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The two principal ingredients determining the failure modes of disordered solids are the strength of
heterogeneity and the length scale of the region affected in the solid following a local failure. While the
latter facilitates damage nucleation, the former leads to diffused damage—the two extreme natures of the failure
modes. In this study, using the random fiber bundle model as a prototype for disordered solids, we classify all
failure modes that are the results of interplay between these two effects. We obtain scaling criteria for the different
modes and propose a general phase diagram that provides a framework for understanding previous theoretical
and experimental attempts of interpolation between these modes. As the fiber bundle model is a long-standing
model for interpreting various features of stressed disordered solids, the general phase diagram can serve as a
guiding principle in anticipating the responses of disordered solids in general.
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I. INTRODUCTION

Response of a disordered solid subjected to stress provides a
vital route in predicting imminent breakdown in those systems.
Understanding such responses is a major goal for myriads of
situations starting from micro-fracture to earthquakes [1]. The
apparent independence of the effect of the structural details
in the static and dynamic responses of the disordered solids,
for example, roughness of a fractured front, avalanche size
distributions, etc., fueled decades of efforts in modeling these
phenomena using simple, generic, and minimal ingredients
[2]. The focus of these studies is on the understanding of the
mechanical stability of the systems, precursor to catastrophic
failure, and also to explore the possibility of universality
of the above mentioned response statistics in the sense of
critical phenomena. However, while there can be scale-free
behavior of response functions indicating criticality in some
cases, there can also be nucleation-driven abrupt failures in
others. Therefore, such association of fracture with critical
phenomena is not straightforward (see, e.g., [3,4]).

It is, however, known that the two main factors that
determine such modes of failure are the strength of disorder
and the range of interaction within the solid in terms of stress
transfer. The aim of this work is to classify all the phases
arising out of the interplay of these two effects and to arrive
at criteria in distinguishing such phases, thereby providing a
framework for understanding all the modes of failure using a
simple model for the disordered solids.

It is known experimentally that the presence of hetero-
geneity increases the precursory signals prior to failure [5].
The strain energy is dissipated within a short range of
crack propagation in heterogeneous solids, as opposed to
those lacking heterogeneity. Strong heterogeneities, therefore,
compel the system transit from a brittle-like to a quasi-brittle-
like failure mode [6]. Such a transition in porous media was
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observed in Ref. [7], where the disorder (porosity) spanned two
decades in magnitude. The apparent contradiction of scale-free
size distribution for acoustic emission and subsequent damage
nucleation was also observed in Ref. [8]. While experimentally
it is not easy to tune the strength of disorder precisely, heat
treatment can tune the length scale of disorder in phase-
separated glasses [9]. There have been many other experiments
and simulations describing the effect of increased disorder on
roughness [10], pattern formation in spring networks [11,12],
damage nucleation and percolation in random fuse models
[13,14], etc.

As for the range of stress redistribution, linear elastic frac-
ture mechanics predict a 1/r2-type load redistribution around
an Inglis crack [15,16]. However, this form is not always
guaranteed and can change due to finite width of the sample
[17], correlation in disorder [18], size of agglomerate [19]
etc, which can change the crack propagation dynamics [20].
Here we attempt to characterize the formation of spatial and
temporal correlation arising out of the interplay of the stress
redistribution, which enhances damage nucleation, and the
presence of disorder, which leads to diffused damage [21–23].

In this work, we report a phase diagram in the stress
redistribution range and strength of disorder that captures
all failure modes arising out of the interplay between these
two. We consider the fiber bundle model [2,24], which has
been widely used as a generic model for fracture in disor-
dered systems over many years. Among the many modeling
approaches that attempt to capture the statistics of failure
of disordered solids, the fiber bundle model is arguably the
simplest. Introduced in textile engineering [25], it has been
proven very useful in reproducing behaviors near failure [2].
The avalanche statistics and also the roughness of the fracture
propagation front arising out of its intermittent dynamics,
compares favorably with experiments [26]. The model is a set
of elements arranged in a lattice, each having a finite failure
threshold drawn randomly from a distribution. On application
of load, the elements—fibers—fail irreversibly and redistribute
their load in a predefined neighborhood.

