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Effect of an external field on capillary waves in a dipolar fluid
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The role of an external field on capillary waves at the liquid-vapor interface of a dipolar fluid is investigated
using molecular dynamics simulations. For fields parallel to the interface, the interfacial width squared increases
linearly with respect to the logarithm of the size of the interface across all field strengths tested. The value of
the slope decreases with increasing field strength, indicating that the field dampens the capillary waves. With
the inclusion of the parallel field, the surface stiffness increases with increasing field strength faster than the
surface tension. For fields perpendicular to the interface, the interfacial width squared is linear with respect to
the logarithm of the size of the interface for small field strengths, and the surface stiffness is less than the surface
tension. Above a critical field strength that decreases as the size of the interface increases, the interface becomes
unstable due to the increased amplitude of the capillary waves.
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I. INTRODUCTION

An intrinsic aspect of liquid-vapor systems is the presence
of Goldstone fluctuations or “capillary waves” at the interface
[1,2]. For simple fluids without an external field, the amplitude
of the capillary waves is due to a balance between thermal
fluctuations and surface tension [3,4]. This energetic balance
results in the interfacial width squared �2 increasing loga-
rithmically with increasing interfacial length L, where �2 is
a measure of the capillary-wave amplitude. In dipolar fluids,
the introduction of an external field introduces new effects
on the interfacial structure, and a description of the capillary
waves becomes more complex. An external field on a dipolar
fluid results in an anisotropic fluid for which capillary-wave
theory requires the inclusion of the surface stiffness instead of
the surface tension [5–8]. The surface stiffness arises in the
Taylor series expansion of the surface tension as a function of
surface roughness. Capillary-wave theory for anisotropic fluid
remains similar to simple fluids but with the surface stiffness
replacing the surface tension.

While the effect of an external field on fluids is funda-
mentally important, theoretical treatment of interfaces in a
field have received only limited attention with almost no work
on capillary waves [9–13]. This is despite the importance
of capillary waves in the nanoscale structure of interfaces
[14–17]. A relation between the amplitude of the capillary
waves, the field strength, and surface stiffness is lacking, and
measuring these quantities experimentally is difficult, which
makes developing an empirical relation among these quantities
a challenge. To overcome this, we perform molecular dynamics
(MD) simulations to examine the effect of an external field on
the capillary waves in a simple dipolar fluid and investigate the
corresponding dependence of both the surface tension and the
surface stiffness on the direction and amplitude of an external
field. The dipolar system we treat can be considered either
electric or magnetic, and our results apply to both systems so
long as a purely dipolar model applies.

Dipolar fluids make up an important class of fluids in that
an external field can be used as an additional parameter to
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control the structure of the fluid. While the interfacial structure,
phase transitions, and normal field instability for dipolar fluids
in a field have been studied both experimentally [18–21]
and theoretically [9,12,22–35], a description of the capillary
waves’ role in these topics is lacking. Though progress has
been made using density functional theory (DFT) of simple
fluids to provide a connection between the Hamiltonian of the
system and standard capillary-wave theory [36–38], describing
the surface tension in the presence of a field and its relation
to the capillary waves remains nontrivial. This becomes even
more complex for a dipolar fluid in a field, where the surface
stiffness is necessary to describe the capillary waves and no
longer reduces to the surface tension.

In contrast to theoretical and experimental approaches,
molecular simulations of simple fluids provide a straightfor-
ward method to describe the relation of the surface tension and
capillary waves with direct determination of interface structure
and the surface tension. Previous simulation work for both
Lennard-Jones systems and atomistic water without an exter-
nal field have shown that the surface tension determined from
the amplitude of the logarithmic divergence of the capillary in-
terfacial width agrees with the thermodynamically calculated
surface tension [3,4]. In this work, however, we find that an
external field acting on a dipolar fluid alters the basic relation
connecting the capillary interfacial width and surface tension
as the surface tension is no longer equal to the surface stiffness.
From these simulations, we are able to assess trends in the sur-
face stiffness as a function of external field strength and their
relation to the capillary waves. Specifically, the effect on the
capillary waves depends strongly on the field direction relative
to the interface, as illustrated in Fig. 1. For fields parallel to the
interface, the amplitude of the capillary waves is reduced much
more than one would predict from the small increase in surface
tension with increasing field strength. While in a perpendicular
field, the capillary waves are enhanced for weak fields until
they become unstable at a critical field strength [9,39].

