
PHYSICAL REVIEW E 96, 063101 (2017)

Logarithmic scaling for fluctuations of a scalar concentration in wall turbulence
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Within wall turbulence, there is a sublayer where the mean velocity and the variance of velocity fluctuations vary
logarithmically with the height from the wall. This logarithmic scaling is also known for the mean concentration
of a passive scalar. By using heat as such a scalar in a laboratory experiment of a turbulent boundary layer, the
existence of the logarithmic scaling is shown here for the variance of fluctuations of the scalar concentration. It
is reproduced by a model of energy-containing eddies that are attached to the wall.
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I. INTRODUCTION

This is an experimental study of a behavior of a passive
scalar within wall turbulence of an incompressible fluid,
especially within a turbulent boundary layer over a flat wall.
We set the x–y plane at the wall, set the x direction along
the mean stream, and use u(z) and w(z) to denote velocity
fluctuations in the streamwise and wall-normal directions at a
height z from the wall. If the turbulence is stationary and its
Reynolds number is high enough, then it has a sublayer with
some constant ρu2

∗ for the mean rate of turbulent momentum
transfer, i.e., for the momentum flux ρ〈−uw〉. Here ρ is the
mass density, u∗ is the friction velocity, and 〈·〉 denotes an
average.

Within this constant-flux sublayer, the friction velocity u∗
serves as a characteristic constant in units of velocity, while
there is no characteristic constant in units of length. Then
the mean streamwise velocity U (z) obeys a relation dU/dz ∝
u∗/z [1,2]. Since any similar relation such as for dU 2/dz is
not Galilean invariant [3], we exclusively have

U (z1) − U (z2)

u∗
= 1

κU

ln

(
z1

z2

)
. (1a)

The von Kármán constant κU appears to be universal [4]
because its value of 0.39 ± 0.02 is common among various
classes of wall turbulence, e.g., pipe flows, channel flows, and
boundary layers [4–8] and is also common between the cases
of smooth and rough walls [5].

The same scaling is observed for the mean concentration
Θ(z) of a passive scalar if its value at the wall z = 0 is retained
constant, Θ0 �= 0 [9]. We use θ (z) to denote fluctuations
of the concentration and define the mean rate of turbulent
transfer of the scalar as 〈θw(z)〉. Within the constant-flux
sublayer, 〈θw(z)〉 does not vary and leads to a characteristic
constant θ∗ = 〈θw〉/u∗. Since Θ(z) − Θ0 obeys a relation
d(Θ − Θ0)/dz = dΘ/dz ∝ θ∗/z [1], which is exclusively
invariant under any shift of Θ0 [10], we have

Θ(z1) − Θ(z2)

θ∗
= − 1

κΘ

ln

(
z1

z2

)
. (1b)

Between Eqs. (1a) and (1b), the sign is opposite because the
direction of the scalar flux 〈θw〉 is defined oppositely to that of
the momentum flux ρ〈−uw〉. The constant κΘ appears to be
universal and is related to the von Kármán constant κU through
the turbulent Prandtl number in the neutral-stability limit [1],

κU/κΘ � 0.8 [9], although its uncertainty is yet as significant
as 0.1 [11].

Recently, laboratory experiments and field observations
have established another logarithmic scaling for the variance
〈u2(z)〉 of fluctuations of the streamwise velocity [4,5,12],

〈u2(z1)〉 − 〈u2(z2)〉
u2∗

= −Cu2 ln

(
z1

z2

)
. (2a)

The constant Cu2 appears to be universal [4]. From the existing
data [4,5], the uncertainty-weighted average is obtained as
Cu2 � 1.25 ± 0.03.

Thus, a logarithmic scaling is not restricted to averages like
U (z) and Θ(z). It is actually observed as well for the variance
of pressure fluctuations [13]. The scaling is also expected for
the variance 〈θ2(z)〉 of fluctuations of the above scalar [14],

〈θ2(z1)〉 − 〈θ2(z2)〉
θ2∗

= −Cθ2 ln

(
z1

z2

)
, (2b)

because Eq. (1b) for the mean scalar concentration Θ(z) is
analogous to Eq. (1a) for the mean streamwise velocity U (z).

