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Data from a 1152×760×1280 direct numerical simulation [N. J. Mueschke and O. Schilling, Phys. Fluids
21, 014106 (2009)] of a Rayleigh-Taylor mixing layer modeled after a small-Atwood-number water-channel
experiment is used to investigate the validity of gradient diffusion and similarity closures a priori. The budgets
of the mean flow, turbulent kinetic energy, turbulent kinetic energy dissipation rate, heavy-fluid mass fraction
variance, and heavy-fluid mass fraction variance dissipation rate transport equations across the mixing layer were
previously analyzed [O. Schilling and N. J. Mueschke, Phys. Fluids 22, 105102 (2010)] at different evolution
times to identify the most important transport and mixing mechanisms. Here a methodology is introduced to
systematically estimate model coefficients as a function of time in the closures of the dynamically significant
terms in the transport equations by minimizing the L2 norm of the difference between the model and correlations
constructed using the simulation data. It is shown that gradient-diffusion and similarity closures used for the
turbulent kinetic energy K , turbulent kinetic energy dissipation rate ε, heavy-fluid mass fraction variance S, and
heavy-fluid mass fraction variance dissipation rate χ equations capture the shape of the exact, unclosed profiles
well over the nonlinear and turbulent evolution regimes. Using order-of-magnitude estimates [O. Schilling
and N. J. Mueschke, Phys. Fluids 22, 105102 (2010)] for the terms in the exact transport equations and their
closure models, it is shown that several of the standard closures for the turbulent production and dissipation
(destruction) must be modified to include Reynolds-number scalings appropriate for Rayleigh-Taylor flow at
small to intermediate Reynolds numbers. The late-time, large Reynolds number coefficients are determined to
be different from those used in shear flow applications and largely adopted in two-equation Reynolds-averaged
Navier-Stokes (RANS) models of Rayleigh-Taylor turbulent mixing. In addition, it is shown that the predictions
of the Boussinesq model for the Reynolds stress agree better with the data when additional buoyancy-related terms
are included. It is shown that an unsteady RANS paradigm is needed to predict the transitional flow dynamics from
early evolution times, analogous to the small Reynolds number modifications in RANS models of wall-bounded
flows in which the production-to-dissipation ratio is far from equilibrium. Although the present study is specific
to one particular flow and one set of initial conditions, the methodology could be applied to calibrations of other
Rayleigh-Taylor flows with different initial conditions (which may give different results during the early-time,
transitional flow stages, and perhaps asymptotic stage). The implications of these findings for developing high-
fidelity eddy viscosity-based turbulent transport and mixing models of Rayleigh-Taylor turbulence are discussed.

DOI: 10.1103/PhysRevE.96.063111

I. INTRODUCTION

The modeling of Rayleigh-Taylor turbulent mixing by eddy
viscosity turbulence models, such as the two-equation K-ε
model, requires that the physics embodied in the closures
accurately reflect the complex flow dynamics. A previous
study [1] used a direct numerical simulation (DNS) data set
[2] corresponding to a model of a water-channel experiment
[3] to investigate the mixing physics and relative importance
of terms in the exact mean and turbulent transport equations.
The details of the numerical simulation are discussed in these
previous studies. The present study examines a priori the
applicability of the eddy viscosity hypothesis used in transport
models for Rayleigh-Taylor turbulent mixing utilizing this data
set. Gradient-diffusion and similarity closures in the turbulent
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kinetic energy K , turbulent kinetic energy dissipation rate ε,
heavy-fluid mass fraction variance S, and heavy-fluid mass
fraction variance dissipation rate χ transport equations are
computed directly from the DNS data by defining mean and
fluctuating fields using averages in the periodic directions
perpendicular to gravity. While the focus of the present
investigation is a K-ε–based model [4,5] this study has broader
implications for other two-equation models that also use
the same gradient-diffusion and similarity closures but with
a different turbulent viscosity constructed using K and an
auxiliary turbulent variable (such as a turbulent length scale
L). Standard one-point, first-order closures utilize constant
model coefficients calibrated so that the models well pre-
dict large-Reynolds-number experimental or simulation data.
In applications of such models to small-Reynolds-number
flows such as wall-bounded channel flows, modifications
are introduced to capture the near-wall viscosity-dominated
flow [6,7]. This is typically achieved in the context of a
K-ε model [8] by introducing wall functions that effectively
interpolate between the near-wall region and the region far
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from the walls, keeping the functional form of the closures the
same.

Rayleigh-Taylor flows differ from shear-driven and wall-
bounded flows as they develop from a quiescent state,
transitioning to a fully developed state at sufficiently late
times. Thus, the “quasiuniversality” of the closure models
assumed for such flows likely precludes their applicability
over the early-time linear and weakly nonlinear stages of
Rayleigh-Taylor flow. It is shown here that the variability of
the flow physics prior to the turbulent stage can nevertheless be
well captured by such closures, provided that the coefficients
are functions of the Reynolds number in unsteady Reynolds-
averaged Navier-Stokes (RANS) modeling. It should be
emphasized that the transitional behavior of Rayleigh-Taylor
flow also depends on the detailed structure of the initial
conditions. The present study utilizes data from a specific
DNS and does not investigate the role of variations in the
initial conditions on the modeling of this flow.

In the spirit of the DNS study of Chen et al. [9], the unclosed
terms in the turbulence equations are compared here with their
respective closure models. The turbulent viscosity coefficient
is taken to be its canonical value Cμ = 0.09 and all other model
coefficients are determined self-consistently by minimizing
the L2 norm between the exact and closed profile of each term
across the mixing layer, as a function of time. Correlation
and amplitude coefficients are also computed to quantify how
well the shape and magnitude of each term is captured by
its closure. The turbulence model coefficients approximately
asymptote at the largest Reynolds numbers achieved in the
simulation and vary before the onset of turbulence. Using
the optimized coefficients determined this way, a three-
equation (K-ε-S) or four-equation (K-ε-S-χ ) RANS model
for transitional, small-Atwood-number, moderate-Reynolds-
number Rayleigh-Taylor flow is proposed. Here S denotes
the heavy-fluid mass fraction variance (and not a turbulent
length scale, for which this symbol is often used) and χ

denotes the heavy-fluid mass fraction variance dissipation rate.
These models are not necessarily universal, as the behavior of
Rayleigh-Taylor flows is initial conditions dependent [10]. It
is important to note that the present study is specific to one
particular flow realization, with one set of initial conditions.
Application of the same (or a similar) procedure to other
Rayleigh-Taylor flows may give different results (particularly
during the early-time, transitional flow stages).

This paper is organized as follows. An overview of RANS
models and of gradient-diffusion and similarity approxima-
tions, as well as their limitations vis-à-vis Rayleigh-Taylor
flow, is presented in Sec. II. The terms in the mean and
turbulent transport equations are compared at various evo-
lution times with their respective optimized closure models
constructed using the DNS data in Sec. III. Correlation
and magnitude coefficients are computed for each closure
to quantify the agreement between the models and data in
the Appendix. Finally, a summary of the principal findings
of this a priori model study, conclusions, and implications
for RANS modeling of transitional Rayleigh-Taylor flow
are given in Sec. IV. The models proposed herein will be
applied in a companion study to predict turbulent transport
and mixing in both small- [3] and large-Schmidt-number [11]
Rayleigh-Taylor instability water channel experiments.

TABLE I. Coefficients for standard K , ε, and S transport models
[8,12,13,26–30] and as used in Rayleigh-Taylor mixing [31–33].

Shear Rayleigh-Taylor
Coefficient Term flow value flow value

Cμ Turbulent viscosity 0.0845,0.09 0.09
σρ,σm Turbulent mass flux 0.50–0.90 0.60–1.48
σK Turbulent flux of K 0.72,1.00 0.87–1.00
σε Turbulent flux of ε 0.72,1.30 1.30
σS Turbulent flux of S 0.70,1.00 –
Cpu Pressure flux 0.20 –
Cε0 Buoyancy production of ε – 0.815–0.95
Cε1 Shear production of ε 1.44 1.44–1.47
Cε2 Turbulent dissipation of ε 1.68–1.92 1.90–1.92
Cχ Turbulent dissipation of S 1.00 1.50

II. OVERVIEW OF REYNOLDS-AVERAGED
NAVIER-STOKES TURBULENCE MODELS

A. Eddy viscosity modeling and the gradient-diffusion
and similarity hypotheses

First-order, single-point RANS models require expressions
for correlations such as the Reynolds stress tensor τij =
ρũ′′

i u
′′
j and turbulent scalar fluxes ˜φ′′u′′

j (overbars and tildes
denote Reynolds and Favre averages and single and double
primes indicate fluctuations about the Reynolds and Favre
averages, respectively). Eddy (or turbulent) viscosity closure
formulations utilize the concept that a turbulent flow enhances
diffusion of mass, momentum, and energy compared to
molecular processes. Boussinesq thus related the Reynolds
stress tensor [12]

τij ≡ τB
ij = 2

3
ρ K δij − 2 μt

(
S̃ij − δij

3

∂ũk

∂xk

)
(1)
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FIG. 1. Profiles of the turbulent viscosity νt (2) normalized by
νc = �2

c/tc at various dimensionless times.

063111-2



TURBULENT TRANSPORT AND MIXING IN . . . PHYSICAL REVIEW E 96, 063111 (2017)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

z/h

0

0.1

0.2

0.3

0.4

0.5

0.6

u
2 /

u
2 c

DNS
Model 1
Model 2

(a)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

z/h

0

1

2

3

4

5

u
2 /

u
2 c

DNS
Model 1
Model 2

(b)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

z/h

0

2

4

6

8

10

u
2 /

u
2 c

DNS
Model 1
Model 2

(c)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

z/h

0

2

4

6

8

10

12

14

16

18

u
2 /

u
2 c

DNS
Model 1
Model 2

(d)

FIG. 2. Profiles of the velocity variance ũ′′2 normalized by u2
c and its Boussinesq and generalized Boussinesq gradient-diffusion closures

(1) (Model 1) and (15) (Model 2) at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

to the mean strain-rate tensor S̃ij = (1/2)(∂ũi/∂xj +
∂ũj /∂xi), where K = ũ′′

i u
′′
i /2 is the turbulent kinetic energy.