II. MODEL AND METHODS

Here we study the prototypical dipolar system, the Stock-
mayer fluid, which is described by Lennard-Jones (LJ)
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FIG. 1. (a) Snapshot of the Stockmayer liquid-vapor system with
E∗ = 0. Zoomed-in snapshots of the liquid-vapor interface with
(b) E∗

‖ = 2.2, (c) E∗ = 0, and (d) E∗
⊥ = 2.2. L∗ = 20 in all snapshots.

particles with fixed-point dipoles [40]. The LJ potential is

ULJ(r) = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6
]
, (1)

where σ is the LJ diameter, ε is the LJ energy parameter, and
rij = |ri − rj | is the interparticle distance between particles i

and j . The dipolar pair potential is given by

Udipole(r) = μi · μj

r3
ij

− 3
(μi · rij )(μj · rij )

r5
ij

(2)

and the interaction of the dipole with the external field is
−μi · E, where μi is the point dipole of particle i and E is
the external field. As the field is uniform, there is no net force
acting on the dipoles. The external field induces a torque on the
dipoles, which influences the dipoles to orient with the field
[35].

We use reduced LJ units throughout this work, which we
denote with a superscript asterisk. The LJ reduced temperature,
T ∗ = T/(ε/kB), and reduced dipole moment, μ∗ = μ/

√
εσ 3,

were each set equal to 1 in all simulations. The LJ reduced
surface tension and surface stiffness are γ ∗ = γ /(ε/σ 2) and
κ∗ = κ/(ε/σ 2), respectively. The reduced electric field is
E∗ = E

√
σ 3/ε, which we apply either parallel (E‖) or perpen-

dicular (E⊥) to the interface. The long-range dipole interaction
was treated using a lattice Ewald sum with tinfoil boundary
conditions and a two-dimensional (2D) slab correction [35].
In this work, the LJ dispersion (r−6) interaction is also treated
using an Ewald sum with a real-space cutoff of rc = 7.5σ

and precision 10−4, which eliminates effects of a finite cutoff
on the liquid-vapor coexistence curve and on the interfacial
properties. Full details of the simulation method and results
for the liquid-vapor coexistence curve in the presence of an
external field can be found in Ref. [35]. In this previous work it
was shown that the critical temperature for E∗ = 0 and μ∗ = 1
is T ∗

c = 1.415. Moreover, the addition of a field parallel to
the interface increases T ∗

c , while fields perpendicular to the

interface reduce T ∗
c . For example, with μ∗ = 1, T ∗

c = 1.423
for E∗

‖ = 2.0, while T ∗
c = 1.352 for E⊥ = 2.0. Therefore,

T ∗ = 1 is sufficiently far from the critical temperature even in
the presence of strong external fields. There is no significant
ordering in the liquid phase in the absence of a field for
T ∗ = 1 [35].

To study the dependence of the amplitude of the capillary
waves on the interfacial area of the liquid-vapor interface, we
vary the length of the simulation cell parallel to the interface,
Lx = Ly = L. The length of the simulation cell perpendicular
to the interface was held constant at L∗

z = 100. A snapshot
of the liquid-vapor system for L∗ = 20 and E∗ = 0 is shown
in Fig. 1(a). For L∗ = 10, the number of particles was N =
2610, and N increases linearly with interfacial area. The largest
system studied, L∗ = 80, contained N = 167 040 particles.
Larger systems were computationally prohibitive due to the
large number of particles and expense of the Ewald summation.
For each value of L, that system was equilibrated at zero field
for 2000τ , where τ = σ

√
(m/ε) is the LJ unit of time and m

is the mass of a particle. The simulations were then run for
an additional 10 000τ for L � 40 and an additional 4000τ for
L > 40.

