plasmas 7, 1999
(2000).

[35] B. A. Remington, P. Allen, E. M. Bringa, J. Hawreliak, D. Ho,
K. T. Lorenz, H. Lorenzana, J. M. McNaney, M. A. Meyers,
S. W. Pollaine, K. Rosolankova, B. Sadik, M. S. Schneider,
D. Swift, J. Wark, and B. Yaakobi, Mater. Sci. Tech. 22, 474
(2006).

[36] H.-S. Park, K. T. Lorenz, R. M. Cavallo, S. M. Pollaine, S. T.
Prisbrey, R. E. Rudd, R. C. Becker, J. V. Bernier, and B. A.
Remington, Phys. Rev. Lett. 104, 135504 (2010).

[37] A. R. Piriz, J. J. L. Cela, and N. A. Tahir, Phys. Rev. Lett. 105,
179601 (2010).

[38] R. E. Reinovsky, W. E. Anderson, W. L. Atchison, C. E. Ekdahl,
R. J. Faehl, I. R. Lindemuth, D. V. Morgan, M. Murillo, J. L.
Stokes, and J. S. Shlachter, IEEE Trans. Plasma Sci. 30, 1764
(2002).

[39] D. B. Sinars et al., Phys. Rev. Lett. 105, 185001 (2010).
[40] R. D. McBride et al., Phys. Plasmas 20, 056309 (2013).
[41] J. J. López Cela, A. R. Piriz, M. C. Serna Moreno, and N. A.

Tahir, Laser Part. Beams 24, 427 (2006).
[42] N. A. Tahir, A. Shutov, I. V. Lomonosov, A. R. Piriz, G.

Wouchuk, C. Deutsch, D. H. H. Hoffmann, and V. E. Fortov,
High Energy Density Phys. 2, 21 (2006).

[43] N. A. Tahir, V. Kim, A. Matvechev, A. Ostrik, A. V. Shutov,
I. V. Lomonosov, A. R. Piriz, J. J. L. Cela, and D. H. H.
Hoffmann, Nucl. Instrum. Methods Phys. Res., Sect. B 245, 85
(2006).

[44] N. A. Tahir, P. Spiller, A Shutov, I. V. Lomonosov, V. Gryaznov,
A. R. Piriz, G. Wouchuk, C. Deutsch, F. Fortov, D. H. H.
Hoffmann, and R. Schmidt, Nucl. Instrum. Methods Phys. Res.,
Sect. A 577, 238 (2007).

[45] N. A. Tahir, C. Deutsch, V. E. Fortov, V. Gryaznov, D. H. H.
Hoffmann, M. Kulish, I. V. Lomonosov, V. Mintsev, P. Ni, D.
Nikolaev, A. R. Piriz, N. Shilkin, P. Spiller, A. Shutov, M.
Temporal, V. Ternovoi, S. Udrea, and D. Varentsov, Phys. Rev.
Lett. 95, 035001 (2005).

[46] S. Opie, E. Loomis, P. Peralta, T. Shimada, and R. P. Johnson,
Phys. Rev. Lett. 118, 195501 (2017).

[47] P. F. Knapp, M. R. Martin, D. H. Dolan, K. Cochrane, D. Dalton,
J.-P. Davis, C. A. Jennings, G. P. Loisel, D. H. Romero, I. C.
Smith, E. P. Yu, M. R. Weis, T. R. Mattsson, R. D. McBride,
K. Peterson, J. Schwarz, and D. B. Sinars, Phys. Plasmas 24,
042708 (2017).

[48] A. R. Piriz, Phys. Fluids 31, 658 (1988).
[49] A. R. Piriz, J. J. L. Cela, and N. A. Tahir, Phys. Rev. E 80,

046305 (2009).
[50] J. W. Miles, General Dynamics Report No. GAMD-7335, AD

643161, 1966 (unpublished).
[51] G. N. White, Los Alamos National Laboratory Report No. LA-

5225-MS, 1973 (unpublished).
[52] A. C. Robinson and J. W. Swegle, J. Appl. Phys. 66, 2859

(1989).
[53] E. L. Ruden and D. E. Bell, J. Appl. Phys. 82, 163 (1997).
[54] A. I. Lebedev, P. N. Nisovtsev, and V. A. Rayevsky, in

Proceedings of the 4th International Workshop on the Physics of
Compressible Turbulent Mixing (IWPCTM), 29 March-1 April
1993, Cambridge, England (Cambridge University Press, New
York, 1993), p. 81.

[55] A. R. Piriz, J. J. L. Cela, O. D. Cortazar, N. A. Tahir, and
D. H. H. Hoffmann, Phys. Rev. E 72, 056313
(2005).