The two main ingredients of the model are the aforemen-
tioned neighborhood of load redistribution and the strength
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of the disorder in the failure thresholds of the individual
fibers. The two extreme ways of defining the neighborhood
are the equal and local load sharing models. In the former,
the load of a broken fiber is shared equally among all the
remaining intact fibers and in the latter, it is shared only with its
nearest surviving neighbors. Neither of these two extremes are
realistic, however, they are important in establishing limiting
behaviors of the model. Particularly, for local load sharing,
the local stress concentration around damage is so high that
the failure statistics is governed by extreme statistics [27–30]
and the critical load for the system decreases with system
size [31,32]. On the other hand, a global load sharing model
gives a finite failure threshold, as the stress concentration is
much lower here. Other than the two extremes, there have
been a lot of studies that attempt to capture a more realistic
way of redistributing the stress. An obvious candidate was
power-law load sharing [33], where the exponent of the power
law determines the localization of stress, which we will discuss
later. Among other more realistic attempts was the one by
Hedgepeth and Van Dyke [34], applied for polymer matrix
composites. While there can be situations such as plastic
deformation, highly nonlinear effects near the crack tip in
the above examples, where a simple redistribution rule is no
longer valid, here we limit ourselves to the smooth asymptotics
described by a power-law load sharing. The asymptotic form
of the Hedgepeth load sharing rule, however, is inverse cubic
for two dimensions [35]. More detailed load sharing rules
include those proposed by Okabe et al. among others [36–39].
Particularly, as plastic and interfacial damages are considered,
the load sharing for these cases interpolate between global
and Hedgepeth load sharing. Furthermore, there are time-
dependent load sharing rules [40,41] that also interpolate
between local and global load sharing. Therefore, substantial
literature in the physics and engineering communities has been
developed in addressing the question of the load redistribution
range and its effect on stress localization and ultimately the
failure threshold of the materials, using the fiber bundle model.

On the other hand, the disorder in the model comes from
the distribution of the failure threshold. The properties of the
distribution function can influence the stress localization, and
that, in turn, can determine the failure strength of the system.
The spread of damage and the crackling noise, which can
be used as a precursor to catastrophic failure, is significantly
affected by the presence of disorder. Particularly, higher
disorder increases the precursory events in the solids [5]. Due
to its importance, there have been many efforts in looking for
the effect disorder strength made on the fiber bundle model
[42,43]. Particularly in the global load sharing case, the effect
of high disorder in known to bring the system from a brittle to
a quasibrittle state [44].

Using the simplicity and flexibility of the fiber bundle
model, we can tune both the strength of disorder and the
stress redistribution range and obtain the different phases of
failure in the fiber bundle model by varying the range of stress
redistribution and strength of disorder. With the help of the
phase diagram, we can now identify all its modes of failure,
classify previous attempts to interpolate between some of those
modes, and, most importantly, arrive at scaling prescriptions
in categorizing and predicting such failure modes. The scaling
prescriptions differ from their equilibrium, and often intuitive,

counterparts (say, in the Ising model), making them interesting
also from the point of view of critical phenomena.

II. MODEL AND SIMULATION

Here we simulate the failure of the fiber bundle model
in one and two dimensions—the one-dimensional case is
idealized but the simplest one, while the two-dimensional
case is more realistic and has been used to model failure
in fibrous materials (e.g., fiber reinforced composites) for
many years [27–30]. We choose the failure thresholds of the
fibers from a distribution of the form p(x) ∼ 1/x within a
range [10−β : 10β]. For high values of β, the distribution
becomes very broad, making the system a highly disordered
one. Physically, this implies varying strength of impurities in
the system, that can significantly influence the overall critical
strength of the system. Following the failure of a fiber, the
load on the failed fiber is redistributed uniformly up to a
distance R. In one dimension, this is simply R surviving
neighboring fibers on either side of the failed one. In two
dimensions we search along positive and negative x and y

axes and go up to a distance x+,x−,y+, and y− until R

surviving neighbors are found along each direction (see Fig. 1).
We then redistribute the load within the rectangular region
(x+,y+), (x−,y+), (x−,y−), (x+,y−) (assuming the origin at
the failed fiber). Of course, there can be other choices, for
example, a circular region of radius R. While that could work