The surface tension is calculated as the integral difference
between the components of the pressure tensor that are normal
and tangential to the interface P⊥(z) and P‖(z),

γ = 1

2

∫ ∞

−∞
dz[P⊥(z) − P‖(z)]. (3)

For the geometry of our system [shown in Fig. 1(a)], the
diagonal components of the pressure tensor P can be used
to calculate the surface tension,

γ = Lz

2
[〈Pzz〉 − (〈Pxx〉 + 〈Pyy〉)/2], (4)

where the interface is normal to the z direction and the factor
of 1/2 accounts for the two interfaces. The components of the
pressure tensor are calculated every 0.1τ and averaged over
the entire run. In the absence of an external field, a second
method to calculate the surface tension is from the amplitude
of the logarithmic divergence of the interfacial width [1,2,41].
The root of this derivation is is based on the increase in the
surface area of the interface due to fluctuations. Accordingly,
the Hamiltonian of the interface is a product of the surface
tension and the interfacial area defined by

H (z0) = γ

∫
dxdy

⎡
⎣

√
1 +

(
∂z0

∂x

)2

+
(

∂z0

∂y

)2

− 1

⎤
⎦, (5)

≈ γ

2

∫
dxdy|∇z0(x,y)|2 (6)

where z0(x,y) is the mean location of the interface in the z

direction. Rewriting Eq. (6) in Fourier space, the Hamiltonian
is now given by

H (z0) ≈ γ

2

∫
dqq2|z0(q)|2, (7)

063106-2



EFFECT OF AN EXTERNAL FIELD ON CAPILLARY . . . PHYSICAL REVIEW E 96, 063106 (2017)

where q is the 2D vector in Fourier space. The mean-square
amplitude for each excitation mode of the interface is given by

〈|z0(q)|2〉 = kBT

4π2γ q2
(8)

due to the equipartition theorem. Taking the integral over all
possible wavelengths q results in

〈|z0|2〉 = kBT

4π2γ

∫ qmax

qmin

dq
q2

, (9)

= kBT

2πγ
ln

(
L

B0

)
, (10)

where qmin = 2π/L, qmax = 2π/B0, and B0 is a characteristic
short distance cutoff. Equation (10) represents the broadening
of the interfacial width due to capillary-wave fluctuations. If it
is assumed that the capillary-wave fluctuations are decoupled
from the intrinsic interfacial width, the total interfacial width
can be written as

�2 = �2
0 + kBT

2πγ
ln

(
L

B0

)
, (11)

where �2
0 is the intrinsic interfacial width.

However, with the inclusion of an external field the
orientational order in both the vapor and the liquid phases
are no longer isotropic [5]. This leads to the emergence of a

surface stiffness defined by

κ = γ

∣∣∣∣
θ=0

+ d2γ

dθ2

∣∣∣∣
θ=0

, (12)

where θ is the inclination angle defined with respect to the
plane of the interface. If we assume the electric field con-
tribution to the interfacial Hamiltonian is embedded into the
surface stiffness, γ is simply replaced with κ in Eqs. (5)–(11)
such that the total interfacial width is now given by

�2 = �2
0 + kBT

2πκ
ln

(
L

B0

)
. (13)

To calculate �, the density profile through the interface was
averaged over the x-y plane, ρ(z), and fit to an error function
erf[z/(�

√
2)]. Previous work has shown that for an LJ fluid

with no external field, κ reduces to γ [3].

