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Numerical study of two disks settling in an Oldroyd-B fluid: From periodic interaction to chaining
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In this article, we present a numerical study of the dynamics of two disks sedimenting in a narrow vertical
channel filled with an Oldroyd-B fluid. Two kinds of particle dynamics are observed: (i) a periodic interaction
between the two disks, and (ii) the formation of a two-disk chain. For the periodic interaction of the two disks,
two different motions are observed: (a) the two disks stay far apart and interact periodically, and (b) the two
disks interact closely and then far apart in a periodic way, like the drafting, kissing, and tumbling of two disks
sedimenting in a Newtonian fluid, due to a weak elastic force. Concerning the formation of a two-disk chain
occurring at higher values of the elasticity number, either a tilted chain or a vertical chain is observed. Our
simulations show that, as expected, the values of the elasticity and Mach numbers are the determining factors
concerning the particle chain formation and its orientation.
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I. INTRODUCTION

The motion of particles in non-Newtonian fluids is not only
of fundamental theoretical interest, but it is also of importance
in many applications to industrial processes involving particle-
laden materials (see, e.g., [1,2]). For example, during the
hydraulic fracturing operation used in oil and gas wells,
suspensions of solid particles in polymeric solutions are
pumped into hydraulically induced fractures. The particles
must prop these channels open to enhance the rate of oil
recovery [3]. During the shut-in stage, proppant settling is
pronounced when the fluid pressure decreases due to the end of
the hydraulic fracturing process. The study of a particle chain
during settling in a vertical channel can help us to understand
the mechanism of proppant agglomeration in narrow fracture
zones. There have been works on the simulation of the
sedimentation of particles in Oldroyd-B fluids in, e.g., [4-10],
with additional references being given in the review article in
[11]. Feng et al. [4] studied numerically the two-dimensional
sedimentation of circular particles in an Oldroyd-B fluid:
these authors obtained chains of two particles aligned with
the direction of sedimentation, which are precisely the kind
of microstructures observed in actual experiments [12]. In
[6], an arbitrary Lagrangian-Eulerian (ALE) moving mesh
technique (see [S]) was used to investigate the cross-stream
migration and orientations of elliptic particles in Oldroyd-B
fluids (with and without shear thinning). Huang et al. found
that the orientation of elliptic particles depends on two critical
numbers, namely the elasticity and Mach numbers. In [7], a
fictitious domain—distributed Lagrange multiplier (FD-DLM)
method for the numerical simulation of particulate flow of
Oldroyd-B fluids was developed: chains of two particles
aligned with the direction of sedimentation were obtained, and
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in the case of multiple circular particles, many two-particle
chains were observed next to the channel walls. Yu et al.
[8] applied also a FD-DLM-based methodology to study
disk interactions in Oldroyd-B fluids, with preliminary results
concerning the attraction of two disks being reported. They
obtained that two disks attract each other and form either a
horizontal chain or a tilted chain quickly while settling in
an Oldroyd-B fluid instead of repelling each other as in a
Newtonian fluid. Later on, Shao and Yu [9] used an improved
FD-DLM method to show that the stable configuration is the
one in which the particles are aligned parallel to the flow
direction when the Mach and elasticity numbers are in the
range identified in [6].

In this article, we have investigated further the formation
and orientation of two-disk chains versus the values of the
elasticity and Mach numbers via direct numerical simulation.
Our results agree with those on the settling of an elliptic
particle in Oldroyd-B fluids obtained in [6]. This kind of
particle behavior is not surprising since these two-particle
chains behave as elongated bodies, despite the fact that the
particles are loosely coupled. However, we observed also
that if the elasticity number is sufficiently small, there are
two new dynamical regimes, namely (i) the two disks stay
far apart and their interaction is periodic, and (ii) the two
disks draft, kiss, and break away periodically. Concerning
the wall effect on the particle chains, we found that the
formation of vertical chains can be obtained in a narrower
channel for lower elasticity numbers. Also, it is easier for
two disks of slightly different sizes to form a chain when
comparing to the case of two disks of the same size. But when
comparing with the dynamics of two rigidly connected disks
sedimenting in an Oldroyd-B fluid, we have obtained that, as
expected, the critical elasticity number for having a vertical
chain of two disks is much higher than that for two rigidly
connected disks since the chain of two disks is not really a
long rigid body. The article is organized as follows. In Sec. II,
we present a FD-DLM formulation for Oldroyd-B particulate