FIG. 1. The load redistribution region for a finite range R is
shown for the one-dimensional and two-dimensional versions of
the model. The intact fibers in the shaded region (denoted by filled
circles) are affected by the load redistribution following a failure of a
fiber (denoted by a cross), while the empty dotted circles are broken
fibers and empty circles outside the region are sites of fibers that
are not affected by this event. For a more general power-law load
redistribution (not shown), however, all intact fibers are affected but
the shared load varies inversely with the distance from the broken
fiber.
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well for higher values of R, for smaller values there could
be situations where there were no surviving fibers within that
region. Moreover, such details are unlikely to affect the scaling
behavior, which is also evident from the fact that our prediction
matches well with power-law load redistribution studied in
Ref. [33].

With changes in these two parameters (β and R) we get the
different failure modes of the model. We will first describe the
phase diagram to explain the different modes. Subsequently
we will discuss the methods of drawing the boundaries and
relate them to previous numerical and experimental attempts
of interpolations.

III. NUMERICAL RESULTS

Numerical results are produced for different system sizes
over wide disorder and stress release ranges. Six different
regions are observed through numerical simulations with
individual modes of failure.

A. The R − β plane

Intuitively, we expect a nucleating failure for low values of
R and β. This resembles brittle failures of perfectly crystalline
structures. The failure thresholds of each part of the system
are almost the same, therefore an initial failure and subsequent
load concentration around it (due to low R values) compels
the subsequent damages to be near that initial damage and
it will continue to grow. Thus small R and β imply high
spatial correlation in damage. This damage nucleation can be
prevented by either redistributing the load of a failed fiber to
a relatively large distance, or by increasing the disorder such
that the nearby fiber can have a high failure threshold which
compels distant fibers to fail first.

On the other hand, the higher the number of fibers break due
to stress redistribution, the higher is the temporal correlation
(we will present quantitative measures later). The temporal
correlation in damage, i.e., avalanches, also behaves similarly
with R and β. Small R and β imply higher correlation. The
difference is that the temporal correlation does not vanish at
the same values of R and β as the spatial correlation. The
phase diagram (Fig. 2), therefore, has regions where temporal
correlation exists without spatial correlation, hence giving
interesting phases for the model.

B. Description of the phases

Below we first describe each of the phases depicted in
Fig. 2 and then describe the quantitative measures for drawing
the boundaries between the phases.

1. B: Brittle-nucleating

In this region, as soon as the weakest fiber is broken,
the entire system collapses starting from damage nucleation
happening next to the failed fiber. This is a brittlelike failure
(like in ceramics, say) and has both temporal and spatial
correlations. The avalanche is a catastrophic failure here, with
size ∼L.
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FIG. 2. The figure shows all the regions on the R − β plane for
(a) 1D and (b) 2D bundles. B and D are brittle regions and show abrupt
failure. A and C show quasibrittle response. The only difference is,
in regions A and B, the rupture process is spatially correlated. In
regions E (spatially uncorrelated) and F (spatially correlated), the
failure process is mainly dominated by the stress increment.

2. D: Brittle-percolating

The system here also collapses following the breaking of the
weakest fiber, but as R is large enough, the subsequent damage
is spatially uncorrelated, i.e., multiple damage nucleation
zones are formed.

3. A: Quasi-brittle-nucleating

In this region, the system fails after multiple stable states,
hence the nature of failure is quasibrittle. In this region, an
apparent random failure eventually forms a spatially correlated
failure, i.e., the system begins with a scale-free avalanche
distribution, but for larger systems the final failure is nucleation
driven (see Refs. [45,46] for electrical analog).

4. C: Quasi-brittle-percolating

This is the region where the R and β combination is
such that although the spatially correlation has vanished, the
temporal correlation exists. This is the region with scale-free
size distribution (exponent −5/2 [2]) of the avalanches.