The turbulent kinetic energy dissipation rate ε is used to
construct the turbulent viscosity

νt = μt

ρ
= Cμ

K2

ε
, (2)

where Cμ is a dimensionless coefficient estimated using
experimental or simulation data [8,13].

While two-equation models based on a turbulent length
scale L are also used [14], there is no unique definition of
L, and hence it is unclear which transport equation should
be examined. However, the exact turbulent kinetic energy
dissipation rate equation can be analyzed using DNS data
[1] or potentially using experimental data. Furthermore, as
L is typically of the same order as the mixing layer width,
it follows that the turbulent length scale describes the large-
scale properties of mechanical mixing. By contrast, turbulent
dissipation rates describe small-scale properties of scalar
mixing, which is the reason why turbulent reacting flow and
combustion modeling utilize descriptions based on dissipation
rates rather than length scales [15–17].

Turbulent fluxes in the mean and turbulent transport
equations must be modeled. The gradient-diffusion hypothesis
states that regions of large values of a mean scalar φ̃ diffuse
“down-gradient” and proportional to the intensity of turbulent

fluctuations ˜φ′′
αu′′

i = −(νt/σφ)∂φ̃α/∂xi , where σφ is the dimen-
sionless turbulent Schmidt number. Additional closures are
required for higher-order correlations in the turbulent kinetic
energy dissipation rate ε, heavy-fluid mass fraction variance
S ≡ m̃′′2

1 , and heavy-fluid mass fraction variance dissipation
rate χ transport equations (the “heavy-fluid” designation will
be omitted hereafter), e.g., the buoyancy production and
turbulent dissipation in the ε transport equation [1] P ε

b =
2νgi(∂ρ ′/∂xj )(∂u′

i/∂xj ) and Dε = 2μ ν(∂2u′
i/∂xj ∂xk)2, re-

spectively. While the gradient-diffusion hypothesis relates
turbulent fluxes to mean-field gradients, no such hypothesis
exists for relating the fluctuating velocity gradient-density
gradient correlation in P ε

b or higher-order correlations in Dε

to mean-field gradients. Similarities between the K and ε

transport equations are invoked to construct similarity closure
hypotheses, in which a proportionality constant relates the
closures in the variance and corresponding dissipation rate
equations, e.g., P ε

b = Cε0(ε/K)P K
b (the terms in the ε equation
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FIG. 3. Profiles of the velocity variance ṽ′′2 normalized by u2
c and its Boussinesq and generalized Boussinesq gradient-diffusion closures

(1) (Model 1) and (15) (Model 2) at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

are proportional to those in the K equation and vary on the
turbulent time scale τ = K/ε).

B. Assumptions and limitations of eddy viscosity-based
closure models

Several assumptions embodied in eddy viscosity models
are incompatible with Rayleigh-Taylor mixing. Thus, models
based on extensions of the K-ε model [8] are examined
here. In the Boussinesq approximation (1), small velocity
gradients imply equipartition of the velocity variances ũ′′2 ≈
ṽ′′2 ≈ w̃′′2 ≈ 2K/3. This is not the case in Rayleigh-Taylor
mixing where turbulent transport occurs primarily along the
direction aligned with gravity [1]. While Rayleigh-Taylor
flows initialized with isotropic perturbations approximately
satisfy ũ′′2 ≈ ṽ′′2, the flow considered here and initialized with
anisotropic perturbations does not, even at late times.

In the gradient-diffusion hypothesis, turbulent fluxes are
assumed to be aligned with their respective mean-field gradi-
ents, which is often incorrect [12,18–23]. Modeling Rayleigh-
Taylor turbulence is further complicated in that buoyancy

is the dominant production mechanism, while mean shear
production is negligible [1]. Unless a transport equation is
solved for the turbulent mass flux, this term must be modeled
algebraically, as in the models evaluated here.

Another limitation of eddy viscosity models is the require-
ment that the flow be in a state of weak equilibrium, i.e.,
the production-to-dissipation ratios remain close to unity. The
failure of RANS models in flows with large excursions of these
ratios from unity is well known [13,24]. The requirement that
P K/DK ≈ const is partly due to the large-Reynolds-number
assumption used to formulate similarity closures, where there
is a sufficient separation between the production and dissipa-
tion scales to allow an inertial energy cascade. Rayleigh-Taylor
driven flows are initially quiescent and transition before
reaching the Reynolds numbers needed for scale separation.
The production-to-dissipation ratios are significantly larger
than unity before transition to a three-dimensional, weakly
turbulent state at dimensionless time t/tc ≈ 17.3 [1]. Thus,
the model coefficients vary at small and moderate Reynolds
numbers until late-time asymptotic values are approached
when the flow achieves a self-similar state.
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FIG. 4. Profiles of the velocity variance w̃′′2 normalized by u2
c and its Boussinesq and generalized Boussinesq gradient-diffusion closures

(1) (Model 1) and (15) (Model 2) at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

III. A PRIORI ASSESSMENT AND OPTIMIZATION
OF CLOSURE MODELS

Gradient-diffusion and similarity closures of the turbulent
fluxes and higher-order correlations in the transport equations
examined previously [1] are assessed a priori [25] to
examine the validity of Reynolds-averaged closures for
Rayleigh-Taylor turbulent mixing. Coefficients in typical
transport models applied to shear and Rayleigh-Taylor
flows are summarized in Table I. While RANS models
using constant coefficients calibrated for shear-driven
flows have been applied to a variety of steady turbulent flows
[8,13,26,28], there has been much less effort to develop RANS
models for unsteady Rayleigh-Taylor mixing [14,31–36]. For
K-ε models, most of the previous calibration efforts have
focused on the coefficients in the buoyancy production terms.
Self-similar solutions were derived for small-Atwood-number
Rayleigh-Taylor flow [31,32] to estimate the coefficient in the
buoyancy production term that best reproduced the growth of a
small-Atwood-number Rayleigh-Taylor mixing layer. A self-
similar analysis of the K-L-a Besnard-Harlow-Rauenzahn
(BHR) model was performed, and coefficients applicable to
either a ε- or L-based model were estimated (the turbulent
length scale was denoted by S in this paper) [36]. Thus, the

coefficients used in Rayleigh-Taylor mixing are a combination
of those used for shear-driven flows and additional coefficients
in the buoyancy production terms obtained from an a posteriori
comparison of model predictions to limited experimental data
(e.g., the mixing layer width and its growth rate).

A different approach is used here. Terms from the transport
equations are compared a priori with their respective closures
[9,37–39], where each modeled term is constructed from
Reynolds or Favre mean and fluctuating fields calculated
from the DNS, and the optimal coefficients providing best
agreement between the exact profiles and their models are
determined. In doing so, a measure of the small-Reynolds-
number applicability of such models becomes apparent,
which is closely related to the open issue of RANS model
initialization for Rayleigh-Taylor flow. For all of the mean and
turbulence budgets presented, quantities will be nondimen-
sionalized using density, length, and time scales corresponding
to linear instability theory [1]:

ρc = ρ1 + ρ2

2
, �c =

(
ν2

g A

)1/3

, tc =
(

ν

g2A2

)1/3

, (3)

which are ρc = 0.998 g/cm3, �c = 0.051 cm, and tc = 0.264 s
for the flow considered here with g = 981 cm/s2 in the z
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direction, ν = 0.01 cm2/s and A = 7.5 × 10−4. The velocity
scale is uc = �c/tc = 0.194 cm/s. Order-of-magnitude esti-
mates of the terms in the transport equations in Appendix B
of Ref. [1] are used together with similar estimates for the
closures to determine any additional Reynolds and Schmidt
number scalings.

A. Determination of optimal model coefficients

A priori optimal turbulence model coefficients are deter-
mined using a methodology similar to the procedure that

provides an estimate of the minimal error that an ideal subgrid-
scale model will generate [40]. Consider the exact DNS profile
E(z,t) and modeled profile M(z,t ; Cφ) depending on a given
model coefficient Cφ . The optimal coefficient is determined
by minimizing the L2 norm of the difference between E(z,t)
and M(z,t ; Cφ) over the mixing layer z ∈ [hs,hb],

L2(Cφ,t) =
∫ hb

hs

[E(z,t) − M(z,t ; Cφ)]2dz, (4)

where hb(t) and hs(t) are the bubble and spike front widths at
time t . Algebraically solving for Cφ can produce singularities
if E(z,t) or M(z,t ; Cφ) change sign (as in the case of turbulent
fluxes). Most profiles extend somewhat beyond the mixing
layer boundaries determined by hs and hb; however, widening
the integration limits in Eq. (4) did not change the coefficient
values.

Qualitative assessments are performed by comparison of the
profiles predicted by the optimized models with the profiles
constructed using the DNS data. As the ratio multiplying
each closed term is either of the form Cμ/σφ or CZmCμ/σφ ,
where CZm is a coefficient in the transport equation for the
generic dissipation rate Z = (ε,χ ), the value of Cμ is fixed
at 0.09 and is not optimized [41]. In addition, the predicted
self-similar spreading rate of a shear mixing layer depends on
this value as well as on Cε1—the coefficient in the closure of
the shear production in the turbulent kinetic energy dissipation
rate equation. Thus, changing Cμ would entail changing other
coefficients in order to reproduce the experimental growth rate,
e.g., Ref. [42]. Profiles of the turbulent viscosity νt from the
DNS are shown in Fig. 1. Beyond t/tc ∼ 5.13, νt exceeds
the kinematic viscosity ν = 0.01 cm2/s; by the end of the
simulation, the peak value νt/ν ∼ 40 is reached near the center
plane z = 0. The peak turbulent Reynolds number reached
is Ret = K2/(ε ν) = νt/(Cμν) ∼ 400; all values of Ret are
evaluated on the center plane.