©2017 American Physical Society


https://doi.org/10.1103/PhysRevE.96.063103

TSORNG-WHAY PAN AND ROLAND GLOWINSKI

r

FIG. 1. An example of a two-dimensional flow region with four
circular particles.

flows, and we briefly discuss its space-time discretization by a
methodology combining operator-splitting and finite-element
methods. In Sec. III, we present and comment on the results
of the numerical experiments simulating the sedimentation of
two disks.

II. MATHEMATICAL FORMULATIONS AND NUMERICAL
METHODS

Although numerical methods for simulating particulate
flows in Newtonian fluids have been very successful (see,
e.g., [13—-15]), numerically simulating particulate flows in
viscoelastic fluids is a much more complicated and challenging
issue. One of the difficulties (see, e.g., [16,17]) concerning
the simulation of viscoelastic flows is the breakdown of the
numerical methods. It is widely believed that the lack of a
positive-definiteness-preserving property of the conformation
tensor at the discrete level during the entire time integration
is one of the reasons for this breakdown. To preserve the
positive-definiteness property of the conformation tensor,
several methods have been proposed recently; see, e.g.,
[18-21]. In particular, Lozinski and Owens [21] factored the
conformation tensor to get 0 = AA’ and then wrote down the
equations for A approximately at the discrete level, forcing the
positive definiteness of the conformation tensor. The methods
developed in [21] have been applied in [10] together with the
FD-DLM method through operator splitting for simulating
particulate flows in Oldroyd-B fluids. In this article, we present
the results of numerical experiments concerning the simulation
of two disks settling in an Oldroyd-B fluid; these results have
been obtained using the numerical methods developed in [10].

A. Governing equations and their FD/DLM formulation

Following Ref. [10], we will address first the models and
computational methodologies to be used in this article. Let
Q2 be a bounded two-dimensional (2D) region and let I" be
its boundary. We suppose that €2 is filled with a viscoelastic
Oldroyd-B fluid of density p; and contains N moving rigid
particles of density p; (see Fig. 1). Let B(t) = Uf\’:lBi(t),
where B;(t) is the ith rigid particle in the fluid for i =
1,...,N. We denote by dB;(t) the boundary of B;(t). For
some T > 0, the governing equations for the fluid-particle
system are

0

,Of(a—ltl + - V)u) =prg—Vp+2uV -D()
+V.a? inQ\B@), t €(0,T),

(1)
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V.u=0 in Q\B(), r € (0,7), 2)
u(x,0) = up(x), Vx € Q\B(0)withV -uy = 0, 3)
u=g oan(O,T)with/go-nszo, “4)
r
— 1
u=V,;,+w Gx ,VxedBi(t),i=1,...,N, %)

%€ -V)C—(Vu)C - C (Vuy

ot
= —%(C —1) in Q\B(), 1 € (0,T), (6)

1
C(x,0) = Co(x), x € Q\B(0), 0
C=C.(t) onI~ (1), 8)

where u is the flow velocity, p is the pressure, g denotes gravity,
D(u) = [Vu + (Vu)']/2 is the rate of deformation tensor, u =
n1ra /A1 is the solvent viscosity of the fluid, n = n; — w is the
elastic viscosity of the fluid, n; is the fluid viscosity, A, is the
relaxation time of the fluid, A, is the retardation time of the
fluid, n is the outer normal unit vector at I', and I"~(¢) is the
upstream part of I at time 7. The polymeric stress tensor o”
in (1) is given by o” = Ail(C —I), where the conformation
tensor C is symmetric and positive-definite (see [24]), and L is
the identity tensor.