III. RESULTS AND DISCUSSION

Previously, we showed that the structural order in the
dipoles in the two phases is different and depends on the field
direction [35]. Related is the different boundary conditions for
the parallel and perpendicular fields at the liquid-vapor inter-
face because of the dielectric discontinuity there. For the vapor
phase, the order parameter α = 〈cos θ〉, where cos θ = μ̂ · Ê,
is the same for either field direction. At E∗ = 1.0, μ∗ = 1.0,
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FIG. 2. (a) Interfacial width squared �2 as a function ln(L∗) for varying external field strengths applied parallel to the interface, E∗
‖ , for

E∗
‖ values where E∗

‖ = 0 (black circles), E∗
‖ = 0.5 (red squares), E∗

‖ = 1 (blue diamonds), E∗
‖ = 2 (green upward triangles), E∗

‖ = 4 (orange
downward triangles), and E∗

‖ = 10 (violet sideways triangles). The lines are linear fits of the data. (b) Slope of �2 vs ln(L∗) as a function of
E∗

‖ . The inset emphasizes the plateau of the slope at very high E‖ values. (c) γ ∗ (black circles) and κ∗ (red squares) as a function of E∗
‖ .
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and T ∗ = 1.0, α is about 0.3 for the vapor phase. For the field
parallel to the interface, α is larger in the liquid phase (0.54
for the case given above). In contrast, α is smaller for the field
perpendicular (0.09 for the same case). These liquid values are
related to the boundary conditions. For the parallel direction,
the field is continuous and α has the same value as the bulk
liquid at the same E∗. For the perpendicular direction, the
displacement field is continuous and α has the same value as
the bulk liquid at the same E∗/ε.

We first consider the parallel field case. Figure 2(a) shows
�2 as a function of ln(L∗) for varying values of E∗

‖ , where the
error bars are the standard deviation of �2. Interestingly, �2

increases linearly with ln(L∗) across a large range of E∗
‖ , as

shown by the linear fits to the data. From these trends, we can
conclude that the logarithmic dependence in Eq. (13) occurs in
a parallel field and that any nonlogarithmic corrections from
the field are negligible. However, the external field has a strong
effect on the amplitude of ln(L∗) with respect to �2. From the
data in Fig. 2(a), we find the amplitude of the logarithmic term
given by the slope of the fit lines decreases with increasing
E∗

‖ , as shown in Fig. 2(b). The inset of Fig. 2(b) shows that
at very high E∗

‖ the slope becomes nearly flat and the slope’s
dependence on E∗

‖ plateaus. While we can analyze the trend
in the slope of �2 as a function of ln(L∗), decoupling the
dependence of the external field strength is a nontrivial task
without a theoretical basis for its functional form. However,
using Eq. (4) to determine γ and Eq. (13) to determine κ ,
we find that the difference between κ and γ increases with
increasing E∗

‖ , as shown in Fig. 2(c). The dominant effect in
the change of the surface tension as a function of the external
field is a result of the external field affecting the dipole-dipole
interaction described by Eq. (2). Thus, Fig. 2(c) demonstrates
that the reduction of the capillary waves with E∗

‖ is not solely
a result of the increase in the surface tension.

While fields parallel to the interface reduce fluctuations in
the interfacial width, fields perpendicular to the interface have
the opposite effect. In contrast to the parallel field case, the
surface tension decreases with E∗

⊥ and γ > κ . Similar to the
parallel field case, the difference between γ and κ becomes
larger with field strength. For small E∗

⊥, the interfacial width
can be calculated and examined as a function of E∗

⊥. Figure 3
shows that the interfacial width increases linearly with ln(L∗)
for E∗

⊥ = 0 and 0.5. However, the linear relation breaks down
for large E∗

⊥ and large L∗. Figure 3 shows deviations from
the linear dependence in �2 for E∗

⊥ = 1.0 for large L∗. The
deviation is an indication of the onset of an instability. This
analysis was not done for larger E∗

⊥ because of this instability.
The perpendicular field orients the dipoles at the interface
perpendicular to the interface, which cluster together and form
protrusions, as shown in Fig. 1(d).

