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Thermalized formulation of soft glassy rheology
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We present a version of soft glassy rheology that includes thermalized strain degrees of freedom. It fully
specifies systems’ strain-history-dependent positions on their energy landscapes and therefore allows for
quantitative analysis of their heterogeneous yielding dynamics and nonequilibrium deformation thermodynamics.
As a demonstration of the method, we illustrate the very different characteristics of fully thermal and nearly
athermal plasticity by comparing results for thermalized and nonthermalized plastic flow.
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I. INTRODUCTION

As far back as the work of Ree and Eyring [1], plastic
deformation of solids has been modeled as being controlled
by multiple relaxation processes with different characteristic
rates. The energy landscape picture of Stillinger et al. [2,3]
allows it to be simultaneously viewed as being controlled by
energy minima of broadly distributed depths and statistical
weights. Recently, a multitude of simulation studies have rather
conclusively shown that structural glasses can be regarded
as being composed of localized “plastic zones” with a wide
range of thermodynamic and mechanical stabilities [4–12].
“Soft spots” have smaller elastic moduli, lower activation
energies, higher vibrational entropies, and yield first under
deformation, while “hard spots” follow opposite trends [4–12].
Modern theories of plasticity such as soft glassy rheology
(SGR) [13–15] and shear transformation zones (STZ) [16,17]
connect the energy-landscape and plastic-zone ideas, viewing
amorphous solids as being composed of spatially localized
plastic zones that directly correspond to basins in systems’
energy landscapes with characteristic relaxation rates deter-
mined by the heights of their associated energy barriers. Recent
studies [18–24] have shown that the STZ and SGR theories
are thermodynamically consistent and therefore amenable to
rigorous nonequilibrium-thermodynamic treatment. However,
a particularly important open problem [18–24] is determining
the degree to which plastic flow is thermalized, i.e., the degree
to which the “slow” degrees of freedom corresponding to
plastic zone configurations are in equilibrium with the “fast”
degrees of freedom [18,19] corresponding to localized motions
of systems’ constituent atoms and molecules. Here we present
a version of SGR theory that includes fully thermalized strain
degrees of freedom and plastic flow.

Consider a system composed of plastic zones of activation
energy U . Standard SGR theory, following the trap model
[25,26], accounts for glassy systems’ elastic heterogeneity
by assuming these energies are exponentially distributed,
i.e., by employing an exponential energy landscape ρ(U) =
Ũ−1 exp(−U/Ũ). If the typical zone’s activation energy Ũ =
αkBTg , then one can define the reduced variable u = U/kBTg

and obtain the convenient form ρα(u) = α−1 exp(−u/α).
Under an applied strain rate ε̇, these zones either deform
elastically or yield. Over a time interval �t , zones yield with
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probability 1 − exp[−�t/τ (u,εel,x)], where

τ (u,εel,x) = τ0 exp

[
u

αx

]
exp

[
−Ku(εel)2

2αx

]
(1)

is their characteristic relaxation time, εel is their elastic
strain, Ku is their dimensionless elastic modulus, and x is
the dimensionless “noise temperature.” The model exhibits a
glass transition at x = 1 [13,14]. Note that while α has—for
convenience—been set to unity in most published theoretical
work [13–15,21–23], the distributions of plastic-zone activa-
tion energies in model glasses [4–12] indicate Ũ > kBTg and
hence α > 1 for many systems.

In SGR theory, when zones yield, they are removed
(annihilated) and are typically replaced by new unstrained
zones, with values of u drawn randomly from ρα(u). However,
as noted in the original papers [13,14], there is no physical
reason to assume plastic zones are either initially unstrained
or are replaced by new unstrained zones upon yielding. These
assumptions are merely heuristics adopted for simplicity that
have been followed in most subsequent work [21–23,27–30].
Recent simulations [9,12] have suggested that plastic zones
often survive through multiple yielding events and hence are
not always annihilated, but that their elastic strains (εel) and
spring constants (K) do in general change upon yielding.
One simple way to treat such effects theoretically is to
assume that zones are annihilated upon yielding, but that
the newly created zones replacing them are drawn from an
energy landscape ρ∗(u,εel) that accounts for strain energy. For
the nearly athermal systems for which SGR was originally
formulated (e.g., foams and pastes [13,14]), it remains unclear
how to construct such a landscape. For thermal systems such
as metallic and polymeric glasses [31,32], however, ρ∗(u,εel)
can be inferred from thermodynamics. Here we adopt this
approach, extending SGR to account for strain degrees of
freedom in a thermodynamically consistent fashion and to treat
thermalized plastic flow. Our method’s continuous formulation
allows direct calculation of systems’ nonequilibrium, strain-
history-dependent positions on their energy landscapes, which
in turn allows standard statistical mechanics to be employed
for follow-up calculations.