In (5), the no-slip condition holds on the boundary of
the ith particle, V,; is the translation velocity, w; is the
angular velocity, G; = {G; 1,G;,}" is the center of mass, and

finally G_,A))(L = {—(y — Gi1),(x — G; )} for the rotation with
respect to the mass center G; (for the 2D cases considered
in this article). The motion of the particles is modeled by
Newton’s laws:

dv,;
Mp,i d—? =Mp,ig+Fi+F;’ (9)
da)i P
Ip,i? =F;, (10)
dG;
o= Vi, (11)
Gi(0)=G), V,;0=V),. w0)=0) (2

for i =1,...,N, where in (9)—(12), M,; and I,; are the
mass and the inertia of the ith particle, respectively, F;
is a short-range repulsion force imposed on the ith par-
ticle by other particles and the wall to prevent particle-
particle and particle-wall penetration (see [13] for details),
and F; and F/ denote the hydrodynamic force and the
associated torque imposed on the ith particle by the fluid,
respectively.

To avoid frequent remeshing and the difficulties associated
with mesh generation on a time-varying domain when the
particles are very close to each other (a very common
situation in three dimensions), we have used a fictitious
domain approach extending the governing equations to the
entire domain taken in [7,13]. The basic idea of the fictitious
domain method is to imagine that the fluid fills the entire
space inside as well as outside the particle boundary. The
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fluid-flow problem is then posed on a larger domain (the
“fictitious domain”). The fluid inside the particle boundary
must exhibit a rigid-body motion. This constraint is enforced
using the distributed Lagrange multiplier, which represents
the additional body force per unit volume needed to maintain
the rigid-body motion inside the particle boundary, much
like the pressure in incompressible fluid flow, whose gra-
dient is the force required to maintain the constraint of
incompressibility.

The method of numerical solution is actually a combination
of a distributed Lagrange-multiplier-based fictitious domain
method and an operator-splitting method. For space discretiza-
tion, we use P;-iso-P,, P;, and P; finite elements for the
velocity field, conformation tensor, and pressure, respectively.
The details of the numerical methods for simulating the
motion of disks sedimenting in Oldroyd-B fluids in a vertical
two-dimensional channel are given in [10]. Applying the Lie
scheme to the discrete analog of the DLM-FD formulation
obtained from (1)-(12), we have used a seven-stage operator-
splitting scheme reported in [ 10] to obtain the numerical results
reported here: In Stage 1, we use a Neumann preconditioned
Uzawa—conjugate-gradient algorithm to force (in an L? sense)
the incompressibility condition, V - u = 0, as discussed in [10]
and [14]. In Stage 2, we combine two advection steps, one
for u and one for C; both are solved by a wavelike equation
method (see [14] and [25]), which is explicit and does not
introduce numerical dissipation. In this second stage, we have
transformed the advection step for C into one for its Cholesky
factor A (as advocated by Lozinski and Owens in [21]), thus
taking advantage of the relation C = AA’. In Stage 3, we
solve a diffusion step for u and then a step taking into account
the remaining operator in the transformed evolution equation
verified by A. In Stage 4, we update the position of the disk
mass center G. In Stage 5, we force the rigid-body motion of
the particle and update V and w using a conjugate gradient
method described in, e.g., [10] and [14], and then impose the
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condition C = I inside the particle. In Stage 6, we correct the
position of G via the updated V and w. Finally, Stage 7 is a
diffusion step for the velocity, driven by the updated polymeric
stress tensor.

III. NUMERICAL RESULTS AND DISCUSSION

In the following discussion, the particle Reynolds number

isRe = pfn—Ud and the Deborah number is De = %Y where U

1 d >’
is the averaged terminal velocity speed of disks, and d is the
disk diameter. The important combinations of Re and De are,

as in [6],
Mach number : M = v/DeRe = U/(nl/klpf)l/z,

elasticity number : E = De/Re = A, m/d2pf.