The above Eq. (2b) is confirmed here for a turbulent
boundary layer in a wind tunnel. Its floor was heated or
cooled slightly to use the heat as a passive scalar (Sec. II).
Over this floor, the variance of the air temperature 〈θ2(z)〉
does scale logarithmically with the height z (Sec. III). To
explain any scaling of such a variance, however, there is no
exclusive relation like dΘ/dz ∝ θ∗/z. In fact, 〈θ2(z)〉 itself is
invariant under any shift of Θ0. We instead use a model of
energy-containing eddies (Sec. IV), which had predicted the
logarithmic scaling of the velocity variance 〈u2(z)〉 [15]. The
implication of these scaling laws is also to be remarked in
Sec. V.

II. EXPERIMENT

The experiment was carried out in an open-return wind
tunnel of the Meteorological Research Institute. We use
coordinates x, y, and z in the streamwise, spanwise, and floor-
normal directions. The origin x = y = z = 0 m is taken on the
floor center at the upstream end of the test section of the tunnel.
Its size is Δx = 18 m, Δy = 3 m, and Δz = 2 m. The cross
section Δy × Δz remains the same upstream to x = −4 m.

On the entire floor from x = −4 m to x = +18 m with an
interval of 100 mm, aluminium rods oriented to the spanwise
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direction were set as roughness. The diameter of each of the
rods was 3 mm.

The boundary layer was formed over that floor. We set the
incoming flow velocity to be 6 m s−1 and obtained all the data
at a horizontal position where the turbulent boundary layer
was well developed, i.e., x = +14 m and y = 0 m.

We measured the streamwise velocity U + u and the floor-
normal velocity w over a range of the height z with use of a
laser Doppler anemometer (Dantec, model F60 with 60X17).
Its sensing volume has a diameter of 120 μm and a length of
1.5 mm that was oriented to the spanwise direction.

For the above and other measurements at each height z, the
sampling rate was set at 100 or 200 Hz. The duration was set at
150 or 300 s. With intervals, they were repeated 3 or 4 times.
Averages, variances, and other cumulants were scattered in the
repeated measurements. This scatter is to be used for our error
estimations in a standard manner [16].

The results are shown by circles in semilog plots of Fig. 1.
Although error bars of 1σ lie on all the circles, none of them
is greater than the circle to be discernible. We also summarize
the values of the flow parameters in Table I. The errors of 1σ

are provided, except for the kinematic viscosity ν for which
we have provided the range of the observed value.

At least between the heights z � 60 mm and 100 mm, there
is the constant-flux sublayer for which 〈−uw〉 in Fig. 1(d) is
almost constant. The values of 〈−uw〉 in this sublayer are used
to estimate the friction velocity u∗.

The sublayer exhibits a logarithmic scaling for U (z) in
Fig. 1(a) and for 〈u2(z)〉 in Fig. 1(b). As for the case of
U (z), the data points fall on the straight line of Eq. (1a)
if the standard value of κU = 0.39 is adopted from the
literature [4–8]. The accuracy is high, as seen in Table I,
where the uncertainty is small for the parameter z0 that has
been estimated from U (z)/u∗ = (1/κU ) ln(z/z0) [1,9]. To the
data points of 〈u2(z)〉, we fit a straight line in the form of
〈u2(z)〉/u2

∗ = Bu2 − Cu2 ln(z/δ99) [15]. Here δ99 is the height at
which U (z) is 99% of its maximum. The resultant estimates of
Bu2 and Cu2 in Table I are consistent with uncertainty-weighted
averages of the existing values [4,5], i.e., Bu2 � 2.2 ± 0.2
and Cu2 � 1.25 ± 0.03. We have ignored the values of Bu2 �
1.5 ± 0.1 in pipe flows, which are known to be distinct from
those in other classes of wall turbulence [4,17].

At the lower height z � 40 mm, the velocity field was
affected by the roughness. This was ascertained by measuring
U + u and w at a horizontal position slightly shifted in the
streamwise direction. However, deviation from the logarithmic
scaling is small and slow [4]. It seems as if it extends to z �
40 mm, especially in the case of U (z) in Fig. 1(a).

Having confirmed that the constant-flux sublayer was
formed at least from z � 60 mm to 100 mm, with parameter
values consistent with those in the literature [4–8], we are to
explain our measurements for the scalar.