II. THERMALIZED VERSION OF SGR THEORY

Following other recent work [21–23], we formally treat
amorphous materials (“systems”) as ensembles of plastic
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TABLE I. Comparison of the notation used in this work to
the notation used in Ref. [14]. Note that the present model is
mathematically equivalent to that discussed in Sec. IV C of Ref. [14]
if one sets ρ(E) = (1 − E/α) exp(−E), k(E) = 2E, and q(�; E) =
ρ(E) exp[−k(E)�2/2x]θ (E,�).

Quantity Ref. [14] Present work

Scaled activation energy E u/α

Scaled elastic strain � εel/εy
u

Flow factor q(�; E) f (u,εel,T )
Scaled noise temperature x kBT /Ũ

zones. Material disorder is encoded in the functional form of
ρ(u). There are no infinitely deep energy minima in a real glass.
For this reason (and for numerical convenience), we introduce
a cutoff at umax = α2, and impose it by multiplying ρα(u)
by a cutoff function Cα(u) = 1 − (u/α2). The use of such a
cutoff function is supported by the extreme-value statistics
of low-energy states in disordered systems [33]. Physically,
Umax = α2kBTg is the activation energy of the most stable
plastic zone configurations that are compatible with the given
system’s microscopic interactions; recent soft-spot studies
[7,10,11] suggest α2 � 10 for many systems. The resulting
zone depth distribution (i.e., the density of u-zones on the
glass’ energy landscape) is

ρ(u) = [1 − (u/α2)] exp(−u/α)

v0[α − 1 + exp(−α)]
, (2)

where v0 is the typical volume of a plastic zone. For simplicity
(and following conventional SGR theory [13–15,21–23]), we
assume that (i) zones are structureless so that the strain-
dependent density of states ρ∗(u,εel) is a function only of u,
i.e., ρ∗(u,εel) ≡ ρ(u); and (ii) zone volumes are independent
of u and εel.

Suppose that the occupation probability of zones with
activation energy U and elastic strain εel is p(u,εel). The
statistical weight of such zones is w(u,εel) = ρ(u)p(u,εel).
This construction is obviously amenable to thermodynamic
treatment. The average value of any material property ζ is
given by

〈ζ 〉 =
∫ α2

0

∫ ∞

−∞
ζ (u,εel)w(u,εel)dεeldu. (3)

For arbitrary x, the thermodynamics of SGR-model systems
are complicated, but still tractable [21–23]. Here we will
consider the simpler case where the typical energy scale
X = αkBTgx associated with SGR-style “noise” is thermal in
origin, i.e., X = kBT . Zones’ relaxation time [inverse yielding
rate; Eq. (1)] therefore becomes

τ (u,εel,T ) = τ0 exp

[
Tg

T
u

]
exp

[
−Tg

T

Ku(εel)2

2

]
. (4)

Thus the mapping of τ from standard SGR [13,14] to the
present theory is quite simple: x is just the ratio of the typical
thermal energy kBT to the typical zone activation energy Ũ =
αkBTg . See Table I for a further discussion of relations between
the notation employed herein and that of Ref. [14].

We assume that systems’ strain degrees of freedom are
thermalized and therefore most zones have nonzero stress and
strain even in undeformed systems. The energy of a strained
zone is Eu(εel) = −U + Ku[εel]2/2, where Ku = kBTgKu.
Systems’ partition functions are given by

Z =
∫ α2

0

∫ ∞

−∞
ρ(u) exp[−β(Eu(εel) + α2kBTg)]dεeldu, (5)

where β = (kBT )−1. In Eq. (5), zones with activation en-
ergy U and elastic strain εel have a Boltzmann factor
fBoltz(u,εel,T ) = exp[−β(Eu(εel) + α2kBTg)]; their equilib-
rium occupation probability is peq(u,εel,T ) = fBoltz(u,εel)/Z .
Thus, in unstrained systems, the equilibrium statistical weight
of such zones is weq(u,εel,T ) = ρ(u)peq(u,εel,T ).