The predictive capability of a model can be quantified by
the correlation coefficient [37]

r(Cφ,t) =
∫ hb

hs
[E(z,t) − E(t)][M(z,t ; Cφ) − M(Cφ,t)]dz√∫ hb

hs
[E(z,t) − E(t)]2 dz

∫ hb

hs
[M(z,t ; Cφ) − M(Cφ,t)]2 dz

, (5)

where

E(t) = 1

h(t)

∫ hb

hs

E(z,t) dz , (6a)

M(Cφ,t) = 1

h(t)

∫ hb

hs

M(z,t ; Cφ) dz, (6b)

are the spatial averages of E(z,t) and M(z,t ; Cφ) over the
mixing layer. An exact correlation between the model and
the DNS data gives r = 1; if there is no correlation, then
r = 0; and if the model and data are exactly anticorrelated,
then r = −1. However, r(Cφ,t) only determines how well the
model is correlated with the DNS data but does not determine
how well the model compares in magnitude to the DNS data. A
ratio of the magnitude of the model profile to the DNS profile

is formulated as

a(Cφ,t) =
√√√√∫ hb

hs
M(z,t ; Cφ)2 dz∫ hb

hs
E(z,t)2 dz

, (7)

so that the model overpredicts the data if a > 1 and the model
underpredicts the data if a < 1. Thus, r and a provide measures
of how well the model is correlated with the data and how close
the model is to the data as the flow evolves through the linear,
weakly nonlinear, nonlinear, and transitional stages.

B. The mean transport equations

The mean flow dynamics are determined by the mean
vertical momentum and mass fraction transport equations.
The analysis of turbulent transport and mixing processes is
discussed in Ref. [1]. For the small-Atwood-number mixing
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FIG. 6. Profiles of the averaged vertical Favre fluctuating velocity w′′ normalized by uc and its gradient-diffusion closure (23) at (a)
t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

layer considered here, the mean velocity remains very small
during the evolution of the Rayleigh-Taylor flow. Thus, the
mean advection terms are negligible. For generality and
potential applications to larger-Atwood-number flows, both
Reynolds and Favre fluctuating quantities are used: For very
small Atwood number, φ̃α ≈ ρφα/ρ ≈ φα .

It was shown that the mean vertical momentum equation
(6) of Ref. [1] reduces to generalized hydrostatic equilibrium,

ρ g ≈ − ∂

∂z
(p + τ33), (8)

where the Reynolds stress is τ33 = ρw̃′′2. Furthermore, the
Reynolds stress contribution ∂τ33/∂z is much smaller than
the mean-pressure-gradient contribution, indicating that turbu-
lence has a relatively small influence on the mean momentum
evolution. However, the Reynolds stress gradient may not be
negligible for larger-Atwood-number flows. The heavy-fluid
mean mass fraction equation (7) of Ref. [1] reduces to

ρ
∂m̃1

∂t
≈ − ∂

∂z
(ρ ˜m′′

1 w′′) (9)

as the molecular diffusion (μ/Sc)∂m̃1/∂xj is negligible
compared to the turbulent transport.

C. The turbulent transport equations

The turbulent kinetic energy transport equation (14) of
Ref. [1] reduces to

ρ
∂K

∂t
≈ −w′′ ∂p

∂z
− ρ ε − ∂

∂z
(ρ ˜K ′′ w′′ + p′ w′′) (10)

as the mean shear production τij ∂ũi/∂xj , viscous flux σiju
′′
i ,

and pressure-dilatation p′∂u′′
k/∂xk are very small. The (incom-

pressible) turbulent kinetic energy dissipation rate transport
equation (17) of Ref. [1] reduces to

ρ
∂ε

∂t
≈ −2 ν g

∂ρ ′

∂xj

∂w′

∂xj

− 2 μ
∂u′

i

∂xk

∂u′
i

∂xj

∂u′
k

∂xj

− 2 μ ν

(
∂2u′

i

∂xj ∂xk

)2

− ∂

∂z

(
ρ ε′ w′ + 2 ν

∂p′

∂xk

∂w′

∂xk

)
(11)
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FIG. 7. Profiles of the vertical turbulent heavy-fluid mass fraction flux ρ˜m′′
1w

′′ normalized by Fc = ρcuc and its gradient-diffusion closure
(25) at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

as the mean shear production proportional to ∂ui/∂xj , cur-
vature production proportional to ∂2ui/∂xj ∂xk , and molecular
dissipation flux μ∂ε/∂xj are small. The mass fraction variance
transport equation (19) of Ref. [1] reduces to

ρ
∂S

∂t
≈ −2 ρ ˜m′′

1 w′′ ∂m̃1

∂z
− 2 ρ χ − ∂

∂z

(
ρ ˜m′′2

1 w′′) (12)

as the molecular diffusion flux ρD∂S/∂xj is small. Finally,
the mass fraction variance dissipation rate transport equation
(22) of Ref. [1] reduces to

ρ
∂χ

∂t
≈ −2 D ρ

∂m′′
1

∂xi

∂m′′
1

∂xj

∂u′′
j

∂xi

− 2 D
2
ρ

(
∂2m′′

1

∂xi∂xj

)2

− ∂

∂z
(ρ ˜χ ′′ w′′) (13)

as the terms proportional to the mean-fields gradients
∂m̃1/∂xj , ∂ũj /∂xi , and ∂2m̃1/∂xi∂xj , and molecular diffusion
flux ρD∂χ/∂xj are small. Note that in the a priori analysis
of turbulent transport performed here, there is no loss of

generality as a result of neglecting the mean advection terms
because they do not require closure.

D. Generalized Boussinesq Reynolds stress model

In shear-driven turbulent flows, accurate prediction of the
Reynolds stresses is crucial for modeling the mean shear
velocity. While the Boussinesq closure for τij is sufficiently
accurate for many flows [6], it is generally inappropriate for
Rayleigh-Taylor mixing due to the sustained anisotropy of
velocity fluctuations. While the Boussinesq model predicts
the shapes of ũ′′2

i , it does not predict their magnitudes. While
the mean momentum equation and shear production rates
of K and ε require a model for τij , it was shown that the
shear productions P K

s and P ε
s are negligible compared to

the buoyancy productions P K
b and P ε

b , and the gradient of
the Reynolds stress is small compared to the mean pressure
gradient for the present flow [1]. Nevertheless, a complete
RANS model for Rayleigh-Taylor turbulence should include a
sufficiently accurate model for τij , irrespective of the Atwood
number.
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FIG. 8. Profiles of the vertical turbulent kinetic energy flux ρ˜K ′′w′′ normalized by Fc = ρcu
3
c and its gradient-diffusion closure (25) at (a)

t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

Using the traceless, symmetric baroclinic tensor [43]

Aij = ∂ρ

∂xi

∂p

∂xj

+ ∂ρ

∂xj

∂p

∂xi

− 2

3
δij

∂ρ

∂xk

∂p

∂xk

, (14)

a new model can be proposed as an extension of (1) as

τij = τB
ij − C

ijkl

A νt

K

ρ ε
Akl , (15)

where the C
ijkl

A = C
jikl

A are dimensionless tensor coefficients,
and it is assumed here that C

ijkl

A = C(ijkl)δikδjl . Thus,

τ11 −→ 2

3

(
ρ K + μt

∂w̃

∂z

)
+ 2

3
C

(1111)
A νt

K

ρ ε

∂ρ

∂z

∂p

∂z
, (16)

τ22 −→ 2

3

(
ρ K + μt

∂w̃

∂z

)
+ 2

3
C

(2222)
A νt

K

ρ ε

∂ρ

∂z

∂p

∂z
, (17)

τ33 −→ 2

3

(
ρ K − 2 μt

∂w̃

∂z

)
− 4

3
C

(3333)
A νt

K

ρ ε

∂ρ

∂z

∂p

∂z
,

(18)

τ12 = τ21 = 0 , (19)

τ13 = τ31 −→ −μt

∂ũ

∂z
, τ23 = τ32 −→ −μt

∂ṽ

∂z
, (20)

where C
(1111)
A ≈ C

(2222)
A �= C

(3333)
A is expected if the flow

becomes nearly isotropic in the plane perpendicular to gravity.
This model generalizes the dependence of τij on the mean
velocity gradient to include the mean density and pressure
gradients and reduces to the Boussinesq model in the constant
density limit. From Fig. 1 of Ref. [1], ∂ρ/∂z > 0 and ∂p/∂z <

0, so that A11,A22 > 0 and A33 < 0.
The model (15) is inspired by the algebraic Reynolds stress

model (β = 1/T0)

v′
i v

′
j = 2

3
K δij − 2 νt Sij

+CT β
K

ε

(
gi T ′ u′

j + gj T ′ u′
i − 2

3
δij gk T ′ u′

k

)
(21)
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FIG. 9. Profiles of the vertical turbulent kinetic energy dissipation rate flux ρε ′w′ normalized by Fc = ρcu
3
c/tc and its gradient-diffusion

closure (26) at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

previously used in transient-RANS and very large-eddy sim-
ulation of incompressible turbulent convection [44–46]. Here
density fluctuations are analogous to temperature fluctuations.
Thus, taking gi → (1/ρ)∂p/∂xi and βT ′u′

i → ρ ′u′
i/ρ =

−(νt/σρ)∂ ln ρ/∂xi gives (15).
Requiring the orders of magnitude to agree for the exact

Reynolds stress and its closure

τzz ∼ 2

3
f ρK − 2f μt

(
S̃zz − 1

3

∂ũk

∂xk

)
− e

K3

ρ ε2
Azz

∼ ρ0
(
f u2

h − f uhṽ + egh
)
,

so that f = 1 and e = u2
h/(gh) = Fr2

h is the Froude
number squared. At large Reynolds numbers, using the
self-similar growth of the mixing layer width, h(t) = αAgt2,
uh ∼ dh/dt ∼ 2αAgt . Thus, u2

h ∼ 4αAgh, and therefore
Frh ∼ 2

√
αA. Figures 2–4 show a comparison between

the Boussinesq model (1) and the new model (15) for the
diagonal components of ũ′′

i u
′′
j from the DNS. As expected for

Rayleigh-Taylor flow in which the mean strain-rate is small,
the Boussinesq model substantially overpredicts ũ′′2 and ṽ′′2,
and underpredicts w̃′′2. By contrast, the new model very

well matches the DNS at all times. The optimal coefficients
C

(iiii)
A shown in Fig. 5 begin to slowly decrease following

an initial transient. Tables II and III give the latest-time and
time-dependent values of C

(iiii)
A , respectively. Note that beyond

t/tc ≈ 35 the limited resolution at late times in calculating
gradients (as also seen in the oscillations in the model profiles)
would overestimate the values of these coefficients.