The wind tunnel is capable of controlling the temperature
of the floor of the test section by circulating heated or cooled
liquid through the panels of the floor. We used this capability
to retain the floor temperature higher or lower by 3 K than
the temperature of the ambient air, which was monitored
at a position upstream of the test section. The ambient air
temperature was not constant but varied slowly by 0.1 K per
an hour in the most significant case. As a result, we had to

FIG. 1. Velocity statistics U , 〈u2〉, 〈w2〉, and 〈−uw〉 as a function
of the height z. They have been obtained by heating the floor as
Θ0 − Θ∞ = +3 K (�), by cooling the floor as −3 K (�), or by
neither heating nor cooling the floor (◦). For the constant-flux sublayer
of the last case, the straight lines denote Eqs. (1a) and (2a) with
the parameter values in Table I. The range of this sublayer is also
shown. Although error bars of 1σ lie on all the data, none of them is
discernible.

adjust repeatedly the floor temperature. It was accordingly
fluctuating, albeit with an amplitude as small as ±0.02 K for
the panel of the floor at around the measurement position of
x = +14 m and y = 0 m.

For this setting, we again measured the flow velocities U +
u and w. The results are shown by triangles in Fig. 1. They are
not distinguishable from the circles, i.e., data points for our
results obtained without heating or cooling the floor (see also
Table I). Thus, since the velocity field was not so affected by
the heat, it is almost safe to regard the heat as a passive scalar.
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TABLE I. Parameter ν and those of U (z)/u∗ = (1/κU ) ln(z/z0)
for κU = 0.39 with u2

∗ = 〈−uw〉, 〈u2(z)〉/u2
∗ = Bu2 − Cu2 ln(z/δ99),

and 〈w2(z)〉/u2
∗ = Bw2 within the constant-flux sublayer from z = 61

mm to 105 mm, obtained by heating the floor (Θ0 − Θ∞ = +3 K),
by cooling the floor (−3 K), or by neither heating nor cooling the
floor (±0 K).

Unit +3 K ±0 K −3 K

ν cm2 s−1 0.150 ± 0.002 0.145 ± 0.001 0.155 ± 0.001
u∗ m s−1 0.263 ± 0.001 0.257 ± 0.001 0.260 ± 0.001
z0 mm 0.124 ± 0.004 0.111 ± 0.001 0.116 ± 0.003
δ99 mm 406 ± 1 406 ± 1 404 ± 1
Bu2 2.03 ± 0.18 2.09 ± 0.06 2.17 ± 0.18
Cu2 1.24 ± 0.11 1.29 ± 0.05 1.15 ± 0.11
Bw2 1.29 ± 0.01 1.34 ± 0.01 1.29 ± 0.01

The air temperature is to be used as the scalar concentration
Θ + θ .

Then Θ + θ was measured with use of a cold-wire
thermometer (Dantec, model 90C20 with 55P11). Its sensing
volume has a diameter of 5 μm and a length of 1.25 mm
that was oriented to the spanwise direction. The mean rate
H0 of heat transfer across the surface of the floor was
also measured at x � +14 m and y � +0.4 m. We used
two sensors (Etodenki, model M55A), each of which is the
size 50 mm × 50 mm × 0.7 mm. These measurements were
not simultaneous to the velocity measurements, albeit under
almost the same conditions, e.g., the temperature of the
ambient air Θ∞ in the range of 291 ± 6 K.

III. RESULTS

The results of our measurements of the air temperature are
shown by triangles in Fig. 2. For the constant-flux sublayer
from z � 60 mm to 100 mm, we estimate the values of the
parameters of Eqs. (1b) and (2b). They are shown by straight
lines for the case of heating the tunnel floor. We also summarize
the parameter values in Table II, where θ∗/κΘ and κ2

ΘCθ2 are
provided instead of θ∗ and Cθ2 because the value of κΘ is not
yet so certain [11] as was noted in Sec. I.

Figure 2(a) is a semilog plot for the mean temperature Θ(z)
with respect to the temperature of the ambient air Θ∞, which
was less fluctuating than the floor temperature Θ0 (Sec. II). The

TABLE II. Parameters of (Θ(z) − Θ∞)/θ∗ = BΘ −
(1/κΘ ) ln(z/δ99) and 〈θ2(z)〉/θ2

∗ = Bθ2 − Cθ2 ln(z/δ99) within
the constant-flux sublayer from z = 61 mm to 105 mm, obtained by
heating the floor (Θ0 − Θ∞ = +3 K) or by cooling the floor (−3 K),
where the value of δ99 is from Table I for the case of neither heating
nor cooling the floor.