Here we will consider an idealized, highly aged initial con-
dition wherein systems have reached thermal equilibrium, i.e.,
we assume the initial zone statistical weights are w(u,εel) =
weq(u,εel,T ). Numerical tractability requires assuming that
the maximum magnitude of the elastic strain εel in unstrained
systems’ u-zones is δ(u). Then the thermalized initial condition
becomes

w(u,εel)=

⎧⎪⎨
⎪⎩

weq(u,εel,T ), 0 � u � α2 and |εel| � δ(u)

0, u > α2 or |εel| > δ(u).
(6)

Here and below, proper normalization of w(u,εel) is main-
tained by replacing the exact partition function [Eq. (5)]

with Z = ∫ α2

0

∫ δ(u)
−δ(u) ρ(u)fBoltz(u,εel)dεeldu and adjusting

weq(u,εel,T ) accordingly.
One obvious choice for δ(u) is zones’ zero-temperature

yield strain ε
y
u ; states with larger εel are unstable at all

temperatures [14]. Here we adopt this choice. We define
Ku = 2uk(u) so that plastic zones have spring constants
Ku = 2Uk(u) and their zero-temperature yield strains are
ε

y
u = 1/

√
k(u). For simplicity, here we choose k(u) = 400

in order to give all zones the same value of ε
y
u , specifically

ε
y
u = 0.05, a typical value for real metallic [31] and polymeric

[32] glasses. Zones with low u thus correspond to low-modulus
soft spots [5,6,8,9,12]. Note that other functional forms for
k(u) can be chosen to give other distributions of ε

y
u as

desired. For example, low-u zones can be made to yield at
smaller strains—as is typical of soft spots [6,9]—by choosing
k(u) ∝ u−1, which gives ε

y
u ∝ √

u.
The two most common experimental deformation protocols

are constant-strain-rate extension (or compression, or shear)
and constant-applied-stress creep. Here we will consider
the former since it is conceptually simpler [15]. We will
discuss a scalar version of our theory, but all equations and
results presented below are straightforwardly generalizable
to tensorial stresses and strains using methods like those
described in Refs. [23,34]. The macrosopic strain applied to
the system is ε = ε̇t . Then the total configurational energy
density E(ε) of strained systems is [23]

E(ε)

kBTg

=
∫ α2

0

∫ δ(u)+ε

−δ(u)
[k(u)(εel)2 − 1]uw(u,εel)dεeldu. (7)
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In SGR theory, zones are structureless and have no internal
entropy [14]. From the statistical definition of entropy S =
−kB〈ln(p)〉, strained systems’ configurational entropy density
is given by [21,23]

S(ε)

kB

= −
∫ α2

0

∫ δ(u)+ε

−δ(u)
ln[p(u,εel)]w(u,εel)dεeldu. (8)

Since X = kBT , systems’ Helmholtz free-energy density
F (ε) satisfies the usual relation F (ε) = E(ε) − T S(ε).
Note that this definition of entropy is chosen to give
S(ε) = kB ln[�(ε)] in the T → ∞ limit, where �(ε) =
(�u�ε)−1

∫ α2

0

∫ δ(u)+ε

−δ(u) ρ(u)dεeldu is the volume and �u and
�ε are the “quanta” of phase space. In any discretized
calculation, in the limit of small �u and �ε, S(0) = S0 −
b(T ) ln(�x�ε), where S0 is a reference value and b(T )
can be determined by comparing unstrained systems with
different �u�ε [with b(0) = 0 and b(∞) = 1]. Determining
“natural” values of �u and �ε would require specifying the
distinguishability of basins of different u and εel, which is
beyond our scope; here we choose values of �u and �ε

that give clearly-converged results for S(0) + ln(�u�ε) in
the high-T limit.

We evolve systems forward in time using the following
plastic flow rule:

dw(u,εel)

dt
= −ε̇

∂(u,εel)

∂εel
− w(u,εel)

τ (u,εel,T )

+ f (u,εel,T )
∫ α2

0

∫ δ(u)+ε

−δ(u)

w(ũ,ε̃el)

τ (ũ,ε̃el,T )
dε̃eldũ.

(9)

Here τ−1(u,εel,T ) is the yielding rate of u-zones [Eq. (4)], and
the factor f (u,εel,T ) is given by

f (u,εel,T ) = ρ(u)peq(u,εel,T )θ (u,εel)∫ α2

0

∫ δ(u)
−δ(u) ρ(u)peq(u,εel,T )dε̃eldũ

, (10)

where

θ (u,εel) =
{

1, |εel| < δ(u)

0, |εel| � δ(u).
(11)

This form of f (u,εel,T ) ensures that newly created zones
populate stable [Eu(εel) < 0] configurations according to their
equilibrium occupation probabilities. A similar f (u,εel,x) was
proposed in Ref. [14] and was used to calculate the linear
viscoelastic moduli G∗(ω); here we extend this method to
nonlinear response.

The factors of peq(u,εel,T ) in Eq. (10) reflect the fact that
the present theory is fundamentally thermal in nature, and
is designed to treat thermalized plastic deformation. More
specifically, the inclusion of the peq(u,εel,T ) terms reflects
our assumption that plastic flow is thermalized by the same
reservoir that maintains constant T . Since we assume fully
thermalized flow, we need not and do not adopt a dual-
subsystem, two-temperature nonequilibrium-thermodynamic
ansatz like those employed in Refs. [18–24]; cf. Sec. V.
Note that Ref. [29] similarly employed x = kBT /Ũ to treat

plastic deformation of thermal glasses, but did not adopt a
fully thermalized plastic flow rule including thermalized strain
degrees of freedom as we have done here.