E. Gradient-diffusion closures

1. Buoyancy production of turbulent kinetic energy

The buoyancy production terms in the turbulent kinetic
energy and turbulent kinetic energy dissipation rate equations,
P K

b and P ε
b , are the principal Rayleigh-Taylor instability

driving terms. The gradient-diffusion model of the buoyancy
production P K

b in the turbulent kinetic energy equation is given
in terms of the density-velocity correlation model [12,47,48]

u′′
j = −ρ ′ u′

j

ρ
= νt

σρ ρ

∂ρ

∂xj

(22)

or

w′′ −→ νt

σρ ρ

∂ρ

∂z
, (23)
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FIG. 10. Profiles of the vertical heavy-fluid mass fraction variance flux ρ ˜m′′2
1 w′′ normalized by Fc = ρcuc and its gradient-diffusion closure

(26) at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

so that

P K
b = −u′′

j

∂p

∂xj

= − νt

σρ ρ

∂ρ

∂xj

∂p

∂xj

−→ − νt

σρ ρ

∂ρ

∂z

∂p

∂z
, (24)

where σρ is a dimensionless turbulent Schmidt number.
Requiring the orders of magnitude to agree for the exact
buoyancy production and its closure

P K
b ∼ −f

νt

ρ

∂ρ

∂z

∂p

∂z
∼ f �ρ g uh

gives f = ρrms/�ρ, so that no additional scalings are expected
in (24) (n.b., ρrms ∝ mrms changes slowly at late times [1]). The
gradient-diffusion closure of the averaged Favre fluctuating
velocity (23) is shown in Fig. 6, where on average both the
closure and DNS data agree (with higher amplitude oscillations
as time progresses). On average, the DNS profiles are more
symmetric than the model profiles about the center plane.
The closure (22) has also been used for shock-driven flows
[49]; a generalization of this expression to include the mean
pressure gradient (appropriate for shocked flows) was used to

model a broad set of reshocked Richtmyer-Meshkov instability
experiments [50,51].

2. Turbulent fluxes

The turbulent fluxes have important dynamical effects in
Rayleigh-Taylor flow, e.g., the turbulent mass flux controls
both the spreading rate of the mixing layer in the mean
mass fraction transport and production rates of turbulent
kinetic energy and mass fraction variance. Gradient-diffusion
models for the turbulent fluxes are of the form ρ ˜φ′′

αw′′ =
−(μt/σφ)∂φ̃α/∂z and specifically

ρ ˜m′′
1 w′′ = − μt

σm

∂m̃1

∂z
, ρ ˜K ′′ w′′ = − μt

σK

∂K

∂z
, (25)

ρ ε′ w′ = −μt

σε

∂ε

∂z
, ρ ˜m′′2

1 w′′ = −μt

σS

∂S

∂z
, (26)

ρ ˜χ ′′ w′′ = −μt

σχ

∂χ

∂z
, (27)

where σm, σK , σε , σS , and σχ are dimensionless turbulent
Schmidt numbers. Consider the turbulent kinetic energy flux:
requiring the orders of magnitude to agree for the exact flux

063111-11



OLEG SCHILLING AND NICHOLAS J. MUESCHKE PHYSICAL REVIEW E 96, 063111 (2017)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

z/h

-1

-0.5

0

0.5

1

ρ
χ

w
/
F

c

×10-3

DNS
Model

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

z/h

-4

-3

-2

-1

0

1

2

3

4

ρ
χ

w
/
F

c

×10-3

DNS
Model

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

z/h

-0.01

-0.005

0

0.005

0.01

ρ
χ

w
/
F

c

DNS
Model

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

z/h

-8

-6

-4

-2

0

2

4

6

8

ρ
χ

w
/
F

c

×10-3

DNS
Model

(a) (b)

(c) (d)

FIG. 11. Profiles of the vertical heavy-fluid mass fraction variance dissipation rate flux ρ ˜χ ′′w′′ normalized by Fc = ρcuc/tc and its
gradient-diffusion closure (27) at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

and its closure

FK
t ∼ −f μt

∂K

∂z
∼ f ρ0 u3

h

gives f = 1. More generally, a generic turbulent flux cor-
responding to φ′′

α = (m′′
1,K

′′,ε′,m′′2
1 ,χ ′′) is ρφ′′

αw′′, which is
O(ρ0φα,rmsuh); its closure is

F
φ̃′′

α

t ∼ −f μt

∂φ̃′′
α

∂z
∼ f ρ0 uh φα,rms,

so that f = 1 and no additional scalings are expected.
Comparisons of the gradient-diffusion models with the

exact fluxes are shown in Figs. 7–11. Each flux is shown
using the optimal turbulent Schmidt number at each time
σφ(Reh) calculated by minimizing the L2 -norm difference
between the DNS and model profiles. The closures for the
mass fraction flux, mass fraction variance flux, and mass
fraction variance dissipation rate flux are analogous to those
used in turbulent nonpremixed combustion for the mixture
fraction, mixture fraction variance, and mixture fraction
variance dissipation rate fluxes. Figures 8–11 (particularly at
the latest two times) indicate that the model and DNS do

not predict the maxima and minima of the fluxes at the same
spatial locations within the mixing layer, although the values
of the maxima and minima are in reasonable agreement on
average.

The turbulent Schmidt numbers corresponding to each
flux shown in Fig. 12 exhibit some expected variability at
early times (t/tc < 17.3 or Reh < 500) as the mixing evolves
through the linear and transitional regimes. Most decrease
early in time and then grow after transition. However, σε

and σχ both increase at early times, reach maximum values
at t/tc ≈ 12.6, and then rapidly decrease. Once the mixing
layer evolves beyond the transitional regime (Reh � 500), the
turbulent Schmidt numbers relax to

σρ ≈ 0.08, σK ≈ 0.09, σε ≈ 0.10, (28)

σm ≈ 0.08, σS ≈ 0.07, σχ ≈ 0.15. (29)

The turbulent Schmidt numbers for the scalar fields exhibit a
greater dynamic range and are more sensitive to Reh. Tables
II and III give the latest-time and time-dependent values of
σρ , σK , σε , σm, σS , and σχ , respectively. Beyond t/tc ≈ 32.5
the limited resolution at late times in calculating gradients due
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to the decreasing number of turbulent structures over which
averages are computed (as also seen in the oscillations in
the mean-field gradients and model profiles) would slightly
overestimate these coefficients.

The turbulent Schmidt numbers are much smaller than those
used in shear-driven flows. Applications of two-equation K-ε
models to Rayleigh-Taylor mixing have used larger turbulent
Schmidt numbers (see Table I). These studies have either cited
other buoyancy-driven applications [32] or used an a posteriori
determination of each turbulent Schmidt number [33,34]. The
present work is the first to directly and systematically calculate
the turbulent Schmidt numbers for a four-equation K-ε-S-χ
model and illustrate the dynamic behavior of the coefficients
in transitional Rayleigh-Taylor turbulent flow.

3. Pressure fluxes

The pressure flux p′w′′ is non-negligible, has a complex
shape, and bifurcates in its transport behavior at an early time
in the mixing layer evolution [1]. Most formulations either
neglect the pressure flux [52] or combine it with the turbulent

kinetic energy flux ˜K ′′u′′
i [27]. In the model investigated here,

the pressure flux is subtracted from the overall flux of K ,

p′ u′′
i = −Cpu ρ ˜K ′′ u′′

i (30)

or

p′ w′′ = −Cpu ρ ˜K ′′ w′′ , (31)

with a suggested value Cpu = 0.4 in homogeneous turbulence
[27]. Requiring the orders of magnitude to agree for the exact
pressure flux and its closure

FK
p ∼ −ρ ˜K ′′ w′′ ∼ f μt

∂K

∂z
∼ f ρ0 u3

h

gives f = ρrms/ρ0, so that the pressure flux decreases as the
root-mean-square density fluctuations decrease.

Profiles of the exact and closed vertical pressure flux
are shown in Fig. 13. At very small Reynolds numbers
(Reh < 100), Eq. (31) does not correctly predict the direction
of the flux of K; this may be rectified by a negative value
of Cpu, as shown in the profile at t/tc = 5.13. For small to
moderate Reynolds numbers (100 < Reh < 1500), the model
correctly predicts the flux direction within the mixing layer
core |z/h| � 0.5. However, this model does not predict the
shape of the profile well, nor does it capture the change in sign
of the flux at the boundaries of the layer (|z/h| � 0.5). This
has significant effects at the mixing layer boundaries and must
be captured by any realistic closure.