Unit +3 K −3 K

θ∗/κΘ K +0.260 ± 0.015 −0.295 ± 0.010
κΘBΘ 0.386 ± 0.124 0.351 ± 0.068
κ2

ΘBθ2 0.0335 ± 0.0063 0.0223 ± 0.0091
κ2

ΘCθ2 0.0934 ± 0.0105 0.0770 ± 0.0080

FIG. 2. Temperature statistics Θ − Θ∞, 〈θ2〉, 〈θ3〉/〈θ2〉3/2, and
〈θ 4〉/〈θ2〉2 as a function of the height z. They have been obtained by
heating the floor as Θ0 − Θ∞ = +3 K (�) or by cooling the floor as
−3 K (�). For the constant-flux sublayer of the latter case, the straight
lines denote Eqs. (1b) and (2b) with the parameter values in Table II.
The range of this sublayer is also shown. Although error bars of 1σ

lie on all the data, only a few of them are discernible.

constant-flux sublayer does exhibit the logarithmic scaling of
Eq. (1b).

To consider the parameter θ∗/κΘ of Eq. (1b), we use the
mean rate of heat transfer measured across the floor surface,
H0 = ±48 W m−2. Under the pressure of 1 atm, the air at 290 K
has the mass density ρ = 1.2 kg m−3 and the isobaric specific
heat cp = 1.0 × 103 J kg−1 K−1. By also using the friction
velocity u∗ = 0.26 m s−1 (Table I), we obtain ±0.15 K as
the values of θ∗ = H0/(cpρu∗) [1,9]. They are consistent with
our estimates of θ∗/κΘ in Table II because κΘ � 0.5 ± 0.1
is implied from the estimates of κU/κΘ � 0.8 ± 0.1 in the
literature [9,11].
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FIG. 3. Schematics of attached eddies and of the moments
IΘ (z/he), I(Θ+θ)2 (z/he), and Iθw(z/he) defined in Eqs. (5b), (8b),
and (10b), where gray areas correspond to the undermost portions of
the eddies.

Figure 2(b) is our main result, i.e., a semilog plot for the
variance 〈θ2(z)〉 of the temperature fluctuations. The variance
decreases logarithmically with an increase in the height z.
Those for Θ0 − Θ∞ = +3 K and −3 K are almost indistin-
guishable. We have thus confirmed the logarithmic scaling of
〈θ2(z)〉 within the constant-flux sublayer in accordance with
Eq. (2b).

The logarithmic scaling of 〈θ2(z)〉 appears in Fig. 2(b) to
extend beyond the height range of the constant-flux sublayer
that has been determined from the measurement of 〈−uw(z)〉.
This is also true for the logarithmic scaling of Θ(z) in Fig. 2(a).
From these scalings, deviation might be small and slow, as has
been observed for U (z) in Sec. II [4]. There is yet a possibility
that 〈θw(z)〉/〈−uw(z)〉1/2 is somehow retained close to θ∗
throughout those heights z. It would be of interest to measure
the scalar flux 〈θw(z)〉, albeit difficult if a high accuracy is
necessary.

The value estimated for the parameter κ2
ΘCθ2 of Eq. (2b)

is not exactly equal between the cases of Θ0 − Θ∞ = +3 K
and −3 K (Table II) because the heat does not serve exactly as
a passive scalar. By interpolating these two cases to the limit
θ∗ → 0, the exact value is estimated to be κ2

ΘCθ2 � 0.086 ±
0.007.

Last, the skewness 〈θ3(z)〉/〈θ2(z)〉3/2 and the flatness
〈θ4(z)〉/〈θ2(z)〉2 of the temperature fluctuations are shown in
Figs. 2(c) and 2(d). Within the constant-flux sublayer, they
are respectively close to the Gaussian values of 0 and 3 [18],
implying that the distribution of θ is closely Gaussian. They
are enhanced at around the edge of the boundary layer [18],
the height of which varies significantly in space and in time.
Similar results are known for the skewness and flatness of the
velocity fluctuations [19,20].