[56] A. R. Piriz, J. J. L. Cela, N. A. Tahir, and D. H. H. Hoffmann,
Phys. Rev. E 74, 037301 (2006).

[57] A. R. Piriz, J. J. L. Cela, and N. A. Tahir, J. Appl. Phys. 105,
116101 (2009).

[58] A. R. Piriz, Y. B. Sun, and N. A. Tahir, Phys. Rev. E 88, 023026
(2013).

[59] A. R. Piriz, Y. B. Sun, and N. A. Tahir, Phys. Rev. E 89, 063022
(2014).

[60] Y. B. Sun and A. R. Piriz, Phys. Plasmas 21, 072708 (2014).
[61] A. R. Piriz, Y. B. Sun, and N. A. Tahir, Eur. J. Phys. 38, 015003

(2017).
[62] A. R. Piriz, Y. B. Sun, and N. A. Tahir, Phys. Rev. E 91, 033007

(2015).
[63] B. J. Plohr and D. H. Sharp, Z. Angew. Math. Phys. 49, 786

(1998).
[64] G. Terrones, Phys. Rev. E 71, 036306 (2005).
[65] S. Mora, T. Phou, J.-M. Fromental, and Y. Pomeau, Phys. Rev.

Lett. 113, 178301 (2014).
[66] D. Riccobelli and P. Ciarletta, Philos. Trans. R. Soc., A 375,

20160421 (2017).
[67] I. Maimouni, J. Goyon, E. Lac, T. Pringuey, J. Boujlel,

X. Chateau, and P. Coussot, Phys. Rev. Lett. 116, 154502
(2016).

[68] H. Lamb, Hydrodynamics (Dover, Mineola, NY, 1945).
[69] S. A. Piriz, A. R. Piriz, and N. A. Tahir, Phys. Rev. E 95,