5. E: High disorder limit

In this region, neither the spatial correlation nor the
temporal correlation exists. As can be seen, this region appears
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FIG. 3. The configurations of the failures in one dimension for
different values of R and β. The x axis is time and the y axis is
the whole system. Zero stress implies broken fibers. For different
values of the parameters the nucleation phenomenon can be clearly
seen. The difference between the avalanche and percolative failures
is not apparent from the snapshot, which will become clearer with
the quantitative analysis in the following section.

even for very low R values, given the disorder distribution is
broad enough (high β).

6. F: Temporally uncorrelated region

In this region the temporal correlation in rupturing fibers
vanishes. Since the spatial correlation still exists, the failure
happens in a nucleating manner.

C. Visualizing the failure modes

Before we go to the description of the methods for drawing
the phase boundaries, let us first look at the various failure
modes described above. The temporal configurations of the
damages and stress profiles can give a qualitative idea of
the different modes, which we will later describe in the
quantitative forms. In one dimension, it is easier to see the full
temporal evolution of the damages and stress concentrations.
In Fig. 3 we plot the time evolution of the model for different
ranges of the R,β parameters. The x axis is the time, and
in the y axis the temporal stress profiles of the system are
shown; zero stress implies broken fibers. For low values of
β and R, we see clear nucleation, which eventually engulfs
the whole system. For slightly higher values, we see initial
random failures, but in time a nucleation center grows, until
the whole system collapses. For high values of β and R, on
the other hand, there is no nucleation, and the damage profile
is rather random in space. For this qualitative picture, it is
not possible to see the distinctions between the temporally
correlated failures for high R and intermediate β values, and
the percolative failure for very high β values. For that we need
to look at the more quantitative measures described below.
But this gives a pictorial sense of the damage profile and the
dynamics prior to failure in the model for different ranges of
values of R and β.

FIG. 4. The different modes of failures for two dimensions are
shown in terms of the stress profile at various times prior to failure in
a 100 × 100 lattice, for different R and β values. The black regions
are broken fibers. From top to bottom the modes are avalanche,
percolative, brittle, and nucleating. Along the horizontal axis, snaps
for different time steps are shown. The times are not equispaced for
different modes. In the avalanche mode (γ = −1.0, β = 0.6), the
time steps shown are 415, 568, 630, and 676. For the percolating
region (γ = −6.0, β = 2.5), the steps are 83, 199, 269, 385. For the
brittle region (γ = −3.0, β = 0.1) 99, 100, 101, 102. Finally, for the
nucleation mode (γ = −6.0, β = 0.5), the time steps are 92, 165,
203, and 215. The stress profiles and damage configurations give a
qualitative idea about the different failure modes. For the avalanche
mode in the top, there is no spatial correlation in damage and the
stress profile is more or less uniform. The similar feature can also be
seen for the percolative failure, but in general with higher stress due
to higher disorder. For the brittle failure the stress is uniform, too, and
the failure is very abrupt. For the nucleation, a stress concentration
in the spatially correlated damage region can clearly be seen.

In two dimensions, it is harder to see the temporal effects for
obvious reasons. Nevertheless, in Fig. 4 we plot the stress or
damage profile of the system for various modes of failures. The
horizontal axis snaps at different times. Vertically from top to
bottom we show the failure modes of avalanche, percolation,
brittle, and nucleation. It is to be noted that the snaps are not
in equal time intervals. In the avalanche process, we see that
there is no spatial correlation of the damages and the stress
profiles are more or less uniform. In the percolation process,
too, there is no spatial correlation in damage, but the stress
values here go to much higher values, since the disorder is very
high and there are many strong fibers. The principal distinction
between the brittle region and the nucleation region is in the
time scales. While in the brittle region the snaps are a unit time
step apart, in the nucleation regions they are much further apart.
It shows that in the brittle region the whole system collapses
suddenly. On the other hand, in the nucleating region, the
initial damages were random. But at later times one damaged
area starts growing, due to the high stress concentration at
its boundary, which can also be clearly seen. This gives a
qualitative idea about the phases of failures, which we will now
discuss more quantitatively in terms of the phase boundaries.
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FIG. 5. The variations of number of patches per fiber (np) are
shown for the constant range (R) and different strengths of disorder
β [(a)–(c) for one dimension and (g)–(i) for two dimensions] and
for the constant strength of disorder and different ranges [(d)–(f) for
one dimension and (j)–(l) for two dimensions] with the fraction of
broken fibers (1 − U ). It can be seen that for both high R and high
β values, the curves merge with the ones obtained for completely
random failures. The two limits, however, differ in terms of dynamics,
as discussed in the text.