IV. DISCUSSION

Having confirmed the logarithmic scaling of 〈θ2(z)〉 in
Eq. (2b), we are to reproduce this scaling by using the
attached-eddy hypothesis in its original form [15]. It had
predicted not only the logarithmic scaling of 〈u2(z)〉 in Eq. (2a)
but also 〈w2(z)〉 ∝ u2

∗, which is actually observed in Fig. 1(c).
This hypothesis is a model of a random superposition

of energy-containing eddies that are attached to the wall as
illustrated in Fig. 3(a). While their velocity fields have an
identical shape with a common characteristic velocity u∗, their

sizes are distributed with no characteristic size. For example,
if xe = (xe,ye,he) lies at the highest position of an eddy, its
wall-normal velocity we is given by a function fw for any
position x = (x,y,z) as

we(x)

u∗
= fw

(
x − xe

he

)
. (3a)

The height he of this eddy is used as its size. Since we is blocked
by the wall, we require fw = 0 at z = 0 so that fw ∝ z/he at
z/he � 1.

The scalar field Θe + θe of each eddy is also assumed
to have an identical shape with a common characteristic
concentration θ∗,

Θe(x) + θe(x)

θ∗
= fΘ+θ

(
x − xe

he

)
. (3b)

We have included Θe(x) to consider the mean concentration
Θ(z). Since its value at the wall z = 0 has to be constant, i.e.,
Θ0 �= 0 (Sec. I), the function fΘ+θ does not depend on z/he but
depends only on (x − xe)/he and (y − ye)/he at z/he � 1.

The eddy size is distributed from he → 0 to he = δe. Here
δe is the thickness of the wall turbulence, e.g., δ99 in case of
a boundary layer. On the wall, the distribution of the eddies
is random and independent. They are allowed to overlap one
another because they do not have to be coherent.

From the random and independent distribution of the
eddies, it follows that the entire scalar field is a superposition
of those of the individual eddies. The asymptotic laws for
z/δe → 0 are to be regarded as the laws for the constant-flux
sublayer [15] by ignoring the roughness or viscosity close to
the wall.

The mean concentration Θ(z) is written as an integration
from he = z to he = δe,

Θ(z)

θ∗
=

∫ δe

z

dhe

[
ne(he)

∫∫
dxe dye fΘ+θ

(
x − xe

he

)]
. (4)

Here ne(he) is the number density of eddies of size he per
unit area of the wall. With use of a constant Ne, we have
ne(he) = Neh

−3
e [15]. This is because, apart from he and Ne,

the constant-flux sublayer has no quantity to affect the value
of the number density ne(he). Then,

Θ(z)

θ∗
= Ne

∫ δe

z

dhe

he

IΘ

(
z

he

)
, (5a)

with the contribution from eddies of size he,

IΘ

(
z

he

)
=

∫∫
dxe

he

dye

he

fΘ+θ

(
x − xe

he

)
. (5b)

By using ζ = z/he and hence dζ/ζ = −dhe/he, we rewrite
Eq. (5a) as

Θ(z)

θ∗
= Ne

∫ 1

z/δe

dζ

ζ
IΘ (ζ ). (6)

The condition at z = 0 on fΘ+θ implies IΘ (ζ ) � IΘ (0) �= 0
at ζ = z/he � 1, as illustrated in Fig. 3(b). In the limit
z/δe → 0, there is some constant bΘ such that Θ(z)/θ∗ →
Ne[bΘ − IΘ (0) ln(z/δe)]. If we use BΘ = NebΘ and CΘ =
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1/κΘ = NeIΘ (0),

Θ(z)

θ∗
→ BΘ − 1

κΘ

ln

(
z

δe

)
as

z

δe

→ 0. (7)

This asymptotic relation corresponds to the logarithmic scaling
of Θ(z) in Eq. (1b).