Two other technical points relating to differences between
our theory and standard SGR should be mentioned. First, in
real systems, “frustration” [14] effects arising from correla-
tions between spatially neighboring plastic zones may inhibit
creation of new zones for which the sign of εel is opposite
that of ε. Strong frustration would make a nonsymmetric
f (u,εel,T ) more appropriate for describing plastic flow.
However, since proper treatments of frustration are presumably
both complicated and system specific [14], they have rarely
been treated within SGR theory, and are not considered here.
Second, we do not allow for the (very real [9,12]) possibility
that the number of plastic zones in a system changes during
deformation, because any such changes are likely to be highly
system specific and thus beyond the scope of the present effort.

Equation (9) usually cannot be solved analytically, so we
solve it numerically. To make the model computationally
tractable, we discretize the zone activation energies (ui =
i�u) and strains (εj = j�ε). This yields the evolution
equation

w(ui,εj ; tk) = w(ui,εj−1; tk−1)

[
1 − �t

τ (ui,εj−1,T )

]

+ f (ui,εj ,T ; tk−1)〈τ−1(ε)〉�t, (12)

where the time step �t = tk+1 − tk = �ε/ε̇ [35], and

〈τ−1(ε)〉 =
∫ α2

0

∫ δ(u)+ε

−δ(u)
w(u,εel)τ−1(u,εel,T )dεel (13)

is the average zone yielding rate. On the right-hand side
of Eq. (12), the first term indicates zones present at the
previous time step (t = tk−1) that did not yield, and the second
term indicates the creation of new zones with thermalized
strains. Since zones can yield at any time, the allowed
values of j at time tk are (−�i,−�i + 1, . . . ,�i + k), where
�i ≡ δ(ui)/�ε. Thus the allowed values of the elastic strain
εel are εj = (−�i,−�i + 1, . . . ,�i + k)�ε. The thermalized
initial condition [Eq. (6)] becomes

w(ui,εj ,t0)=

⎧⎪⎨
⎪⎩

weq(ui,εj )�u�ε, 0 � i � α2/�u

and −�i � j � �i

0, i >α2/�u or |j | > �i

.

(14)

Equation (12) is then integrated forward in time until ε reaches
its final target value εmax. A wide range of strain rates can
be treated at fixed computational cost because our choice of
time step (�t = �ε/ε̇) sets the required number of iterations
of Eq. (12), kmax = εmax/�ε, to be independent of ε̇. In
general, the computational cost of deformation runs scales
as (α2/�u)(εmax/�ε)2δ(α2). Here the numerical parameters
�u = 0.01 and �ε = 10−5 were chosen to be small enough
to achieve convergence of all results presented below. The
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C++ code employed for all calculations presented herein is
available online [36].

III. RESULTS FOR SYSTEMS’ MECHANICS,
DYNAMICS, AND THERMODYNAMICS

We now proceed to analyzing an example system’s mechan-
ics, dynamics, and thermodynamics using the above formulas.
Figure 1 shows results for α = √

8 systems deformed at a
high strain rate (ε̇ = τ−1

0 ) to a maximum strain εmax = 0.1.
With these parameters, deformation runs took no more than
8 hours on one CPU core. Results are shown for three
temperatures: T/Tg = 1/2, 3/4, and 39/40. The first two are
typical values of Troom/Tg for metallic and polymeric glasses,
while T/Tg = 39/40 is chosen to represent systems slightly
below Tg .

Panel (a) shows results for the elastic component of stress,

σ el(ε) =
∫ α2

0

∫ δ(u)+ε

−δ(u)
Kuε

elw(u,εel)dεeldu. (15)

Following standard SGR-theoretic practice [14], we focus on
this elastic term. Stress is simply an integral over contributions
from different zones that are coupled only through the trap-
model-style dynamics [Eqs. (9)–(12)] and thus interact only
weakly. The elastic response is temperature dependent because
systems at higher T lie higher on their energy landscapes,
i.e., the initial condition winit(u,εel,T ) = weq(u,εel,T ) increas-
ingly favors plastic zones with lower u and hence lowerKu as T

increases. Anelastic decrease of ∂σ/∂ε sets in at lower strains
and strengthens more with increasing ε at higher T . Yield
stresses σy decrease with increasing T , while yield strains
εy increase (Table II). These temperature dependencies are
relatively weak here because α2 � 1 and the applied strain
rate is high (ε̇τ0 = 1). Beyond yield, systems display dramatic
strain softening that—as in experiments [31,32]—weakens
with increasing T . Within the present theory, the reason that
strain softening weakens with increasing T is as follows: at
higher T , more zones yield at ε < εy , and hence fewer zones
are in low-stress (small-εel) states at ε = εpysm. At still larger
strains, a post-yield stress minimum of the type observed in
some metallic glasses [31,37,38] is present at ε = εpysm. This
minimum occurs because yielding releases a large fraction
of systems’ elastic strain, which then builds up again as
deformation continues. See the Appendix for a discussion of
how all of these effects vary with ε̇τ0.