Similarly to the pressure flux of K , ε is also transported via
pressure fluctuations. While the pressure flux of K has received
little attention, much less consideration has been given to the
pressure flux of ε. Neither has been previously examined for
Rayleigh-Taylor flow. Using a closure analogous to Eq. (31),
consider the new model

Fε
p = 2 ν

∂p′

∂xj

∂u′
i

∂xj

= −Cε
pu ρ ε′ w′ . (32)

Requiring the orders of magnitude to agree for the exact
turbulent kinetic energy dissipation rate pressure flux and its
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FIG. 12. Evolution of optimal (a) mechanical σρ , σK , and σε and
(b) scalar σm, σS , and σχ turbulent Schmidt numbers.

closure

Fε
p ∼ −ρ ε′ w′ ∼ f μt

∂ε

∂z
∼ f

μu3
h

λ2

gives f = 1. The exact and closed ε pressure flux profiles
are shown in Fig. 14. Similarly to p′w′′, the pressure flux
of ε enhances the vertical turbulent flux ρε′w′ at early times
and then transitions to a profile that opposes ρε′w′. Also,
the pressure flux of ε exhibits the same complex behavior as
p′w′′, where ε is transported away from the mixing layer core
at the boundaries of the layer. However, this effect is much
smaller than the transport of K away from the mixing layer by
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FIG. 13. Profiles of the vertical pressure flux p′w′′ normalized by Fc = ρcu
3
c and the closure (31) at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and

(d) 37.9.

pressure fluctuations. This is expected as velocity fluctuations
induced in the fluid around the mixing layer remains essentially
irrotational, and hence, the dissipation rate of these fluctuations
is nearly negligible.

Figure 15 shows the evolution of the optimal coefficients
Cpu and Cε

pu for the models (31) and (32). As the pressure
flux is non-negligible, even beyond the boundaries of the
mixing layer, the L2-norm minimization was modified such
that the integration limits were changed from [hs,hb] to
[−Lz/2,Lz/2]. Both coefficients are negative before t/tc ≈
10, when the mixing is entering a nonlinear transitional
regime. Negative values indicate that the pressure fluxes are
aligned with the turbulent fluxes of K and ε. The maximum
value of Cpu is attained at t/tc ≈ 12.6, corresponding to the
time at which the molecular mixing parameter θ attains its
minimum [2]. Once a Reynolds number Reḣ

h ≈ 1500 has been
attained, the coefficient for the pressure flux of K approaches
Cpu ≈ 0.2. As shown in Fig. 9, the turbulent flux of ε becomes
more important with increasing Reḣ

h, while the pressure flux
of ε remains relatively unchanged in magnitude. Thus, Cε

pu

decreases with increasing Reḣ
h—at sufficiently large Reynolds

numbers, the pressure flux of ε may be negligible compared

with the turbulent flux. Tables II and III give the latest-time
and time-dependent values of Cpu and Cε

pu , respectively.

F. Similarity closures

Similarity closures used to phenomenologically model the
nonflux, higher-order correlations in the turbulent dissipation
rate and scalar variance (ε, S, and χ ) transport equations are
examined here.

1. The turbulent kinetic energy dissipation rate production
and destruction terms

The buoyancy production of ε is the dominant production
mechanism of ε for t/tc < 25.1 and is non-negligible over
the range of Reynolds numbers examined here [1]; this
term is absent in constant density flows. The fluctuating
velocity gradient-density gradient correlation is taken to be
proportional to the buoyancy production of K , analogously to
the similarity closure for the shear production rate of ε [24],

P ε
b = 2 ν gi

∂ρ ′

∂xj

∂u′
i

∂xj

= Cε0
ε

K
P K

b . (33)
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FIG. 14. Profiles of the pressure flux F ε
p normalized by Fc = ρcu

3
c/tc and the closure (32) at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

Requiring the orders of magnitude to agree for the exact
buoyancy production and its closure

P ε
b ∼ −f

νt

ρ

∂ρ

∂z

∂p

∂z

ε

K
∼ f

g �ρ u2
h

h

gives f = ρrms/�ρ. The comparison of the exact and closed
profiles of P ε

b in Fig. 16 shows that the buoyancy production of
ε is well captured by similarity. However, because of the very
small Atwood number, the profile of the exact shear production
P ε

s is very small and oscillatory [1]. Therefore, it is not possible
to optimize the coefficient Cε1 in the standard similarity model
P ε

s = Cε1(ε/K)P K
s using the present data set.

The turbulent production and destruction of ε include triple
fluctuating velocity gradient correlations and correlations of
higher-order derivatives. Adopting the large-Reynolds-number
closure [8], the difference between the viscous destruction and
turbulent production is

Dε − P ε
t = 2μ

[
ν

(
∂2u′

i

∂xj ∂xk

)2

+ ∂u′
i

∂xk

∂u′
i

∂xj

∂u′
k

∂xj

]

= Cε2
ρ ε2

K
. (34)

When there is no significant scale separation (as in the case
here), the scale δ is approximately δ ∼ O(λ) rather than O(�d )
(�d is the Kolmogorov dissipation scale), so that requiring the
orders of magnitude to agree for the exact turbulent destruction
and its closure

Dε ∼ f
ρ ε2

K
∼ f

μ ν u2
h

λ4

gives f = 1. Similarly, at small Reynolds numbers, the
characteristic vortex stretching rate is h/uh, rather than λ/uh,
so that the exact turbulent production scales as

P ε
t ∼ ρ ε

τ
∼ μ u3

h

λ2 h
,

where τ = h/uh. Thus, f = 1, and Dε − P ε
t ∼ ρε2/K , and

no additional scaling factors are expected in Eq. (34). Profiles
of the exact and modeled difference Dε − P ε

t are shown in
Fig. 17, where it is evident that the model agrees well with the
DNS on average.

The buoyancy production and turbulent production and
dissipation models in Figs. 16 and 17 are shown using the
optimal coefficients Cε0(Reh) and Cε2(Reh), which are shown
in Fig. 18. The coefficient Cε0 varies before t/tc = 25.1,
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after which a late-time steady value Cε0 ≈ 1.43 is attained.
This is larger than the value Cε0 = 0.91 determined from an
a posteriori model evaluation [32] and Cε0 = 0.95 used to
model Rayleigh-Taylor and Richtmyer-Meshkov instability-
driven mixing [33]. However, these studies determined Cε0 a
posteriori that gave predictions in accord with experimental
data and assumed values of the turbulent Schmidt numbers,
whereas the present work uses the ε transport equation budget
to directly determine Cε0 for the first time.

The evolution of the coefficient for the combined turbulent
production and destruction of ε is also shown in Fig. 18,
where Cε2 ≈ 2.8 when the mixing enters the transitional
regime at t/tc ≈ 12.6. As the Reynolds number increases,
this coefficient decreases to Cε2 ≈ 2.26 at the latest time
(t/tc = 37.9), larger than the standard shear flow value 1.92.
Thus, the Reynolds number may need to be large enough that a
sufficient scale separation exists between the energy containing
and dissipative scales for Cε0 and Cε2 to asymptote. At the
latest time, the peak of the kinetic energy and dissipation
spectra are only separated by approximately one decade of
wave numbers [53]. Thus, Cε2 is a weak function of Reh until
a broader scale separation is achieved. Both Cε0 and Cε2 attain
maxima at t/tc ≈ 17.3 and decrease thereafter. Tables II and III
give the latest-time and time-dependent values of the similarity
coefficients Cε0 and Cε2, respectively.
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c and its similarity closure (34) at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

2. The heavy-fluid mass fraction variance dissipation rate
production and destruction terms

While similarity closures for the ε transport equation have
been utilized for a large variety of flows, the modeling of
the S and χ transport equations has been primarily relegated
to reacting flow and combustion applications [54–56]. The
production of S, physically represented by the entrainment of
unmixed fluid, is determined by the product of the turbulent

mass fraction flux ˜m′′
1w

′′ and the mean gradient ∂m̃1/∂xj .
However, the higher-order correlation of fluctuating mass
fraction gradients governing the destruction of S (represented
by molecular mixing of fluids across a species interface) does
not have a gradient-diffusion closure. Instead, the relationship
between the turbulent mechanical time scale τm = K/ε and the
scalar time scale τs = S/εS is used to algebraically (rather than
differentially) model the heavy-fluid mass fraction variance
dissipation rate

εS = 2 χ = 2 Cχ

ε

K
S , (35)

where Cχ is a dimensionless coefficient [5,55–58]. Requiring
the orders of magnitude to agree for the mass fraction variance

dissipation rate and its closure

χ ∼ f
ε

K
S ∼ f

ν m2
rms

λ2

gives f = Sc−1(λ/λm)2 = 1. In combustion applications, the
role of the mass fraction variance is played by the mixture
fraction variance. Using the time scale generalized by a
Schmidt-number-dependent contribution for scalars [56],

τm = 3 K

2 ε
+

√
ν

ε

ln Sc

2
(36)

instead of Eq. (35) results in the expression

εS = 2 Cχ

S

3 K
2 ε

+
√

ν
ε

ln Sc
2

. (37)

Estimating
√

ν/ε ln Sc/2 from the DNS values gives an
≈ 5% correction to (3/2)K/ ε, so that such a generalization
is only significant for large-Schmidt-number mixing (and the
modification of the coefficient of τm by 3/2 would only change
the value of Cχ ). The correction to (3/2)K/ ε for the Sc = 620
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FIG. 18. Evolution of optimal similarity coefficients Cε0 and Cε2

in the ε transport equation.

case [11] is ≈ 10−25% depending on the time and location
within the mixing layer.