The Mach number is the ratio of the terminal velocity to the
shear wave speed ¢ = (11/A1py)"/?. The elasticity number
depends on the material parameters and the particle size, but
it is independent of flow. It is the ratio of the elastic and
inertia forces in the fluid. As discussed in [6] and [26], when
the elasticity number E is larger than a critical value [O(1)],
a long body settling in Oldroyd-B fluids turns its broadside
parallel to the flow direction. However, for elasticity numbers
E less than the critical value, this long body falls steadily in a
configuration in which the axis of the long body is at a fixed
angle of tilt with the horizontal direction. Also for larger Mach
numbers, the long body flips into broadside upon falling again.
With regard to the dynamics of two disks settling in Oldroyd-B
fluid, these two disks can be viewed as a long body if they
form a chain. We intend to study the equilibrium orientation
of this two-disk chain, acting as a long body, by varying the
elasticity number. However, since for E small enough the two
disks may stay separated (no chain formation) ultimately, it
is interesting to investigate how the two disks interact and

0 ‘
h = 1/128, At = 0.0004
-0.02 ——h=1/148, At = 0.0003 | |
— — h=1/182, At = 0.0002
-0.04 + ]

-0.06 | _ .

-0.08

-0.12
-0.14

-0.16

-0.18

-0.2 :
0 150 200

FIG. 2. Histories of the two-disk horizontal velocity (left) and vertical velocity (right) obtained by different mesh sizes and time steps for

ps = 1.0025 and E = 0.8.
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FIG. 3. Positions of the two disks (left three) and trajectories of their centers (right) for p; = 1.0025 and E = 0.8.

FIG. 4. Positions of the two disks interacting apart (left four) and the trajectories of their centers (right) for p, = 1.0025 and E = 0.16.
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FIG. 5. Positions of the two disks forming a tilted chain (left four) and the trajectories of their centers (right) for o, = 1.0025 and E = 0.256.
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FIG. 6. Positions of the two disks forming a vertical chain (left four) and the trajectories of their centers (right) for o, = 1.0025 and
E =0.32.
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how close their interaction is to that of two disks settling
in Newtonian fluid (exhibiting thus the drafting, kissing, and
tumbling phenomenon [22]), other possible outcomes being
time-periodic or chaotic interactions, as shown in [23]. We
have used the numerical method developed in [10] to obtain
the numerical results reported in this section.
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In this article, we have considered the settling of two disks
in a vertical channel of infinite length filled with an Oldroyd-B
fluid, as in [10]. We assume in this section that all dimensional
quantities are in CGS units. The computational domain is
©Q = (0,1) x (0,6) initially and then moves vertically with the
center of mass of the lowest disk (see, e.g., [27] and [28]
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FIG. 8. Trajectories of the two-disk centers for p, = 1.0015 at E = 0.1393, 0.2424, 0.4848, and 0.12606 (from left to right).
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FIG. 9. Phase diagram (left) and associated values of the Mach number (right) for two disks interacting in a narrow vertical channel for

ps = 1.0015, 1.0025, 1.0035, and 1.005.

and references therein to adjust the computational domain
according to the particle position). The two disk diameters
are d = 0.125 and the initial positions of the disk centers are
at (0.35, 2.5) and (0.65, 2.5), respectively. The disk density
ps 18 1.0025 for the first two cases considered in this section,
the fluid density o, being 1. The fluid viscosity n; is 0.025.
The relaxation time A; varies between 0.01 and 1.0, and the
retardation time A, is A;/4. Then the associated elasticity
number is £ = 1.6A,. To validate the numerical methods, the
case of two disks sedimenting in a vertical channel for the
relaxation time A; = 0.5 has been tested. In Figs. 2 and 3, the
velocity and center trajectories of the two disks show that the
convergence takes place when reducing the mesh size and time
step. The positions of the two disks shown in Fig. 3 present
a typical interaction, i.e., drafting, kissing, and chaining, for
two disks settling in viscoelastic fluid.