Systems exhibit complex yielding dynamics. Panel (b)
shows the average zone relaxation time (inverse yielding
rate) 〈τ (ε)〉. 〈τ (ε)〉 decreases rapidly with increasing strain
as stress-activated plasticity becomes increasingly important,
passes through a minimum at ε � εy , increases again for
ε > εy , and then decreases again for ε > εpysm. All trends are
consistent with experimental observations [39–41] showing
that relaxation in real glasses often speeds up by orders of
magnitude near yielding, and can then slow down again upon
strain softening. Panel (c) shows the dynamical heterogeneity
�τ
〈τ 〉 =

√
〈τ 2〉−〈τ 〉2

〈τ 〉 of this relaxation. Heterogeneity increases

markedly with increasing strain for ε < εy , then decreases
again for ε > εy . The reason that heterogeneity increases is
that plastic flow populates zones with an increasingly wide
range of u and εel as deformation proceeds, especially when
many zones are yielding. Note that such effects can be finely
adjusted within the present model by varying the functional
forms of Ku and δ(u).

Experiments typically show [39–41] that heterogeneity
decreases during yielding and remains relatively low during
plastic flow. The different trends shown in panel (c) may arise
because currently available SGR theories lack any “facilita-
tion” mechanism. Mechanical facilitation is the speedup of
yielding that occurs in heterogeneous systems when zones
have a broad distribution of stresses [42]. Zones that carry
stresses much higher than the average value 〈σ 〉 yield faster
because their environments cannot maintain local mechanical
equilibrium (i.e., cannot force-balance such large stresses),
and zones that carry very low stresses may similarly yield
faster when 〈σ 〉 is large. The net effect is homogenization
of the yielding dynamics and of systems’ relaxation in
the post-yield, plastic-flow regime [39–42]. It would be
interesting in future work to add mean-field facilitation
(or a comparable stress-diffusion mechanism [43]) to SGR
theory.

In Eqs. (7)–(13), the zone populations w(u,εel) are strain-
history dependent. For systems that have undergone plastic
deformation, w(u,εel) �= weq(u,εel), and E(ε), S(ε), and F (ε)
are not thermodynamic state functions, but instead are inher-
ently nonequilibrium quantities. It is therefore worthwhile to
examine their evolution during deformation. Panels (d)–(f) of
Fig. 1 show F (ε), E(ε), and the entropic component of free
energy T S(ε). To facilitate comparison of systems at different
T , �F = F (ε) − F (0) and T �S = T [S(ε) − S(0)] are shown
rather than the bare values, and all quantities are scaled by
the characteristic energy Umax = α2kBTg . As expected, results
for F and E are quadratic in strain in the elastic regime,
reach maxima near εy , then decrease during strain softening as
massive zone yielding releases stored elastic strain energy. The
dominant contribution to ∂F/∂ε is energetic as long as ε̇〈τ 〉
is large. Thermalized flow [Eqs. (9)–(12)] creates new zones
with probabilities proportional to their equilibrium statistical
weights weq(u,εel,T ), and therefore acts to push systems
back toward their initial states, producing the negative ∂S/∂ε

for ε > εy . Note that similar calculations of S(ε) cannot be
straightforwardly performed in discrete-zone implementations
of SGR [27–30] because they do not explicitly determine
p(u,εel) as we do here.

Since the mechanical work W (ε) = ∫ ε

0 σ (ε′)dε′ satisfies
the first law of thermodynamics, its dissipated component
is simply Q(ε) ≡ W (ε) − �F (ε), where �F = F (ε) − F (0).
Figure 2 shows that as expected, Q(ε) is small in the elastic
regime, but grows rapidly at larger strains. Rapid growth
of Q(ε) begins in the anelastic regime, as “softer” [5,6,8,9]
zones (zones with lower activation energies and yield strains)
begin yielding. For εy � ε � εpysm, most mechanical work
is dissipated. One might naively suppose the large Q(ε) to
be at logical odds with the relatively small increase in S(ε).
However, this is not so, because the thermalized plastic flow
rule [Eqs. (9)–(12)] causes flow to be mostly into less-strained
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FIG. 1. Dependence of nonlinear mechanics and thermodynamics on ε and T for thermalized SGR. Panel (a): Elastic stress-strain curves
[σ el(ε) [Eq. (15)]]. Panels (b) and (c): average zone relaxation time 〈τ 〉/τ0 and its dispersion �τ/〈τ 〉. Panels (d)–(f): free energy F (ε), energy
E(ε), and temperature × entropy T S(ε) [Eqs. (7) and (8)]. Blue, green, and red lines respectively indicate T/Tg = 1/2, 3/4, and 39/40.
Systems have α = √