Profiles of the mechanical and scalar time scales across
the mixing layer are shown in Fig. 19. Once the mixing
layer transitions into the nonlinear phase (t/tc � 12.6), the
mechanical time scale profiles are approximately constant
across the mixing layer (|z/h| < 0.5) for all times. Similarly,
the scalar time scale profiles are approximately constant across
the mixing layer only after the flow becomes transitional
at t/tc ≈ 17.3. The mechanical-to-scalar time scale ratio is
[15,56,59]

R = τm

τs

= 2
K

ε

χ

S
, (38)

where Eqs. (35) and (37) give Cχ = R/2 and Cχ =
R(3 + √

νε ln Sc/K)/2, respectively. Profiles of R are shown
in Fig. 20: R is approximately constant across the mixing
layer except near the layer boundaries, indicating that the
algebraic closure (37) is a good approximation for this flow
[60]. The profiles in Fig. 20 show a continuous increase in R

with time (and Reh). Many mixing models assume that this
ratio is constant, with a value R ≈ 2 [32,44,58]. At the latest
time in the simulation, R ≈ 0.9−1.3 across the layer, which
is considerably lower than the predicted values R ≈ 2.0−2.2
using a spectral relaxation model developed for reacting flows
[56]. At earlier times, the DNS gives 0.3 < R < 0.5.

Profiles of the exact and closed heavy-fluid mass fraction
variance destruction [using the algebraic model (37)],

DS = ρ εS = 2 ρ χ = 2 Cχ

ρ S

3 K
2 ε

+
√

ν
ε

ln Sc
2

, (39)
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FIG. 19. Profiles of the (a) mechanical time scale τm and (b) scalar
time scale τs at various dimensionless times.

are shown in Fig. 21. At early times (t/tc � 12.6), the model
exhibits adequate agreement with the DNS profiles. As the
mixing layer becomes more turbulent, the agreement im-
proves, as seen at t/tc = 25.1 and 37.9. The detailed structure
is not well captured by the model, except at t/tc = 25.1. Using
the model (35) instead gives similarly good agreement with the
data. The evolution of the coefficient Cχ (Reh) used to construct
the model profiles is shown in Fig. 25.

The fidelity of a RANS model may be improved by solving
a transport equation for χ rather than using an algebraic model
(35), as adopted in many reacting flow studies [30,54,56,61].
The χ transport equation (like that for ε) contains higher-order
correlations which cannot be closed by gradient diffusion, and
similarity must again be invoked. The mean production of χ
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is closed by [62,63]

P χ
m = −2 D ρ

∂m′′
1

∂xi

∂u′′
j

∂xi

∂m̃1

∂xj

= Cχ0
μt√
Sc

ε

K

(
∂m̃1

∂xj

)2

−→ Cχ0
μt√
Sc

ε

K

(
∂m̃1

∂z

)2

, (40)

where Cχ0 is a dimensionless coefficient and σm has been
absorbed into Cχ0. Using the estimate Dt ∼ νt , the Schmidt
number scaling follows from requiring the orders of magnitude
to agree for the exact mean production and its closure

P χ
m ∼ f ρ Dt

(
∂m̃1

∂z

)2
ε

K
∼ f

μ(�m)2 uh

λ2 h
,

which gives f = Sc−1(mrms/�m)(λ/λm) = (mrms/�m)/√
Sc. Profiles of the exact and modeled heavy-fluid mean mass

fraction variance gradient production are shown in Fig. 22.
The model agrees well with the exact profiles, including the
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complex variations in the spatial structure. The oscillations in
the model at later times are due to the gradient computed over
the wide mixing layer with low effective resolution.

The mean production P
χ
m represents only a small fraction

of the production of χ , as the turbulent production P
χ
t is the

dominant production mechanism. Similarly, the destruction of
χ by molecular processes is also attributed to the fine-scale
velocity fluctuations driving molecular mixing. In analogy
with the closure of Dε − P ε

t , the difference of the turbulent
destruction and production terms is modeled as [63,64]

Dχ − P
χ
t = 2 D

2
ρ

(
∂2m′′

1

∂xi∂xj

)2

+ 2 D ρ
∂m′′

1

∂xj

∂m′′
1

∂xi

∂u′′
j

∂xi

=
√

Ret ρ χ

(
Cχ2

χ

S
− Cχ3

ε

K

)
, (41)

where Cχ2 and Cχ3 are associated with Dχ and P
χ
t , respec-

tively. The
√

Ret scaling follows from requiring that the orders
of magnitude agree for the exact turbulent production and its

closure

P
χ
t ∼ f

ρ χ2

S
∼ f

ρ0 D2 m2
rms

λ4
m

,

so that f = ReλSc(λm/λ)2 ∼ √
Ret . Similarly, requiring the

orders of magnitude to agree for the exact turbulent destruction
and its closure

Dχ ∼ f
ρ χ ε

K
∼ f

μ D m2
rms

(λ λm)2

gives f ∼ √
Ret . Profiles of the modeled and exact P χ

t and Dχ

are shown in Figs. 23 and 24, respectively. While the modeled
DS shown in Fig. 21 is valid for t/tc > 5.13, the turbulent
production and destruction closures do not capture the flow
physics until the transition to a preturbulent nonlinear stage at
t/tc ≈ 12.6. Both models fail to reproduce the structure of the
DNS profiles at t/tc = 5.13. However, once turbulence ensues,
the P

χ
t and Dχ closures agree very well with the DNS.

The evolution of the similarity coefficients for the S and
χ transport equations is shown in Fig. 25. The coefficient
Cχ0 increases rapidly during the transient period, reaching a
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FIG. 23. Profiles of the heavy-fluid mass fraction variance dissipation rate turbulent production P
χ
t normalized by Pc = ρc/t2

c and its
similarity closure at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

maximum of ∼9.3 at t/tc ∼ 20, and then decreases to ∼6.8
at the latest times. Both Cχ and Cχ3 increase from small values
and nearly plateau beyond t/tc ∼ 20 at values ∼ 0.45 and
∼0.72, respectively. The coefficient Cχ2 decreases from a large
value and varies relatively slowly beyond t/tc ∼ 20, attaining
∼1.30 at the latest time. An implication of the time evolution
of Cχ is that the quantity governing the mixing rate χ is
not steady, as often assumed [33,44,58]. Instead, there is a
Reynolds number dependence over the flow evolution. Tables
II and III give the latest-time and time-dependent values of the
coefficients Cχ , Cχ0, Cχ2, and Cχ3 , respectively.

IV. DISCUSSION AND CONCLUSIONS

A 1152 × 760 × 1280 DNS dataset [2] corresponding to a
model of a water-channel Rayleigh-Taylor mixing experiment
[3] was used to obtain and optimize coefficients for a three-
equation K-ε-S or four-equation K-ε-S-χ RANS model that
generally provides a high degree of correlation between the
exact terms and their gradient-diffusion or similarity closures
a priori. In this data-driven approach, an L2 norm [see Eq. (4)]
minimization procedure between the exact and closed terms

was used to compute Reynolds number-dependent turbulent
Schmidt numbers and similarity coefficients. Correlation and
amplitude coefficients, r and a [Eqs. (5) and (7)], given in
the Appendix were computed for each pair of exact and
closed terms to quantify how well the shapes and the values
of the profiles agreed, respectively. Profiles were compared
at dimensionless times, t/tc = 5.13, 12.6, 25.1, and 37.9
[corresponding to Reḣ

h = (h dh/dt)/ν = 47, 352, 1620, and
2666], representative of the linear, nonlinear transitional,
strongly nonlinear, and weakly turbulent flow regimes [1,2,53].
The model profiles exhibited increasing intermittent spatial
variations as the Reynolds number increased, due to the
decreasing number of turbulent structures over which averages
are computed. Only terms contributing significantly to the
budgets of the transport equations were examined.

An extension of the Boussinesq model that includes contri-
butions from mean density and pressure gradients [Eq. (15)]
was shown to adequately predict the diagonal Reynolds
stresses. Gradient-diffusion models for the vertical turbulent
fluxes ρ ˜φ′′

αw′′ [Eqs. (25)–(27)] and pressure fluxes [Eqs. (31)
and (32)] in the turbulent transport terms were examined with
their corresponding turbulent Schmidt numbers determined
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FIG. 24. Profiles of the heavy-fluid mass fraction variance dissipation rate destruction term Dχ normalized by Dc = ρc/t2
c and its similarity

closure at (a) t/tc = 5.13, (b) 12.6, (c) 25.1, and (d) 37.9.

by the L2-norm minimization. The shapes and magnitudes of
the exact and closed turbulent fluxes were in good agreement
(modulo late-time oscillations in the models). The locations of
maxima and minima were also in good agreement, except at the
latest time. Over the times considered, σε and σχ exhibited the
most variation. On average, σρ , σK , σm, and σS varied the least
over the evolution. Following the transient in σε (t/tc � 17.3),
these coefficients varied from ≈ 0.07 to 0.15. In general, both
r and a increased rapidly to near unity over t/tc ≈ 2.6−17.3
and then slowly decreased to ≈ 0.8−0.95 for t/tc � 17.3,
indicating good agreement. The shapes and magnitudes of the
exact and closed pressure fluxes [27] were also in generally
good agreement, together with the locations of the maxima
and minima. The coefficients Cpu and Cε

pu changed sign at
t/tc ≈ 7.19 due to the qualitative change in the flux profiles at
this time [1]; Cpu attains a maximum at t/tc ≈ 12.6 and then
decreases to ≈ 0.22 at late time, while Cε

pu varies less with
time. Both r and a are small at early and intermediate times,
reaching 0.9–1.0 for t/tc � 17.3, indicating that the pressure
flux closure is more applicable to the large-Reynolds-number
regime. The use of variable turbulent Prandtl and Schmidt
numbers here is similar to the two-equation turbulence model

with variable turbulent Schmidt and Prandtl numbers for
scramjet supersonic mixing applications [65–67].