053108 (2017). In the analysis presented in the Appendix

063115-8

https://doi.org/10.1063/1.1321016
https://doi.org/10.1063/1.1321016
https://doi.org/10.1063/1.1321016
https://doi.org/10.1063/1.1321016
https://doi.org/10.1063/1.870974
https://doi.org/10.1063/1.870974
https://doi.org/10.1063/1.870974
https://doi.org/10.1063/1.870974
https://doi.org/10.1063/1.872200
https://doi.org/10.1063/1.872200
https://doi.org/10.1063/1.872200
https://doi.org/10.1063/1.872200
https://doi.org/10.1016/j.epsl.2008.08.032
https://doi.org/10.1016/j.epsl.2008.08.032
https://doi.org/10.1016/j.epsl.2008.08.032
https://doi.org/10.1016/j.epsl.2008.08.032
https://doi.org/10.1016/j.tecto.2011.10.016
https://doi.org/10.1016/j.tecto.2011.10.016
https://doi.org/10.1016/j.tecto.2011.10.016
https://doi.org/10.1016/j.tecto.2011.10.016
https://doi.org/10.1016/j.gr.2013.09.021
https://doi.org/10.1016/j.gr.2013.09.021
https://doi.org/10.1016/j.gr.2013.09.021
https://doi.org/10.1016/j.gr.2013.09.021
https://doi.org/10.1086/169371
https://doi.org/10.1086/169371
https://doi.org/10.1086/169371
https://doi.org/10.1086/169371
https://doi.org/10.1086/171955
https://doi.org/10.1086/171955
https://doi.org/10.1086/171955
https://doi.org/10.1086/171955
https://doi.org/10.1086/305693
https://doi.org/10.1086/305693
https://doi.org/10.1086/305693
https://doi.org/10.1086/305693
https://doi.org/10.1103/PhysRevLett.112.112504
https://doi.org/10.1103/PhysRevLett.112.112504
https://doi.org/10.1103/PhysRevLett.112.112504
https://doi.org/10.1103/PhysRevLett.112.112504
https://doi.org/10.1063/1.1663310
https://doi.org/10.1063/1.1663310
https://doi.org/10.1063/1.1663310
https://doi.org/10.1063/1.1663310
https://doi.org/10.1063/1.328339
https://doi.org/10.1063/1.328339
https://doi.org/10.1063/1.328339
https://doi.org/10.1063/1.328339
https://www.osti.gov/scitech/servlets/purl/515973
https://doi.org/10.1063/1.874021
https://doi.org/10.1063/1.874021
https://doi.org/10.1063/1.874021
https://doi.org/10.1063/1.874021
https://doi.org/10.1179/174328406X91069
https://doi.org/10.1179/174328406X91069
https://doi.org/10.1179/174328406X91069
https://doi.org/10.1179/174328406X91069
https://doi.org/10.1103/PhysRevLett.104.135504
https://doi.org/10.1103/PhysRevLett.104.135504
https://doi.org/10.1103/PhysRevLett.104.135504
https://doi.org/10.1103/PhysRevLett.104.135504
https://doi.org/10.1103/PhysRevLett.105.179601
https://doi.org/10.1103/PhysRevLett.105.179601
https://doi.org/10.1103/PhysRevLett.105.179601
https://doi.org/10.1103/PhysRevLett.105.179601
https://doi.org/10.1109/TPS.2002.805418
https://doi.org/10.1109/TPS.2002.805418
https://doi.org/10.1109/TPS.2002.805418
https://doi.org/10.1109/TPS.2002.805418
https://doi.org/10.1103/PhysRevLett.105.185001
https://doi.org/10.1103/PhysRevLett.105.185001
https://doi.org/10.1103/PhysRevLett.105.185001
https://doi.org/10.1103/PhysRevLett.105.185001
https://doi.org/10.1063/1.4803079
https://doi.org/10.1063/1.4803079
https://doi.org/10.1063/1.4803079
https://doi.org/10.1063/1.4803079
https://doi.org/10.1016/j.hedp.2006.02.001
https://doi.org/10.1016/j.hedp.2006.02.001
https://doi.org/10.1016/j.hedp.2006.02.001
https://doi.org/10.1016/j.hedp.2006.02.001
https://doi.org/10.1016/j.nimb.2005.11.084
https://doi.org/10.1016/j.nimb.2005.11.084
https://doi.org/10.1016/j.nimb.2005.11.084
https://doi.org/10.1016/j.nimb.2005.11.084
https://doi.org/10.1016/j.nima.2007.02.075
https://doi.org/10.1016/j.nima.2007.02.075
https://doi.org/10.1016/j.nima.2007.02.075
https://doi.org/10.1016/j.nima.2007.02.075
https://doi.org/10.1103/PhysRevLett.95.035001
https://doi.org/10.1103/PhysRevLett.95.035001
https://doi.org/10.1103/PhysRevLett.95.035001
https://doi.org/10.1103/PhysRevLett.95.035001
https://doi.org/10.1103/PhysRevLett.118.195501
https://doi.org/10.1103/PhysRevLett.118.195501
https://doi.org/10.1103/PhysRevLett.118.195501
https://doi.org/10.1103/PhysRevLett.118.195501
https://doi.org/10.1063/1.4981206
https://doi.org/10.1063/1.4981206
https://doi.org/10.1063/1.4981206
https://doi.org/10.1063/1.4981206
https://doi.org/10.1063/1.866796
https://doi.org/10.1063/1.866796
https://doi.org/10.1063/1.866796
https://doi.org/10.1063/1.866796
https://doi.org/10.1103/PhysRevE.80.046305
https://doi.org/10.1103/PhysRevE.80.046305
https://doi.org/10.1103/PhysRevE.80.046305
https://doi.org/10.1103/PhysRevE.80.046305
https://doi.org/10.1063/1.344191
https://doi.org/10.1063/1.344191
https://doi.org/10.1063/1.344191
https://doi.org/10.1063/1.344191
https://doi.org/10.1063/1.365795
https://doi.org/10.1063/1.365795
https://doi.org/10.1063/1.365795
https://doi.org/10.1063/1.365795
https://doi.org/10.1103/PhysRevE.72.056313
https://doi.org/10.1103/PhysRevE.72.056313
https://doi.org/10.1103/PhysRevE.72.056313
https://doi.org/10.1103/PhysRevE.72.056313
https://doi.org/10.1103/PhysRevE.74.037301
https://doi.org/10.1103/PhysRevE.74.037301
https://doi.org/10.1103/PhysRevE.74.037301
https://doi.org/10.1103/PhysRevE.74.037301
https://doi.org/10.1063/1.3139267
https://doi.org/10.1063/1.3139267
https://doi.org/10.1063/1.3139267
https://doi.org/10.1063/1.3139267
https://doi.org/10.1103/PhysRevE.88.023026
https://doi.org/10.1103/PhysRevE.88.023026
https://doi.org/10.1103/PhysRevE.88.023026
https://doi.org/10.1103/PhysRevE.88.023026
https://doi.org/10.1103/PhysRevE.89.063022
https://doi.org/10.1103/PhysRevE.89.063022
https://doi.org/10.1103/PhysRevE.89.063022
https://doi.org/10.1103/PhysRevE.89.063022
https://doi.org/10.1063/1.4890569
https://doi.org/10.1063/1.4890569
https://doi.org/10.1063/1.4890569
https://doi.org/10.1063/1.4890569
https://doi.org/10.1088/0143-0807/38/1/015003
https://doi.org/10.1088/0143-0807/38/1/015003
https://doi.org/10.1088/0143-0807/38/1/015003
https://doi.org/10.1088/0143-0807/38/1/015003
https://doi.org/10.1103/PhysRevE.91.033007
https://doi.org/10.1103/PhysRevE.91.033007
https://doi.org/10.1103/PhysRevE.91.033007
https://doi.org/10.1103/PhysRevE.91.033007
https://doi.org/10.1007/s000330050121
https://doi.org/10.1007/s000330050121
https://doi.org/10.1007/s000330050121
https://doi.org/10.1007/s000330050121
https://doi.org/10.1103/PhysRevE.71.036306
https://doi.org/10.1103/PhysRevE.71.036306
https://doi.org/10.1103/PhysRevE.71.036306
https://doi.org/10.1103/PhysRevE.71.036306
https://doi.org/10.1103/PhysRevLett.113.178301
https://doi.org/10.1103/PhysRevLett.113.178301
https://doi.org/10.1103/PhysRevLett.113.178301
https://doi.org/10.1103/PhysRevLett.113.178301
https://doi.org/10.1098/rsta.2016.0421
https://doi.org/10.1098/rsta.2016.0421
https://doi.org/10.1098/rsta.2016.0421
https://doi.org/10.1098/rsta.2016.0421
https://doi.org/10.1103/PhysRevLett.116.154502
https://doi.org/10.1103/PhysRevLett.116.154502
https://doi.org/10.1103/PhysRevLett.116.154502
https://doi.org/10.1103/PhysRevLett.116.154502
https://doi.org/10.1103/PhysRevE.95.053108
https://doi.org/10.1103/PhysRevE.95.053108
https://doi.org/10.1103/PhysRevE.95.053108
https://doi.org/10.1103/PhysRevE.95.053108