The variance 〈θ2(z)〉 of fluctuations of the scalar concen-
tration is likewise written as

〈θ2(z)〉
θ2∗

= Ne

∫ δe

z

dhe

he

[
I(Θ+θ)2

(
z

he

)
− I 2

Θ

(
z

he

)]
, (8a)

with the contribution from eddies of size he that is made up of
IΘ (z/he) in Eq. (5b) and also of

I(Θ+θ)2

(
z

he

)
=

∫∫
dxe

he

dye

he

f 2
Θ+θ

(
x − xe

he

)
. (8b)

The condition at z = 0 on fΘ+θ implies I(Θ+θ)2 (ζ ) − I 2
Θ (ζ ) �

I(Θ+θ)2 (0) − I 2
Θ (0) > 0 at ζ = z/he � 1 (Fig. 3). Hence,

through a relation similar to Eq. (6),

〈θ2(z)〉
θ2∗

→ Bθ2 − Cθ2 ln

(
z

δe

)
as

z

δe

→ 0. (9)

This asymptotic relation corresponds to the logarithmic scaling
of 〈θ2(z)〉 in Eq. (2b).

Last, we consider the scalar flux 〈θw(z)〉. It is written as

〈θw(z)〉
θ∗u∗

= Ne

∫ δe

z

dhe

he

Iθw

(
z

he

)
, (10a)

with the contribution from eddies of size he,

Iθw

(
z

he

)
=

∫∫
dxe

he

dye

he

fΘ+θ

(
x − xe

he

)
fw

(
x − xe

he

)
.

(10b)

The conditions at z = 0 on fΘ+θ and fw imply Iθw(ζ ) ∝ ζ at
ζ = z/he � 1 (Fig. 3). Hence, through a relation similar to
Eq. (6),

〈θw(z)〉
θ∗u∗

→ Bθw as
z

δe

→ 0. (11)

Especially if Bθw is equal to unity, this asymptotic relation
reproduces the constant flux 〈θw〉 = θ∗u∗ for the scalar
transfer.

While BΘ , Bθ2 , and Bθw are due to eddies of sizes he

comparable to the height z, CΘ = 1/κΘ and Cθ2 are due to
eddies of sizes he from the height z to the thickness δe of the
wall turbulence. The integration over such eddies has led to
the logarithmic factor, ln(z/δe).

Since CΘ and Cθ2 are determined only by the undermost
portions of those eddies (gray areas in Fig. 3), they would
be insensitive to the class of the flow configuration for the
production of the wall turbulence. This is actually true in the
case of Cu2 for the velocity variance in Sec. I [4]. On the other
hand, BΘ and Bθ2 are affected also by the upper portions of
the eddies. They might be sensitive to the class of the flow
configuration as in the case of Bu2 in Sec. II [4,17].

To obtain some constant value for Cθ2 , the amplitude |fΘ+θ |
of the function fΘ+θ has to be ∝ 1/N

1/2
e in Eq. (8). We thereby

obtain CΘ = 1/κΘ = NeIΘ (0) ∝ Ne|fΘ+θ | ∝ N
1/2
e in Eq. (5).

For the constant Bθw = 1, we require |fΘ+θ ||fw| ∝ 1/Ne and
hence |fw| ∝ |fΘ+θ | ∝ 1/N

1/2
e in Eq. (10).

The value of Ne is large but remains finite. In Figs. 2(c)
and 2(d), the skewness and flatness of the fluctuations θ are
close to but are not equal to their Gaussian values [18]. The
central limit theorem [9] implies that the fluctuations θ tend to
Gaussian as Ne tends to infinity.

Thus, the logarithmic scaling of Θ(z) in Eq. (1b), the
logarithmic scaling of 〈θ2(z)〉 in Eq. (2b), and the constant
value of 〈θw(z)〉 are all explainable by a superposition of
attached eddies. Their scalar fields are given by Eq. (3b). Along
with the power-law distribution of the eddy size ne(he) ∝ h−3

e ,
the form of Eq. (3b) is in accordance with the existence of the
characteristic concentration θ∗ and with the nonexistence of
any characteristic constant in units of length. These two are the
necessary and sufficient conditions for the logarithmic scaling
of the average Θ(z) [10]. Since they are not sufficient for the
variance 〈θ2(z)〉 (see Sec. I), the distribution of the eddies on
the wall has been set random and independent [15]. Over such
eddies, also to be considered in Sec. V, cumulants like the
variance I(Θ+θ)2 − I 2

Θ are exclusively allowed to be integrated
as in Eq. (8a). The average IΘ in Eq. (5a) and the covariance
Iθw in Eq. (10a) are other examples of the cumulants.