8 and are deformed at constant strain rate ε̇ = τ−1
0 . All energies are scaled by the maximum zone activation energy

α2kBTg , and stresses are further scaled by α2/v0.

zones of similar u, i.e., to push w(u,εel) back toward its initial
state. We will show below (Sec. IV) that nonthermalized flow
produces strikingly different behavior.

In real systems, the high levels of energy dissipation
depicted in Fig. 2 often produce temperature increases that
in turn lead to enhanced strain softening [31,44]. Here, for
simplicity, we ignore such effects and assume that the coupling
of systems to their environmental thermal reservoirs maintains
constant T . This is a potentially inaccurate approximation,
and should be corrected in future work when necessary.
Any such corrections, however, will presumably [23] require
system-specific treatments that are beyond the scope of this
study. Here we have shown Q(ε) in Fig. 2 mainly to motivate
what follows.

Our method’s prediction of the strain-history-dependent
zone statistical weights w(u,εel; ε) allows easy visualization
of how systems’ positions on their energy landscape evolve
during deformation [45]. Elastic (plastic) deformation can then
be identified with affine (nonaffine) evolution of w(u,εel; ε).
Concurrently, since the thermalized plastic flow rule
[Eqs. (9)–(12)] is consistent with the standard thermodynamic
identification of dissipated work as heat that changes mi-

crostate populations, Q(ε) can be directly related to systems’
flow over their energy landscapes and hence to the fundamental
character of their plastic flow. Figure 3 shows w(u,εel; ε)
for the T/Tg = 1/2 system at the three representative strains
(Table II) ε = 0, ε = εy , and ε = εpysm. Panel (a) shows the
initial ε = 0 distribution, which illustrates how thermalization
of strain degrees of freedom influences systems’ initial
positions on their energy landscapes. Notably, many zones
have initial elastic strains εel

init that are not negligible compared
to their yield strains ε

y
u . Panel (b) shows that the majority of

the zones present at ε = 0 deform affinely (i.e., do not yield)
throughout the strain range 0 � ε < εy . Those that do yield
by ε = εy are primarily those with positive εel

init. In contrast,
by ε = εpysm, most zones have yielded and been replaced by
new zones with smaller εel. This can be seen in panel (c): the
primary maximum of w(u,εel; εpysm) is at εel < εy . However,
the secondary maximum at εel > εy shows that some of the
zones present in the initial undeformed state remain intact
at ε = εpysm. As expected, most of these had negative εel

init.
These results are closely connected to the breadth of the stress
maxima shown in Fig. 1(a); all reflect the fact that yielding is
a gradual process.

TABLE II. Characteristic strains εy and εpysm and their associated elastic stresses σy and σpysm for thermalized (th) and nonthermalized
(nth) α = √

8 systems. εy and εpysm are, respectively, the strains at yield and at the post-yield stress minimum [Figs. 1(a) and 5(a)]. σ y and
σpysm are scaled by α4kBTg/v0. Note that these results are for a high strain rate (ε̇τ0 = 1); their rate dependence is discussed in the Appendix.

T/Tg εy (th) σ y (th) εpysm (th) σpysm (th) εy (nth) σ y (nth) εpysm (nth) σpysm (nth)

1/2 0.0468 3.472 0.0730 1.562 0.0550 4.521 0.0661 0.1636
3/4 0.0494 2.977 0.0805 1.600 0.0576 4.122 0.0755 0.3124
39/40 0.0519 2.454 0.0883 1.411 0.0602 3.721 0.0843 0.4483
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FIG. 2. Energy dissipation in the same systems depicted in Fig. 1.
Dotted, dashed, and solid lines respectively show �F (ε), W (ε),
and Q(ε). Note that the stress σ (ε) appearing in the definition of
W (ε) = ∫ ε

0 σ (ε ′)dε ′ is σ (ε) = σ el(ε) + σ entr(ε), where the entropic
term σ entr(ε) = −T (∂S/∂ε).