Similarity models for the production and destruction terms
(33)–(35) and (39)–(41) in the dissipation rate equations were
examined with their coefficients determined by the L2-norm
minimization. These models capture both the shapes and
values of the production terms P ε

b , P
χ
m , and P

χ
t quite well

(except for P
χ
t at the earliest time). Similarly, the shapes

and values of Dε−P ε
t , DS , and Dχ are also captured quite

well by the models (except for Dχ at the earliest time).
The models capture the maxima and other variations in the
profiles accurately, yielding r,a ≈ 1 for t/tc � 10.1. Both
Cε0 and Cε2 increase fairly rapidly to maximum values at
t/tc ≈ 17.3 and then decrease relatively slowly. Both Cχ and
Cχ2 increase from small values and nearly plateau beyond
t/tc ∼ 20. The coefficient Cχ0 increases rapidly, reaching a
maximum at t/tc ∼ 20, and then decreases. The coefficient
Cχ3 decreases from a large value and varies relatively slowly
beyond t/tc ∼ 20, attaining ∼1.30 at the latest time. This
study does not provide an optimized value of Cε1 in the
similarity model P ε

s = Cε1(ε/K)P K
s ; however, a standard

value Cε1 = 1.44 may be a reasonable choice. A summary
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FIG. 25. Evolution of optimal similarity coefficients for the S and
χ transport equations.

of the late-time coefficient values is given in Table II, and
the Reynolds-number-dependent coefficient values are given
in Table III.

The present study suggests a RANS model for small-
Atwood-number, intermediate-Reynolds-number Rayleigh-

TABLE II. Constant coefficients for the a priori optimized
K-ε-S-χ transport model for Rayleigh-Taylor turbulence proposed
in the present study. An asterisk (∗) or dagger (†) indicates that
the coefficient is slightly increasing or decreasing at late time,
respectively.

Coefficient Closure Value

Cμ Turbulent viscosity 0.09
C

(1111)
A Reynolds stress τ11 2.02†

C
(2222)
A Reynolds stress τ22 3.02∗

C
(3333)
A Reynolds stress τ33 2.63†

σρ Turbulent flux of ρ ′ 0.08∗

σK Turbulent flux of K 0.09∗

σε Turbulent flux of ε 0.10†

Cpu Pressure flux of K 0.23
Cε

pu Pressure flux of ε 0.10†

σm Turbulent flux of m′′
1 0.08∗

σS Turbulent flux of S 0.07∗

σχ Turbulent flux of χ 0.15∗

Cε0 Buoyancy production of ε 1.44
Cε2 Turbulent dissipation of ε 2.32†

Cχ Turbulent dissipation of S 0.51∗

Cχ0 Mean production of χ 6.77
Cχ2 Turbulent dissipation of χ 1.30†

Cχ3 Turbulent production of χ 0.72†

Taylor driven mixing based on the mean momentum and
heavy-fluid mass fraction equations,

ρ

(
∂

∂t
+ ũj

∂

∂xj

)
ũi = ρ gi − ∂p

∂xi

+ ∂σ ij

∂xj

− ∂τij

∂xj

, (42)

ρ

(
∂

∂t
+ ũj

∂

∂xj

)
m̃1 = ∂

∂xj

[(
μ

Sc
+ μt

σm

)
∂m̃1

∂xj

]
, (43)

coupled to the four turbulence equations,

ρ

(
∂

∂t
+ ũj

∂

∂xj

)
K = − νt

σρ ρ

∂ρ

∂xj

∂p

∂xj

− τij

∂ũi

∂xj

− ρ ε + ∂

∂xj

[(
μ + μt

σ ∗
K

)
∂K

∂xj

]
, (44)

ρ

(
∂

∂t
+ ũj

∂

∂xj

)
ε = −Cε0

ε

K

νt

σρ ρ

∂ρ

∂xj

∂p

∂xj

−Cε1
ε

K
τij

∂ũi

∂xj

− Cε2
ρ ε2

K

+ ∂

∂xj

[(
μ + μt

σ ∗
ε

)
∂ε

∂xj

]
, (45)

ρ

(
∂

∂t
+ ũj

∂

∂xj

)
S = 2

μt

σm

(
∂m̃1

∂xj

)2

− 2 ρ χ

+ ∂

∂xj

[(
μ

Sc
+ μt

σS

)
∂S

∂xj

]
, (46)

ρ

(
∂

∂t
+ ũj

∂

∂xj

)
χ = Cχ0

μt√
Sc

ε

K

(
∂m̃1

∂xj

)2

−
√

Ret ρ χ

(
Cχ2

χ

S
− Cχ3

ε

K

)

+ ∂

∂xj

[(
μ

Sc
+ μt

σχ

)
∂χ

∂xj

]
, (47)

with coefficient values given in Table II, σ ∗
K =

σK/(1 − Cpu) = 0.17, and σ ∗
ε = σε/(1 − Cε

pu) = 0.11. The
turbulent viscosity is (2) and the Reynolds stress is modeled
using the buoyancy-generalized model in Eq. (15). The pairs
(K,ε) and (S,χ ) provide a mixing model describing both
mechanical and scalar mixing, respectively. A three-equation
model in which χ is modeled algebraically by Eq. (35) pro-
vides a simpler alternative model. Such models are analogous
to those used in turbulent nonpremixed combustion, in which
the scalar progress variables are the mixture fraction variance
and its dissipation rate [54,55]. Equations (44) and (45) were
used in a reacting mixing layer study [9]. Equation (47) is
similar to the equation used in the context of a second-order
closure for momentum and passive scalar transport [5,15,68],
except that the gradient-diffusion model is used here for the
turbulent diffusion [63], rather than the generalized gradient-
diffusion model, and the shear production P

χ
s is neglected here.

A K-ε-T ′2-εT model (where T ′2 and εT are the temperature
variance and its dissipation rate) was formulated for turbulent
convection [69,70], and a K-ε-T ′2-εT model was used to
investigate turbulence effects in buoyant diffusion flames [71].
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TABLE III. Gradient-diffusion and similarity coefficients obtained from the optimization procedure applied to the turbulent fluxes and
higher-order correlations from the DNS.

t/tc Reh Ret (z = 0) C
(1111)
A C

(2222)
A C

(3333)
A σρ σK σε Cpu Cε

pu σm σS σχ Cε0 Cε2 Cχ Cχ0 Cχ2 Cχ3

0 4.4 0.0 0.00 0.00 0.00 0.31 7.14 >10 0 0 0.31 0.40 0.41 >10 1.06 0.01 0.42 >10.0 0
0.85 5.8 0.3 0.00 0.46 0.21 0.22 0.52 0.55 <−1 <−1 0.22 0.26 0.27 0.38 1.17 0.10 0.76 5.15 0.02
1.71 9.0 0.6 0.00 0.57 0.41 0.19 0.24 0.44 <−1 <−1 0.19 0.20 0.17 0.62 1.82 0.17 0.87 3.14 0.04
2.57 14 1 0.17 0.74 0.66 0.18 0.11 0.35 <−1 <−1 0.18 0.15 0.12 0.76 2.21 0.18 1.08 2.54 0.09
5.13 47 5 0.66 1.18 1.16 0.13 0.08 0.26 <−1 −0.87 0.13 0.10 0.13 0.99 2.42 0.15 2.33 2.71 0.24
7.18 104 13 0.87 1.33 1.42 0.11 0.10 0.30 −0.71 −0.1 0.11 0.08 0.19 1.09 2.44 0.14 3.63 2.42 0.35
10.1 222 38 1.12 1.48 1.86 0.09 0.12 0.34 0.30 0.08 0.09 0.08 0.29 1.26 2.54 0.18 5.06 2.23 0.55
12.6 352 62 1.21 1.77 2.28 0.08 0.11 0.25 0.49 0.12 0.08 0.07 0.25 1.46 2.66 0.24 6.18 1.93 0.66
14.9 508 69 1.33 2.61 2.90 0.08 0.09 0.17 0.44 0.14 0.08 0.06 0.17 1.65 2.74 0.31 7.48 1.73 0.70
17.3 706 76 1.70 4.77 3.59 0.07 0.08 0.12 0.31 0.15 0.07 0.06 0.13 1.70 2.80 0.38 8.95 1.69 0.72
20.0 948 90 2.57 5.16 4.30 0.06 0.08 0.10 0.24 0.17 0.06 0.05 0.10 1.61 2.77 0.40 9.34 1.78 0.71
22.5 1260 115 2.96 5.02 4.36 0.06 0.07 0.10 0.22 0.18 0.06 0.05 0.09 1.52 2.77 0.41 8.84 1.77 0.69
25.1 1620 154 2.88 4.42 4.00 0.06 0.07 0.09 0.21 0.19 0.06 0.06 0.09 1.45 2.66 0.42 8.19 1.71 0.71
27.4 1905 194 2.78 4.31 3.72 0.07 0.07 0.09 0.21 0.23 0.07 0.06 0.09 1.43 2.6 0.43 7.84 1.64 0.71
29.8 2190 260 2.60 3.49 3.42 0.07 0.08 0.09 0.22 0.13 0.08 0.07 0.09 1.42 2.59 0.45 7.45 1.54 0.72
32.5 2362 345 2.46 4.00 3.22 0.08 0.09 0.09 0.23 0.12 0.08 0.07 0.13 1.44 2.44 0.48 7.18 1.40 0.73
35.1 2507 414 2.02 3.02 2.63 0.08 0.09 0.10 0.23 0.10 0.08 0.07 0.15 1.44 2.32 0.51 6.77 1.30 0.72

An important conclusion of this study is that, contrary to the
implicit assumption of large Reynolds number and statistical
isotropy embodied in gradient-diffusion and similarity closure
models, very large Reynolds numbers are not required in
Rayleigh-Taylor flows to achieve good agreement with such
models. It was also demonstrated that standard gradient-
diffusion and similarity closures are remarkably accurate a
priori at late times, provided that turbulent Reynolds number
scalings are incorporated into the closures of the turbulent
production and destruction in the mass fraction variance
dissipation rate equation.