V. CONCLUDING REMARKS

By using heat as a passive scalar in a laboratory experiment
of a turbulent boundary layer, it has been shown that the
constant-flux sublayer exhibits the logarithmic scaling of
Eq. (2b) for the variance 〈θ2(z)〉 of fluctuations of the scalar
concentration. The parameter κ2

ΘCθ2 lies at 0.086 ± 0.007.
We have explained this scaling with use of the attached-eddy
hypothesis [15], i.e., a model of a random superposition of
energy-containing eddies that are attached to the wall.

The attached-eddy hypothesis is applicable not only to
boundary layers but to any other class of wall turbulence, e.g.,
pipe and channel flows. Also within such flows, the logarithmic
scaling of 〈θ2(z)〉 is likely to exist with the same value
of Cθ2 .

From the attached-eddy hypothesis, a logarithmic scaling
is also expected for the higher-order cumulants such as
〈θ (z)4〉 − 3〈θ (z)2〉2. This is because any cumulant of a sum
of random variables is equal to the sum of cumulants of
the variables if they are independent of one another [9].
The mth cumulant is equal to some mth-order homogeneous
polynomial of the first m moments. If we define the moments
I(Θ+θ)n (z/he) at n = 3, . . . , m as at n = 2 in Eq. (8b), make
up the polynomial, e.g., I(Θ+θ)4 − 4I(Θ+θ)3IΘ − 3I 2

(Θ+θ)2 +
12I(Θ+θ)2I 2

Θ − 6I 4
Θ , and integrate it from he = z to he = δe as

in Eq. (8a), then the resultant cumulant has the logarithmic
factor ln(z/δe). However, since |fΘ+θ | ∝ 1/N

1/2
e implies

I(Θ+θ)n ∝ 1/N
n/2
e (Sec. IV), the mth cumulant is of the order of

1/N
m/2−1
e . It is increasingly negligible with an increase in the

order m. We could ignore all the cumulants at m � 3 to assume
that the fluctuations θ are Gaussian as could be assumed for
the case of the velocity fluctuations u [14,21].

The behavior of a passive scalar is generally dissimilar
from the corresponding behavior of the velocity field [22,23].
Nevertheless, as for energy-containing eddies of wall turbu-
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lence, our condition Θ(0) = Θ0 is analogous to the condition
on the mean streamwise velocity, U (0) = 0 [24]. This leads
to some similarities, e.g., the logarithmic scalings of Θ(z)
and U (z) [1,9]. Another example would be made up from the
logarithmic scalings of 〈θ2(z)〉 and 〈u2(z)〉 studied here.

Besides the attached-eddy hypothesis, the logarithmic
scaling of the velocity variance 〈u2(z)〉 has been explained
by some other models [14,25,26]. Each of them is based
on a particular assumption, in addition to the existence of
the characteristic velocity u∗ and to the nonexistence of any
characteristic constant in units of length. If u and u∗ were
replaced respectively with θ and θ∗, then such models could
reproduce the logarithmic scaling of 〈θ2(z)〉.

To a boundary layer, especially to that over a horizontal
wall, there is an application. While we have used heat as a
passive scalar, the heat would become active if the wall were
heated or cooled still more. The boundary layer would become
unstable or stable and would have the Monin-Obukhov length
L∗ = −u3

∗/[κ(g/Θ0)(H0/cpρ)] as some constant [9], where

g is the gravitational acceleration. As for such a constant-
flux sublayer, it has been considered that any scaling is a
function of z/L∗. The temperature variance 〈θ2(z)〉 has been
predicted to be ∝ θ2

∗ (−z/L∗)−2/3 in the unstable limit z/L∗ →
−∞ [27] and to be ∝ θ2

∗ in the stable limit z/L∗ → +∞ [9].
These laws are not inconsistent with the observations of the
atmospheric boundary layer [28]. However, they have to be
related continuously to the logarithmic scaling obtained here.
In addition, at least in a class of free convection where L∗ is
exactly equal to 0, again logarithmic are the mean temperature
Θ(z) [29,30] and also the temperature variance 〈θ2(z)〉 [31]. It
would be of interest to reconsider the scaling of the temperature
fluctuations θ (z) for these unstable and stable boundary layers.
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