Comparing panels (a)–(c) of Fig. 3 helps us understand
how mechanical work gets dissipated during strain softening.
Elastic strain energy gets released as plastic zones yield.
Thermalized plastic flow takes the system back toward its
initial position on its energy landscape. Indeed, its position at
ε = εpysm is closer to its initial ε = 0 position than to its
position at ε = εy , consistent with the F (εpysm) − F (0) <

F (εy) − F (εpysm) < F (εy) − F (0) result [as well as similar
trends in E(ε) and S(ε)] shown in Figures 1(d)–1(f). It will be
interesting in future work to repeat this exercise for different
α as well as different initial conditions, e.g., nonequilibrium
winit(u,εel) �= weq(u,εel) that more accurately reflect typical
glasses (cf. Sec. V).

The w(u,εel; ε) distributions calculated by integrating
Eq. (12) enable prediction of many other physical properties,
such as strain-history-dependent probability distributions of
zone relaxation times:

P (τ̃ ; ε) =
∫ α2

0

∫ δ(u)+ε

−δ(u)
w(u,εel)δ[τ̃ − τ (u,εel,T )]dεeldu,

(16)

elastic stresses

P (σ̃ el; ε) =
∫ α2

0

∫ δ(u)+ε

−δ(u)
w(u,εel)δ[σ̃ el − Kuε

el]dεeldu,

(17)

and any other relevant thermodynamic or mechanical quantity.
Figure 4 shows results for P (τ ; ε) and P (σ el; ε) for the three
characteristic strains ε = 0, ε = εy , and ε = εpysm (Table II).
Zone yielding rates span many orders of magnitude because
of their wide ranges of u and εel. Temperature and stress/strain
affect the shapes of the P (τ ) distributions in nontrivial
ways. For example, stress-activated relaxation and plastic
deformation do not merely shift 〈τ 〉 or transform the P (τ )
distributions in any “affine” manner; instead, they change their
shape, as can be seen by comparing the distributions for ε = εy

and ε = εpysm. Even more complex physics can be seen in the
P (σ ) distributions. At ε = 0, they are simply Gaussian distri-
butions reflecting the thermalized initial condition [Eq. (6)].
In contrast, the split peaks of the T/Tg = 1/2 distributions
for ε = εy and ε = εpysm reflect the emerging coexistence of
yielded and unyielded plastic zones depicted in Fig. 3.

Distributions like P (τ ; ε) and P (σ ; ε) contain much infor-
mation that cannot be gleaned from their mean values [〈τ (ε)〉
or σ el(ε)]. For example, the tails of the distributions may
dominate certain physical phenomena such as aging during
deformation [27,32], and may therefore be important for
understanding the mechanics of heterogeneous systems (i.e.,
glasses) in more detail. Clearly, discrete-zone implementations
of SGR (e.g., [27–30]) cannot easily provide distributions
spanning many orders of magnitude in probability as we have
done here.

IV. COMPARISON TO NONTHERMALIZED SGR

To illustrate the significance of thermalization, we contrast
some of the above results to those obtained from a more
traditional version of SGR theory where (as in the original
formulation [13,14]) strain degrees of freedom are not ther-
malized and newly created zones have zero strain. As in Refs.
[13–15,27–30], we assume all zones are initially un-
strained. Then the equilibrated initial condition then becomes
w(u,εel,T ) = ρ(u)peq(u,0,T )δ(εel), the allowed values of j at
time tk are (0,1, . . . ,k), and the allowed values of the elastic
strain εel are εj = (0,1, . . . ,k)�ε. The evolution equation

FIG. 3. Strain-history-dependent position of the thermalized T/Tg = 1/2 system on its energy landscape. Panel (a): w(u,εel) for unstrained
systems (ε = 0). Panel (b): w(u,εel) at the yield strain (ε = εy = 0.0468). Panel (c): w(u,εel) at the post-yield stress minimum (ε = εpysm =
0.0730). Because this α = √

8 system remains low on its energy landscape, w(u,εel) is shown only for 5/8 � α−2u � 1; values for α−2u < 5/8
are finite but remain small.
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FIG. 4. Strain-history-dependent probability distributions of
zones’ relaxation times [P (τ ; ε) from Eq. (16): panel (a)] and elastic
stresses [P (σ el; ε) from Eq. (17): panel (b)]. Systems are the same
and line colors indicate temperatures as in Figs. 1 and 2. Dotted, solid,
and dashed curves respectively indicate data for ε = 0, ε = εy , and
εpysm (Table II).

for zone populations [i.e., the traditional-SGR counterpart to
Eq. (12)] is

z(ui,εj ; tk) = z(ui,εj−1; tk−1)

[
1 − �t

τ (ui,εj−1,T )

]

+ ρ(u)δ(εj )〈τ−1(εj−1)〉�t. (18)