RAYLEIGH-TAYLOR INSTABILITY IN ACCELERATED . . . PHYSICAL REVIEW E 96, 063115 (2017)

B, some calculation mistakes were made that prevented the
unveiling of the existence of the instability threshold for
AT < 1. The existence of this threshold limits the model
validity to large values of AT or values of α well above the
threshold.

[70] A. Pellew and R. V. Southwell, Proc. R. Soc. London, Ser. A
176, 312 (1940).

[71] D. C. Drucker, in Mechanics Today, edited by S. Nemmat-
Nasser Pergamon Pergamon, Oxford, UK, (1980), Vol. 5,
p. 37.

[72] D. C. Drucker, Ing.-Arch. 49, 361 (1980).

[73] N. A. Tahir, I. V. Lomonosov, B. Borm, A. R. Piriz, A. Shutov,
P. Neumayer, V. Bagnoud, and S. A. Piriz, Astrophys. J. Suppl.
Ser. 232, 1 (2017).

[74] A. R. Piriz, J. J. L. Cela, N. A. Tahir, and D. H. H. Hoffmann,
Phys. Rev. E 78, 056401 (2008).

[75] V. V. Zhakhovskii and N. A. Inogamov, JETP Lett. 92, 521
(2010).

[76] V. V. Zhakhovsky, M. M. Budzevich, N. A. Inogamov,
I. I. Oleynik, and C. T. White, Phys. Rev. Lett. 107, 135502
(2011).

[77] J. Lindl, Phys. Plasmas 2, 3933 (1995).

063115-9

https://doi.org/10.1098/rspa.1940.0092
https://doi.org/10.1098/rspa.1940.0092
https://doi.org/10.1098/rspa.1940.0092
https://doi.org/10.1098/rspa.1940.0092
https://doi.org/10.1007/BF02426914
https://doi.org/10.1007/BF02426914
https://doi.org/10.1007/BF02426914
https://doi.org/10.1007/BF02426914
https://doi.org/10.3847/1538-4365/aa813e
https://doi.org/10.3847/1538-4365/aa813e
https://doi.org/10.3847/1538-4365/aa813e
https://doi.org/10.3847/1538-4365/aa813e
https://doi.org/10.1103/PhysRevE.78.056401
https://doi.org/10.1103/PhysRevE.78.056401
https://doi.org/10.1103/PhysRevE.78.056401
https://doi.org/10.1103/PhysRevE.78.056401
https://doi.org/10.1134/S0021364010200063
https://doi.org/10.1134/S0021364010200063
https://doi.org/10.1134/S0021364010200063
https://doi.org/10.1134/S0021364010200063
https://doi.org/10.1103/PhysRevLett.107.135502
https://doi.org/10.1103/PhysRevLett.107.135502
https://doi.org/10.1103/PhysRevLett.107.135502
https://doi.org/10.1103/PhysRevLett.107.135502
https://doi.org/10.1063/1.871025
https://doi.org/10.1063/1.871025
https://doi.org/10.1063/1.871025
https://doi.org/10.1063/1.871025