D. Description of the phase boundaries

The various phases described above are separated by phase
boundaries drawn on specific criteria. We will describe those
now.

1. Quasi-brittle-percolating (A)–quasi-brittle-nucleating
(C) boundary

A general way to determine spatial correlation is to monitor
the cluster density with the fraction of broken fibers. Figure 5
shows the variation of cluster density np (number of clusters
divided by system size) with the fraction of broken bonds
1 − U , at different R and β values, for both one and two
dimensions. In one dimension, the number of clusters of
broken fibers is simply the number of side-by-side broken
and unbroken fibers present. If U is the fraction of surviving
fibers at any time, then for complete random failure, the
number of side-by-side broken and unbroken fibers will be
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FIG. 6. For the two-dimensional model, the scaling of the area
under the patch density versus fraction of failed fiber curves (shown
in Fig. 5) with R are shown. The linear scaling in the x axis does
not show satisfactory data collapse. The best collapse is seen when
b = 0.85. The unscaled data are shown in the inset.

U (1 − U ) (normalized by system size). Any deviation of
np from this function would indicate spatial correlation. A
quantitative measure for such departure is the area under this
np v/s (1 − U ) curve and compared with the situation when
the rupture is completely uncorrelated. In case of uncorrelated
failure (for high R or β) the area under the curve will be
A1D = ∫ 1

0 U (1 − U )dU = 1/6. At low R and β, the area
under the curve deviates from A1D. For two dimensions the
situation is qualitatively similar. But the general shape of the
curve for random failure is not known. However, there are
many numerical studies in terms of random site percolation
(see Ref. [47] and references therein) that looks at density of
patches under random occupations (see Fig. 5).

The deviation of the np v/s 1 − U curves from the random
case determines this boundary. This gives a crossover scale
Rc, which scales with the system size as L2/3 [48] in one
dimension. In two dimensions the scaling changes to

Rc ∼ Lb, (1)

with b = 0.85 ± 0.01. Figure 6 shows the scaling of Rc with
system size L in a two-dimensional fiber bundle model. The
areas (A2D) under np vs 1 − U curves (see Fig. 5) for different
L values are observed to scale with RL−b, where b = 0.85.

One interesting implication of the scaling is, when the
load sharing is a power law, the effective range of the
load redistribution can be shown to be Reff ∼ L3−γ , where
γ is the power of the load redistribution process. This
can be understood through the following calculation. With
the power-law redistribution rule an effective range can be
defined as

Reff = 〈r〉 =
∫ L

1
rP (r)2πrdr = 2 − γ

3 − γ

L3−γ − 1

L2−γ − 1
, (2)

where P (r) ∼ 1/rγ . For γ < 2, Reff ∼ L, implying mean-
field regime. Also, for γ > 3, Reff ∼ const., therefore it is
always the local load sharing type. However, for 2 < γ <

3, Reff ∼ L3−γ in the large system size limit. Since Rc ∼ Lb,
to get the crossover value for γ we have to compare Reff(γc) ∼
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FIG. 7. The moment ratios of the cluster size distribution of the
broken fibers in a two-dimensional power-law load sharing fiber
bundle model are shown for different system sizes with γ . The
peaks are consistently at γ > 2. The threshold distributions are either
uniform, or power-law with β-dependent cutoff, as mentioned.

Rc, giving

γc = 3 − b. (3)

But b < 1(=0.85), giving γc > 2(2.15). This explains an
apparent result for γc > 2 [33], which can now be claimed
with much higher numerical accuracy.