For the following numerical results, the mesh sizes for
the velocity field, conformation tensor, and pressure are
h =1/128,1/128, and 1/64, respectively, the time step being
0.0004. In Figs. 4, 5, and 6, three typical motions of two disks
settling in an Oldroyd-B fluid are presented. For £ = 0.16
(A1 = 0.1), the two-disk interaction dynamics is characterized
by its periodic motion (of period 55.25 time units) as in Fig. 4,
which is similar to the one, obtained in [23], for the motions
of two disks settling in a Newtonian fluid. For a slightly higher
value, E = 0.256 (A; = 0.16), the two disks form a chain with
a stable tilt angle 0f 29.39 degrees (see Fig. 5), which is similar
to the behavior of a long body when the elasticity number is
less than the critical value for turning its broadside parallel to
the flow direction. For £ = 0.32 (A, = 0.2), we observed that
the two disks form a stable vertical chain as shown in Fig. 6,
which indicates that the critical value of the elasticity number
for having a vertical chain is somewhere between 0.256
and 0.32.

To find more information about the two-disk dynamics, we
have varied the relaxation time A; (the elasticity number) from
0.01 to 1 (0.016 to 1.6). For E between 0.016 (A; = 0.01)
and 0.24 (A; = 0.15), the two disks stay separated and their
interaction is periodic. In phase space, based on the distances
between each disk mass center and the left sidewall, the
attractor is a limit cycle for each value of the elasticity
number shown in Fig. 7. At E = 0.208 (A; = 0.13), the limit
cycle shrinks to about a point. Actually another kind of limit

cycle occurs for 0.208 < E < 0.2288 (see Fig. 7). But for
0.2304 < E < 0.24, the two disks settle without noticeable
periodic motion, and they remain separated at a constant
distance. The gap between the two disks decreases when
increasing the value of E from 0.2304 to 0.24. For E = 0.256
(A1 = 0.16) and 0.288 (A, = 0.18), the two disks form a chain
with a stable tilt angle of 29.69 and 82.33 degrees, respectively
(see Fig. 5 for E = 0.256). Finally, for E between 0.304
(A1 =0.19) and 1.6 (A; = 1), the two disks form a vertical
chain. Thus the critical value of the elasticity number for the
formation of a vertical chain is somewhere in the interval
[0.288, 0.304].

For the particles of density p; = 1.0015, similar particle
motions are obtained. For E < 0.2182, the two disks stay
separated and interact periodically. This periodic motion is
just like that in Fig. 4, and its associated limit cycle is similar
to those in the left plot in Fig. 7. For E between 0.2424 and
1.0667, the orientation of the disk chain oscillates first and then
turns into the vertical direction after the oscillations damp
out (e.g., see the trajectories of two disks for E = 0.2424
and 0.4848 shown in Fig. 8). For E between 1.2606 and 1.6,
the two disks form a chain that turns its orientation into the
falling direction right away. No tilted chain is obtained for
the values of the elasticity number considered in the phase
diagram presented in Fig. 9. The critical value of the elasticity
number for the formation of a vertical chain is somewhere in
the interval [0.2182, 0.2424].

For the particle densities p; = 1.0035 and 1.005, we have
also obtained similar kinds of particle motion for various
values of the elasticity number, as shown for both o, = 1.0015
and 1.0025 in Fig. 9. However, the elasticity number range
for a tilted chain is wider. Also for these relatively heavier
disks, in addition to the typical periodic motion discussed in
the above cases, there is another one that we call “drafting,
kissing, and nonchaining” (see Fig. 10). The limit cycles of
those two types of periodic motion for p; = 1.005 are shown in
Fig. 11. The limit cycles in the left plot in Fig. 11 are associated
with a motion like that in Fig. 4, and those in the right plot
are associated with drafting, kissing, and nonchaining. The
particle positions and trajectories for p; = 1.005 and E = 0.4
shown in Fig. 10 tell us that every time a chain is about to
be formed after drafting and kissing between two disks, the
two-disk “long body” turns and then the two disks break away.
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FIG. 10. Positions of the two disks drafting, kissing, and nonchaining for p;, = 1.005 and E = 0.4.