The model equations proposed here are likely to apply to
other Rayleigh-Taylor unstable flows, but the optimized model
coefficients are specific to the DNS data set analyzed here. For
example, the early-time calibration of the model embodies the
details of the initial conditions particular to the experiment

modeled using the DNS [2]. The late-time calibration is also
consistent with the relatively large value of α measured in
the experiment and will change if experiments with initial
spectra different from the ones considered here are modeled
(which may be consistent with a different late-time value of α).
While the coefficients vary most during early times when the
production-to-dissipation (and destruction) ratios are largest,
the closures nevertheless capture both the shape and magnitude
of the DNS profiles reasonably well. As in the case of subgrid-
scale model assessment for large-eddy simulation, good a
priori predictions of a model do not necessarily imply equally
good a posteriori predictions. The a priori optimized models
suggested here are investigated a posteriori in a companion
paper. The DNS data presented here can be used to motivate
the development of small-Reynolds-number modifications of
the closures to further improve their early-time predictions.

TABLE IV. Correlation coefficients r for the generalized Boussinesq, turbulent flux, and similarity models.

t/tc C
(1111)
A C

(2222)
A C

(3333)
A σρ σK σε Cpu Cε

pu σm σS σχ Cε0 Cε2 Cχ Cχ0 Cχ2 Cχ3

0 1.00 – 1.00 −0.18 0.12 0.02 – – −0.18 0.91 0.94 0.52 0.91 0.50 0.79 −0.12 –
0.85 0.25 −0.95 −0.72 0.49 0.56 0.94 0.59 0.017 0.49 0.95 0.99 0.70 0.48 0.69 0.90 −0.59 −0.62
1.71 −0.17 −0.96 −0.86 0.93 0.52 0.98 0.77 0.52 0.93 0.99 0.99 0.84 0.71 0.82 0.92 −0.80 −0.83
2.57 −0.87 −0.93 −0.69 1.00 0.78 0.96 0.83 0.76 1.00 1.00 0.97 0.91 0.88 0.94 0.94 −0.87 −0.87
5.13 −0.89 −0.50 0.74 0.99 0.99 0.93 0.83 0.90 0.99 0.98 0.81 0.98 0.99 0.89 0.98 −0.07 −0.86
7.18 −0.81 −0.52 0.86 0.98 0.98 0.88 0.63 0.89 0.98 0.95 0.72 0.98 1.00 0.86 0.99 0.51 −0.79
10.1 0.59 −0.59 0.88 0.94 0.98 0.90 0.54 0.73 0.94 0.90 0.68 0.98 1.00 0.88 0.95 0.74 0.33
12.6 0.85 0.41 0.89 0.87 0.98 0.96 0.84 0.37 0.87 0.93 0.85 0.96 0.99 0.91 0.96 0.93 0.96
14.9 0.92 0.53 0.94 0.90 0.98 0.96 0.86 0.72 0.90 0.95 0.93 0.97 0.98 0.92 0.96 0.97 0.99
17.3 0.93 0.48 0.95 0.95 0.97 0.97 0.83 0.83 0.95 0.96 0.93 0.98 0.99 0.96 0.99 0.98 0.99
20.0 0.94 0.43 0.95 0.93 0.92 0.96 0.85 0.91 0.93 0.97 0.96 0.99 0.98 0.98 0.98 0.98 0.99
22.5 0.91 0.37 0.92 0.89 0.93 0.93 0.89 0.95 0.88 0.97 0.97 1.00 0.98 0.99 0.98 0.98 0.99
25.1 0.81 0.38 0.88 0.86 0.94 0.93 0.89 0.97 0.86 0.96 0.95 1.00 0.98 0.99 0.96 0.98 0.99
27.4 0.77 0.39 0.88 0.87 0.93 0.94 0.89 0.97 0.87 0.93 0.97 1.00 0.98 0.99 0.97 0.97 0.99
29.8 0.80 0.36 0.91 0.91 0.90 0.95 0.89 0.98 0.91 0.95 0.97 1.00 0.98 0.98 0.95 0.98 0.99
32.5 0.86 0.43 0.94 0.93 0.87 0.95 0.87 0.97 0.93 0.96 0.85 0.99 0.96 0.96 0.97 0.96 0.99
35.1 0.74 0.47 0.84 0.86 0.87 0.95 0.87 0.98 0.86 0.88 0.85 0.98 0.96 0.94 0.93 0.96 0.99
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TABLE V. Amplitude coefficients a for the generalized Boussinesq, turbulent flux, and similarity models.

t/tc C
(1111)
A C

(2222)
A C

(3333)
A σρ σK σε Cpu Cε

pu σm σS σχ Cε0 Cε2 Cχ Cχ0 Cχ2 Cχ3

0 0.67 ∞ 0.67 0.74 0.07 0.19 – – 0.74 0.86 0.93 0.00 0.91 0.77 0.83 0.34 0.00
0.85 0.91 346 0.73 0.90 0.41 0.91 0.46 0.02 0.90 0.94 0.98 0.80 0.71 0.84 0.93 0.73 0.13
1.71 1.10 107 0.79 0.98 0.45 0.93 0.54 0.52 0.98 0.98 0.97 0.89 0.87 0.93 0.93 0.73 0.18
2.57 1.09 48.9 0.87 1.00 0.72 0.89 0.78 0.76 1.00 0.99 0.96 0.94 0.94 0.97 0.94 0.76 0.31
5.13 0.96 17.5 0.97 1.00 0.96 0.82 0.82 0.90 1.00 0.97 0.80 0.99 0.99 0.99 0.98 0.96 0.62
7.18 1.01 18.1 0.96 1.00 0.96 0.78 0.63 0.88 1.00 0.94 0.71 0.99 1.00 0.99 0.99 0.97 0.75
10.1 1.10 16.2 0.95 0.99 0.97 0.85 0.54 0.74 1.00 0.89 0.69 1.00 1.00 0.99 0.99 0.95 0.90
12.6 1.10 9.14 0.95 0.98 0.97 0.97 0.84 0.33 0.98 0.91 0.85 0.99 1.00 0.99 0.99 0.96 0.97
14.9 1.03 3.92 0.97 0.98 0.98 0.96 0.86 0.76 0.98 0.92 0.92 0.99 1.00 0.99 0.99 0.97 0.98
17.3 1.02 2.05 0.98 0.99 0.96 0.98 0.82 0.82 0.99 0.95 0.90 1.00 1.00 0.99 0.99 0.98 0.99
20.0 1.02 1.70 0.98 0.99 0.91 0.95 0.86 0.85 0.99 0.95 0.96 1.00 1.00 1.00 0.99 0.99 0.99
22.5 1.05 1.80 0.98 0.98 0.92 0.90 0.90 0.89 0.97 0.96 0.98 1.00 1.00 1.00 0.99 0.99 0.99
25.1 1.10 1.84 0.96 0.97 0.93 0.91 0.90 1.01 0.98 0.97 0.95 1.00 1.00 1.00 0.99 0.99 1.00
27.4 1.11 1.68 0.96 0.98 0.92 0.92 0.89 0.98 0.99 0.96 0.97 1.00 1.00 1.00 0.99 0.99 1.00
29.8 1.10 1.45 0.96 0.99 0.90 0.95 0.88 1.00 0.99 0.93 0.97 1.00 1.00 1.00 0.99 0.99 0.99
32.5 1.06 1.24 0.97 0.99 0.87 0.96 0.86 0.93 0.98 0.95 0.84 1.00 0.99 0.99 0.99 0.98 0.99
35.1 1.18 1.50 0.92 0.98 0.88 0.95 0.85 1.01 0.98 0.96 0.84 1.00 0.99 0.99 0.99 0.98 0.99
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APPENDIX: CORRELATION AND AMPLITUDE
COEFFICIENTS

The correlation and amplitude coefficients corresponding
to each gradient-diffusion and similarity closure model are
given at various times in Tables IV and V, respectively.
The generalized Boussinesq model (15) generally captures
the shape and magnitude of ũ′′2, ṽ′′2, and w̃′′2 well, with the
exception of the first time, as seen in the evolution of the
correlation and amplitude coefficients. Beyond t/tc ≈ 7.18,
r ≈ 0.75−0.94 for C

(1111)
A , r ≈ 0.37−0.58 for C

(2222)
A , and

r ≈ 0.84−0.95 for C
(3333)
A , showing that ũ′′2 and w̃′′2 correlate

with the DNS relatively well, while ṽ′′2 generally does not
correlate as well. Similar trends are seen in the amplitude
coefficients, with a ≈ 1.02−1.18 for C

(1111)
A , a ≈ 1.24−1.84

for C
(2222)
A , and a ≈ 0.92−0.98 for C

(3333)
A for t/tc > 7.18.

The turbulent flux closures shown in Figs. 7–11 show
favorable agreement beyond t/tc > 5.13, with r,a > 0.9 at
most times. At the latest times (t/tc � 29.8), r and a decrease,
which is attributable to the increase in oscillations in the

profiles and hence increased oscillations in the profile gradients
required to construct the closures. To reduce these oscillations,
a locally weighted, linear, least-squares regression [72,73] was
applied to a 51-point stencil to filter the mean profiles before
calculating gradients.

Before the early-time nonlinear transition at t/tc ≈ 12.6,
both pressure flux closures shown in Figs. 13 and 14 capture
the pressure transport given negative values of Cpu and
Cε

pu. During the nonlinear transition, t/tc ≈ 7.18−10.1 for
K and t/tc ≈ 10.1−14.9 for ε, the correlation between the
model and DNS substantially decreases. The model for the
pressure transport of K is adequate after the transition, while
the model for the pressure transport of ε exhibits better
agreement at t/tc > 25.1, due to the negligible flux of ε

away from the mixing layer boundaries that the model must
capture.

Similarity models for the buoyancy production and turbu-
lent production and destruction terms exhibit good agreement
with the DNS after t/tc = 5.13. The algebraic closure for
χ agrees well with the DNS over all times when using the
time-dependent values of Cχ . Similarly, P

χ
m shows excellent

agreement with the DNS over all Reynolds numbers. The tur-
bulent production and destruction terms poorly correlate with
the DNS until t/tc ≈ 12.6, after which turbulent fluctuations
become more important, and the closures accurately reflect the
flow physics.
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