To verify this point, we have performed numerical simu-
lations with power-law load redistribution. We have studied
the cluster statistics of the broken fibers in the final stable
configuration prior to complete failure (as was done in the
paper by Hidalgo et al. [33]). We measured the moments
of the cluster size distributions n(s). The kth moment is
defined as

mk =
∫

skn(s)ds. (4)

We have plotted the moment ratio m2/m1 in Fig. 7. The peaks
of the curves occur consistently above γ = 2 for different
system sizes and threshold distributions.

2. Brittle-nucleating (B)–brittle-percolating (D) boundary

The nature of this crossover line is the same as before and is
drawn by monitoring the cluster density. The crossover length
scale Rc now scales nonuniversally with L, as Rc ∼ Lζ with
ζ = ζ (β) [49].

3. High disorder nucleating (F)–high disorder
percolating (E) boundary

This boundary is also drawn from the same measure as the
B-D boundary but the crossover scale here is independent of
the strength of the disorder (Rc ∼ L2/3).

4. Brittle-percolating (D)–quasi-brittle-percolating (C) boundary

This class of boundaries separate brittle-to-quasibrittle
transitions. Particularly, in the brittle region, the breaking of the
weakest fiber will cause the breakdown of the entire system.
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FIG. 8. The variation of average avalanche size 〈s〉 with disorder
for different L values (in the mean-field limit). (Middle) 〈s〉/L vs β

for 103 < L < 104.

Hence, by measuring the fraction of surviving fibers in the
last stable configuration before breakdown (Uc), we track the
transition from the brittle (with Uc = 1) to the quasibrittle
(with Uc < 1) region. A phase transition occurs only across
this line [44,50–52], with no system size dependence of the
transition line.

5. Brittle-nucleating (B)–quasi-brittle-nucleating (A) boundary

This boundary is also drawn with the same criterion that
leads to the D-C boundary. There is, however, a system size
dependence of the line and it gets shifted to higher β value
with increasing system size in an inverse logarithmic manner
(see Ref. [53]), for a particular stress release range.

6. Quasi-brittle-percolating (C)–high disorder
percolating (E) boundary

This boundary separates the completely uncorrelated phase
from the temporally correlated quasibrittle region C. We
evaluate it in two different ways and the results match for the
two cases. Figure 8 shows the behavior of average avalanche
size 〈s〉 in the mean-field limit against disorder β and for
system sizes ranging in between 103 and 104. We have also
discussed the scaling of the average avalanche size 〈s〉 ∼ Lξ

(see Fig. 9). In the quasibrittle region, ξ is a (decreasing)
function of β and eventually 〈s〉 becomes independent of L in
the high disorder limit E. The β value at which 〈s〉 becomes
system size independent gives the boundary between C and E,
because system size independence signifies complete removal
of correlation in the system.

Different regions, according to Fig. 8, are described below
(see Fig. 9 in support of the following behavior):

(1) For β < β1, the failure process is brittle like abrupt.
〈s〉 ∼ L, since all the fibers break in a single avalanche.

(2) For β1 < β < β2, 〈s〉 ∼ Lξ , where ξ is an decreasing
function of β and reaches to a very low value at β2 (shown in
main text). In this region the bundle breaks in many avalanches
like quasibrittle material.
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FIG. 9. (a) System size effect of 〈s〉 at various disorder values for
a particular stress release range (say R = 100). 〈s〉 ∼ Lξ , where ξ is
decreasing function of β. (b) ξ as a function of disorder β.

(3) For β2 < β < β∗, 〈s〉 = k(>1). Here k is function of β

only and independent of L. Very few avalanches are observed
in this region.

(4) The vertical line (see Fig. 8), drawn at β = β∗, shows
an extreme limit of temporal correlation. The variation of β∗
with R is shown in Fig. 10. With high local stress concentration
(low R value), β∗ is around 1.7. With increasing R, as the
model enters the mean-field limit, β∗ saturates at 1.3. In the
region β > β∗, the fibers break only by the stress increment,
giving 〈s〉 = 1.