We believe that the inability of the two disks to form a chain is between ¢ = 40 and 48 for E = 0.4 and 0.56. Then the pair in
due to the weakness of the elastic forces; indeed, for E = 0.56, Fig. 10 breaks up at t = 52 for E = 0.4, but the pair remains
a quasihorizontal and stable chain is formed (see Fig. 12). By chained for E = 0.56.

comparing the particle positions shown in Figs. 10 and 12, All the values of the Mach number associated with the
we observe that the two particles touch (“kiss”) each other  different values of the particle density p, and elasticity number
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FIG. 11. The limit cycles for p; = 1.005 in phase space: The periods of the two disks interacting apart are 21.65, 18.05, and 16.28 for
E =0.16, 0.24, and 0.32, respectively (left) and the periods of two disks drafting, kissing, and nonchaining are 34.2, 38.45, 46.45, and 64 for
E =0.36, 0.4, 0.44, and 0.48, respectively (right).
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FIG. 12. Positions of two disks forming an almost horizontal chain for p; = 1.005 at £ = 0.56.

are presented in Fig. 9. For each fixed value of the elasticity
number E, when the particle is heavier, the Mach number
is increased. For example, at E = 1.6, the two disks form a
chain whose orientation turns vertical right away for the four
particle densities considered here (see Fig. 13). The associated
values of the Mach number for these four cases are 0.6697,
1.0582, 1.4004, and 1.8468 for p, = 1.0015, 1.0025, 1.0035,

5 5 5 5
N
of . 0 . oF U\ A OL\\
), )
) y
Vs )/
5+ 1 5 1 5t 1 5 1
> > > >
10 . 10 . 10 + . 10 .
15 1 15 1 15 + 1 15 + 1
-20 -20 -20 -20
0 05 1 0 05 1 0 05 1 0 05 1
X X X X

FIG. 13. Trajectories of the two-disk centers forming vertical
chains for £ = 1.6 and the density p, = 1.0015, 1.0025, 1.0035,
and 1.0045 (from left to right).

and 1.005, respectively. As discussed in [6], the long body
flips falling broadside for a Mach number greater than its
critical value [O(1)]. To see the effect of the larger value of
the Mach number on the chain orientation, we have increased
the particle density to oy = 1.01 so that the particle settling
velocity becomes faster. For £ = 0.16, 0.32, and 0.48, two
heavier disks stay apart and interact periodically, but they form
a tilted chain for £ = 0.64, 0.80, and 0.96. At E =1.12 a
vertical chain is obtained, and its associated Mach number
is M = 2.7343. For E = 1.28, 1.44, and 1.6, chains with the
tilted angles 32.23, 31.59, and 32.63 degrees are obtained, and
the associated values of the Mach number are 2.6879, 2.8660,
and 3.0784, respectively. The Mach number at £ = 1.28 is
less than that at E = 1.2 since the titled chain of two disks
at £ = 1.28 has a slightly slower terminating settling speed
than that of the vertical chain at E = 1.2. The particle position
and trajectories for E = 1.6 are shown in Fig. 14. Thus a
tilted chain can be obtained for the higher values of the Mach
number, while for the cases of those lower particle densities
at the same elasticity number, vertical chains are obtained at
E =1.28, 1.44, and 1.6 in Fig. 9. This result is consistent
with those cases in which an elliptic particle is settling in an
Oldroyd-B fluid, as shown in [6], even though the chain of
two disks is not a rigidly connected dipole. The values of the
elasticity and Mach numbers determine whether a two-disk
chain can be formed, and the chain orientation.