The emergence of these protrusions depends on both
E∗

⊥ and L∗. Figure 4 shows visualizations for varying E∗
⊥

and L∗ at t = 10 000τ . For E∗
⊥ = 1.0, large protrusions are

not visible for L∗ � 40. Increasing the field to E∗
⊥ = 1.6

results in clear protrusions appearing at L∗ = 40, while
the interfaces remain smooth for L∗ = 20. Increasing E∗

⊥
even further to 2.2, protrusions now occurs for L∗ = 20. A
complete instability appears at E∗

⊥ = 2.2 for L∗ = 40, where
the interfaces completely rearrange so that they are parallel to
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FIG. 3. Interfacial width squared as a function of ln(L∗) for
varying E∗

⊥ for E∗
⊥ = 0 (black circles), E∗

⊥ = 0.5 (red squares),
E∗

⊥ = 1 (blue diamonds). The lines are linear fits to the data. For
E∗

⊥ = 1, the solid line is a linear fit for L∗ � 40.

the field. The trends in Fig. 4 demonstrate that above a critical
value in E∗

⊥, the interface becomes unstable.
An estimate of the critical value of E∗

⊥ where the onset
of protrusions occur as a function of L∗ is shown in Fig. 5.
We define the interface to be unstable when the interface
shows notable protrusions after t = 4000τ (e.g., Fig. 4 at
L∗ = 20 and E∗

⊥ = 2.2), whereas the interface is stable if the
protrusions are absent (e.g., L∗ = 10 in Fig. 4). Based on these
definitions, an approximate (upper bound) phase boundary
has been determined for the critical E∗

⊥ as a function of L∗.
Figure 5 shows that the critical E∗

⊥ decreases as L∗ increases.
For larger L∗, protrusions with larger wavelengths are possible,
lowering the critical value of E∗

⊥. These results suggest an
alternative method to determine the critical E∗

⊥ rather than by
using the point where the deviation from linearity of �2 vs
ln(L∗) occurs (Fig. 3). In the more quantitative analysis of
Fig. 3, the critical value is E∗

⊥ ≈ 1.0 for L∗ = 40
√

2, while
from visual inspection (Fig. 5), E∗

⊥ ≈ 1.3. The visual method
requires much less data as a function of L∗ and gives similar
results.

In conclusion, we have examined capillary waves at the
liquid-vapor interface for a prototypical dipolar system, the

FIG. 4. Visualization of dipolar liquid-vapor system for varying
E∗

⊥ and L∗ values. Each snapshot is at t = 10 000τ . Every atom is
colored red or blue if cos θ is below or above 0.3, respectively, where
θ is the angle between the dipole moment and the z axis. cos θ = 1
means the dipole is aligned parallel with the field, while cos θ = 0
means the dipole is aligned perpendicular to the field.
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FIG. 5. Stability map of liquid-vapor phase for external electric
field applied perpendicular to the interface, E∗

⊥, as a function of the
interface length, L∗. The red ×’s and blue circles denote unstable
and stable state points, respectively. The black line is an approximate
phase boundary of the critical value of E∗

⊥ as a function of L∗.

Stockmayer fluid, in an external field. The addition of an
external field requires a description in terms of the surface
stiffness rather than the surface tension to describe the ampli-
tude of the capillary waves. Both the surface stiffness and the
capillary waves depend strongly on the field direction, parallel
vs perpendicular. When the field is parallel to the interface,

the width of the interface decreases, and both the surface
stiffness and surface tension increases. However, the surface
stiffness increases much faster with increasing field strength
than the surface tension. This results in a strong reduction
of the capillary waves. The behavior for the perpendicular
external field is fundamentally different. Not only does the
interfacial width increase, but the system becomes unstable
for sufficiently large field strength. At increasingly high field
strengths, the interface reorients parallel to the field direction
for the liquid film thickness studied in the simulations. Overall,
this work provides new results to be verified experimentally
and provides a new relation to be derived theoretically.
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