A second way to approach the problem is to measure the
number of stress increment Ns and the number of times Nr ,
stress were redistributed during the entire time of survival of
the system. Such interplay of Ns and Nr is shown in Fig. 11.
When Ns outruns Nr , i.e., more fibers break due to the stress
increment (without spatial or temporal correlations) than due
to stress redistributions, the uncorrelated region E is obtained.
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FIG. 10. Behavior of β∗ with stress release range R. In the green
region, there is no temporal correlation between the rupturing fibers.

FIG. 11. (a) Variation of Ns and Nr as a function of β for
L = 104. (b) System size effect of β2, as the model approaches the
thermodynamic limit. (c) System size scaling of (Ns − Nr ) around
β = β2. The inset shows the unscaled behavior.

We find that the disorder strength β2 when this happens scales
with the system size as β2(L) = β2(∞) + L−α , with α = 1/2
(see Fig. 11). Also, the system size scaling of (Ns − Nr ) is
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FIG. 12. System size effect of β2 for different stress release
ranges, for the two-dimensional model. (a) Variation of Ns and Nr

as a function of β for L = 102. (b) System size effect of β2, as the
model approaches the thermodynamic limit. (c) System size scaling
of (Ns − Nr ) around β = β2. The inset shows the unscaled behavior.
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FIG. 13. System size effect of β2 for different stress release
range R.

given by

(Ns − Nr ) = Lα�[(β2 − β2(L))Lγ ], (5)

with α = γ = 1/2. The β2 obtained in this way matches
with the boundary obtained from the scaling of the average
avalanche size before. Hence we conclude that β2 is the range
of disorder beyond which the system becomes completely
uncorrelated (region E).

Figure 12 shows this system size scaling of (Ns − Nr )
in two dimensions. The scaling shown in (5), holds the
same in two dimensions also with respective exponents
α2D = γ2D = 1. This in turn establishes the scaling of β2 as
β2(L) = β2(∞) + 1/L.

7. Quasi-brittle-nucleating (A)–high disorder
nucleating (F) boundary

This boundary is drawn with the same criterion used to
draw the boundary between C and E. Across this boundary
the temporal correlation vanishes but the spatial correlation
still exists. At a certain stress release range R, β2 is not being
observed to change much while we alter the system size (see
Fig. 13). β2 shows a scale-free behavior with L but with an
extremely low exponent that suggests a very very weak system
size dependence of β2.

Finally, using the criteria outlined above, we arrive at
the quantitative phase diagram for the fiber bundle model in
one and two dimensions (see Fig. 2). Almost all the studies
in the fiber bundle model fall in some point of this phase
diagram. The most studied region being region C, which is also

historically the earliest. Subsequently region A was studied,
which is qualitatively different from region C in the sense that
we no longer observe scale-free avalanche statistics here. We
provide a scaling criterion to separate these two regions.

IV. DISCUSSIONS AND CONCLUSION

In fracture of disordered solids, the two main factors
determining the mode of failures are the range of interaction
and the strength of disorder in the solids. It is known that
higher disorder produce higher precursory events [5] in a
solid prior to failure, which is important in predicting catas-
trophic breakdowns. A transition from brittle to quasibrittle
modes of failure was observed both theoretically (see, e.g.,
[44,50,51,54,55]) and experimentally (see, e.g., [7,56]) where
the strength of disorder played a major role. However, the
range of interaction, i.e., the region affected by the load
redistribution following a local failure also plays a crucial
role in determining the effect of disorder strength. Generally,
the compliance of the solid, determined by its elasticity, effect
of agglomerate sizes, correlation or plastic deformation, etc.,
determines the range of interaction. A localized redistribution
promotes stress or damage nucleation whereas the disorder
promotes spreading of damage. It is the interplay between the
two that gives many interesting effects in length and time
scales in various failure modes for fracture of disordered
solids. In this work we have addressed the interplay of these
two effects using a random fiber bundle model in one and
two dimensions. In isolation some of the limiting cases were
studied before. But the full range of localization of strength
and width of the disorder distribution gives various phases and
boundaries across which the relative influence of these two
competing effects vary. In particular, we recover by increasing
the range of interaction, a region with no spatial correlation,
where the temporal correlation still exists (avalanche region
C) that survives in the large system size limit [see Eq. (1)],
which was absent in the random fuse model. In that model
the eventual nucleation was always dominant in the large
system size limit (equivalent of region A). Experimentally,
of course such regions are observed for many decades (see
[1] for detailed discussions). Furthermore, we are also able
to verify the unusual scaling of the interaction range that
leads to nucleation. The fact that γc > 2 in Eq. (3) (b < 1)
has interesting consequences particularly for fracture, given
the inverse square interaction is usually expected for elastic
solids. The criteria for drawing different phase boundaries and
the size scaling in each of those phases are summarized in