Concerning the wall effect on the formation of two-disk
chains, we have investigated the cases of different values
of the blockage ratio defined by K = H/d, where d is the
diameter of the two same sized disks and H is the width of
the channel. For all the aforementioned results, the blockage
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FIG. 14. Positions of the two disks forming a tilted chain (left
three) and trajectories (right) of the two disks for p, = 1.01 and
E =1.6and M = 3.0784.

ratio is K = 1/0.125 = 8. The particle density considered
here is p; = 1.0015. All other parameters are the same, with
the exception of the disk diameter, fluid viscosity, and mesh
size. The diameters are 1/12, 1/10, 1/8, and 1/5, with the
associated fluid viscosities being 1/25, 1/40, 1/50, and 1/60
and the mesh size for the velocity field being 1/128, 1/128,
1/196, and 1/196, respectively. To reduce the effect of the
particle Reynolds number (i.e., of the terminal particle speed)
on the formation of vertical chains, we have adjusted the fluid
viscosity so that the particle Reynolds numbers are about
the same for those cases having vertical chains formed (see
Fig. 15). We have obtained the same types of disk interaction
when two disks sediment in the vertical channel for various
values of the relaxation time, as shown in Fig. 15. The wall
effect helps two disks to form a vertical chain in a narrower
channel at lower elasticity numbers, but the vertical chain
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is always formed for those cases at higher elasticity numbers
presented in Fig. 15. When two disks have periodic interaction,
the disk rotation synchronizes with its translation velocity, e.g.,
those of the case of K = 10 at E = (0.2 are shown in Fig. 16.
When reducing the value of the blockage ratio K, the period
of the two-disk interaction at the lower elastic number is also
reduced, e.g., for the cases of E = (0.2 shown in Fig. 15 the
periods are 113.07, 100.2, and 91.29 for K = 12, 10, and 8§,
respectively, and there is no periodic motion but a vertical
chain for K = 5. When reducing the value of K, the rotating
speed of the disk close to the right wall is increasing slightly,
and the one in the middle of the channel does not change much,
as shown in Fig. 16.

Since having identical disks is never the case experimen-
tally, we have varied the diameter of one disk to determine its
effect on the two-disk interaction. The other one has a fixed
diameter of 0.125. All other parameters are the same as those
of the particle density, p; = 1.0035. As shown in Fig. 17,
having a disk 10% larger in diameter increases the range of
the vertical chain and suppresses the range of no chaining and
periodic motion. For the other case of having a 10% smaller
diameter, we have obtained almost the same result, but for the
cases of a 5% change in diameter, the effect is qualitatively
the same but weaker. The mass center of the relatively larger
disk is always lower than that of the smaller one during the
interaction for all cases.

To compare the difference between the dynamics of two
rigidly connected disks and that of two freely moving disks, we
have considered the cases associated with the particle density
ps = 1.0025 discussed at the beginning of this section (see
Figs. 3-9). All the parameters are the same except that the two
disks are rigidly connected while settling in the channel. The
numerical results show that for E between 0.08 and 1.6, the
orientation of the long body of two rigidly connected disks is
parallel to the direction of sedimentation. The critical value
of the elasticity number for such an orientation is much less
than the value, E = 0.304, for the case of two freely moving
disks. This result is not surprising since the chain of two
freely moving disks is not really a long rigid body. For E
between 0.04 and 0.07, a tilted orientation is obtained for the
two rigidly connected disks. For E < 0.03, the two-disk long
body oscillates between two different orientations (see, e.g.,
Fig. 18 for E = 0.02). This oscillation is not seen among the
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FIG. 15. Phase diagram (left) and associated values of the Reynolds number (right) for two disks interacting in a vertical channel with

different confined ratios.
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ps = 1.0015,d = 0.1, K = 10, and E = 0.2. Right: The limit cycles for the angular velocity and the horizontal position of the disk mass
center for K = 8 (solid line), 10 (dashed-dotted line), and 12 (dashed line).

dynamics of two freely moving disks shown in Figs. 3-9 also
due to the fact that the chain of two freely moving disks is not
really a long rigid body.

Remark. In all simulations presented in this article, the two
disks are initially located at the same height. We believe that
the results might be slightly different using different initial
configurations and different blockage ratios. For example,
in [12], two balls were released at the same height with a
different distance between them in a quasi-two-dimensional
channel to study the critical distance for the formation of a
two-ball chain. The effect of the horizontal distance between
two disks on the formation of a two-disk chain and the effect of
other initial positions are worthy of further study. Concerning
the interactions of more than two settling disks in Oldroyd-B

1.2 T T
Periodic motion/no chain
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1.15 - v_ Vertical chain g
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&
©
€ 1F v v v v B
S
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0.9 v v v v v B
0.85 I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
E

FIG. 17. Phase diagram for two different sized disks interacting
in a vertical channel: One disk has a fixed diameter of d = 0.125 and
the other one has 0.9d, 0.95d, d, 1.05d, and 1.1d (from bottom to
top in the plot).

fluids, a recent study of multiple-disk chains in [29] indicates
that the formation of chains of three or more disks in Oldroyd-B
fluids relies on the elasticity number value. A next step would
be to study the formation of long particle chains in Oldroyd-B
fluids versus the elasticity number.

Even in two dimensions, all numerical results in this article
look like some of the interactions of two balls in three
dimensions, and they can help us to understand how particles
interact in a three-dimensional channel. For example, it is
known that the behavior of particles settling in a Newtonian
viscous fluid may be quite different from the behavior of
particles settling in a viscoelastic fluid. Indeed, a well-known
behavior for two balls settling in a Newtonian viscous fluid
is the so-called drafting, kissing, and tumbling phenomenon
[22], while two balls settling in an Oldroyd-B fluid exhibit
the kissing, drafting, and chaining phenomenon [12]. The
kissing, drafting, and chaining phenomenon of two disks
described in this article resembles that of two balls settling
in a quasi-two-dimensional channel as reported in [12]. The
generalization of the computational methodology used in this
article to three dimensions is in progress, and the investigation
of the interaction of two or more balls settling in a vertical
channel filled with an Oldroyd-B fluid will be submitted for
publication in the near future.

IV. CONCLUSION

In this article, we have presented a numerical study of the
dynamics of two disks settling in a narrow vertical channel
filled with an Oldroyd-B fluid. For the cases considered in this
article, two kinds of particle dynamics were observed, namely
(1) a periodic interaction between the two disks, and (ii) the
formation of a two-disk chain. For the periodic interaction, two
different motions are observed: (a) the two disks stay far apart
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FIG. 18. Positions and orientations of the two rigidly connected disks (left four) and the trajectory of the long body mass center (right) for

ps = 1.0025 and E = 0.02.

and their interaction is periodic (as shown in Fig. 4), which is
similar to one of the motions reported in [23], and (b) the two
disks draft, kiss, and break away periodically, chains not being
formed, due to the weakness of the elastic forces. When, for
larger values of E, a chain is forming, it is either a tilted chain
or a vertical one. A tilted chain can be obtained if either the
elasticity number value is less than the critical one associated
with vertical chain formation, or if the Mach number is greater
than a critical value. Hence the values of the elasticity number
and the Mach number determine whether the chain of two
disks can be formed, and its orientation. Numerical results
also show that the wall effect enhances the formation of the
vertical chain of two disks in a narrower channel. For two

disks of slightly different sizes, it is easier for them to form
a chain when comparing with the case of two identical disks.
When comparing with the dynamics of two rigidly connected
disks sedimenting in an Oldroyd-B fluid, the critical elasticity
number for having vertical chains of two disks is much higher
than that for two rigidly connected disks since the chain of two
disks is not really a long rigid body.
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