TABLE I. Properties of different regions.

Properties

Region Abruptness Failure pattern Average avalanche size 〈s〉 Ns v/s Nr

B Abrupt failure, Uc ≈ 1 Nucleating 〈s〉 ∼ L Ns = 1,Nr > Ns

D Abrupt failure, Uc ≈ 1 Percolating 〈s〉 ∼ L Ns = 1,Nr > Ns

C Nonabrupt failure, Uc < 1 Percolating 〈s〉 ∼ Lξ : ξ decreases with β Ns > 1,Nr > Ns

A Nonabrupt failure, Uc < 1 Nucleating 〈s〉 ∼ Lξ : ξ decreases with β Ns > 1,Nr > Ns

E Nonabrupt failure, Uc is very low Percolating 〈s〉 = Constant (>1) Ns > Nr

F Nonabrupt failure, Uc is very low Nucleating 〈s〉 = Constant (>1) Ns > Nr
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TABLE II. Criteria for drawing the boundaries.

Boundary Criteria

B-D or A-C or F-E The area A under np v/s (1 − U ) plot approaches the area Arand for random failure: (Arand − A) < 10−4.
D-C or B-A Critical fraction of unbroken bonds deviates from 1, Uc < 1.
C-E or A-F ξ reaches zero and 〈s〉 becomes independent of L; also where Ns outruns Nr .

Tables I and II. It is also to be noted that the phase boundaries
sometimes have dependence on system size [see, e.g., Eq. (1)],
therefore appropriate finite size scaling needs to be done (as
are mentioned for applicable cases) in order to translate the
results into different system sizes.

There have been many studies over the years in interpolating
between various phases of the fiber bundle model described
above. Among these, most efforts were concentrated in
interpolating between regions A and C, because this region
gives the critical interaction range below which the eventual
failure will be nucleation dominated, a much debated topic in
fracture [4]. The crossover from A to C was also accessed in
Ref. [57] by tuning the elastic modulus of the bottom plate
of the model, which in turn controls the range of interaction.
In Ref. [44] the authors moved from region D to C in the
mean-field limit. The value of β was exactly calculated in the
mean-field limit [50]. Similar transitions between D and C
phases for a generic class of disorder distribution were also
noted in Refs. [51,52].

Many experimental observations, like brittle (regions B
and D) to quasibrittle-ductile (regions A and C) transition
[7], scale-free size distribution for acoustic emission [8],
subsequent damage nucleation [8], etc., can also be explained
by this phase diagram. Such properties are characteristic

of region A, where the so-called “finite size criticality”
[46] is observed, i.e., the system starts off giving scale-
free avalanches, but the final failure is nucleation driven.
Unlike the random resistor network [45], where nucleation
always dominates in the final failure mode, in the fiber
bundle model phase diagram, there exists a temporally
correlated failure mode that sustains in the thermodynamics
limit.

In conclusion, we have obtained a phase diagram for
failure of disordered solids using the random fiber bundle
model. We describe all distinct modes of failure with varying
disorder (β) and stress release range (R). Disorder affects
the abruptness of the failure process while the stress release
range influences the correlation between successive rupturing
of fibers. Interplay of these two effects leads to spatial
and/or temporal correlation or random failures. The resulting
phase diagram gives a framework for understanding previous
theoretical and experimental attempts to interpolate between
these different failure modes.
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