On the right-hand side of Eq. (18), the second term indicates
standard SGR-style creation [13,14] of new unstrained zones;
the peq(u,εel,T ) factors present in Eq. (12) are absent here
because traditional SGR is a nearly athermal theory. The other
equations (7), (8), (13), (15) for thermodynamics, dynamics,
and mechanics we have used above remain the same, but the
different assumptions made by traditional SGR impose δ(u) =
0 [in contrast to the δ(u) = 1/

√
k(u) condition derived in

Sec. II].
These different theoretical assumptions produce a con-

siderably different physical response. Figure 5 shows the
traditional-SGR counterparts to the results shown in Fig. 1.
Panel (a) shows that nonthermalized systems’ yielding behav-
ior differs in several ways from their thermalized counterparts:
(i) their yield strains εy and yield stresses σy are larger; (ii)
their anelastic regime is narrower; and (iii) their post-yield
strain softening is much sharper, occurring over a narrower

strain window and ending at a lower stress minimum (see
Table II). The extremely low values of σpysm arise because the
combination of the traditional-SGR initial condition (εel

init = 0
for all zones) with our chosen k(u) (that produces ε

y
u = 0.05

for all u) means that all zones yield nearly simultaneously. As a
consequence of effect (i), average relaxation times [panel (b)]
drop more in nonthermalized systems than in their thermalized
counterparts. Differences in the dynamical heterogeneity of
yielding [panel (c)] arise because nonthermalized plastic flow
[Eq. (18)] populates zones with a wider range of u—and hence
a wider range of τ—than its thermalized counterpart [Eq. (12)].

As shown in panels (d)–(f), the nonequilibrium thermody-
namics of deformation are also quite different in traditional
SGR. This is a consequence of both the different initial
states of systems and the different plastic flow rules. In
thermalized systems, the strain energy in zones with negative
εel

init decreases with increasing ε for ε < |εel
init|. No such zones

are present in nonthermalized systems. This causes nonther-
malized systems to be driven much further up their energy
landscapes prior to yielding than they are in their thermalized
counterparts, so much so that for high strain rates an unstable
[E(ε) > 0] flow regime appears for ε � 0.05 [47]. Moreover,
nonthermalized plastic flow populates the upper regions of
systems’ energy landscapes much more than its thermalized
counterpart. Specifically, it produces both the much higher
E(ε) for ε � εy shown in panel (e) and the massive entropy
increase at ε � εy shown in panel (f). The magnitude of
�S(ε) is so large partially because zones’ elastic strains are
nearly δ-function distributed [i.e., w(u,εel; ε) ∝ δ(εel − ε)] for
ε � εy , but become broadly distributed for ε � εy . Replacing
the initial condition [w(u,εel,T ) = weq(u,0,T )δ(εel)] with a
strain-thermalized initial condition [Eq. (6)] or replacing
the flow factor f (u,εel) = ρ(u)δ(εel) in Eq. (18) with a
nonthermalized version of Eq. (10) reduces �S considerably.
However, �S remains much larger than it is for thermalized
flow because (as noted above) nonthermalized flow populates
lower-u zones to a much greater degree. This combination
of sharp increases in E, S, and mobility (i.e., 〈τ−1〉) in
nonthermalized systems is consistent with the old idea [48] that
yielding effectively “melts” glasses. Also consistent with this
idea is the fact that beyond yield, E(ε) depends only weakly
on T . That these behaviors are present for nonthermalized but
not for thermalized plasticity is of considerable interest.

V. DISCUSSION AND CONCLUSIONS

Many modern theories of plasticity, including the SGR and
STZ theories, employ effective temperatures Teff to reflect
the fact that the slowly relaxing configurational degrees of
freedom (i.e., plastic zones) in deforming systems tend to fall
out of equilibrium with their fast kinetic/vibrational degrees of
freedom and with their environmental thermal reservoir. They
reason that Teff, which is thermodynamically conjugate [49,50]
to the configurational entropy associated with the plastic zones,
in general differs from the reservoir temperature T . Recent
thermodynamics-focused work [18–24] has shown how to
rigorously account for energy and entropy transfer between
these slow and fast degrees of freedom, and hence to predict
the evolution of Teff during deformation.
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FIG. 5. Dependence of nonlinear mechanics and thermodynamics on ε and T for nonthermalized SGR. Panel (a): elastic stress-strain
curves [σ el(ε) [Eq. (15)]]. Panels (b) and (c): average zone relaxation time 〈τ 〉/τ0 and its dispersion �τ/〈τ 〉. Panels (d)–(f): free energy F (ε),
energy E(ε), and temperature × entropy T S(ε) [Eqs. (7) and (8)]. Blue, green, and red lines respectively indicate T/Tg = 1/2, 3/4, and 39/40.
Systems have α = √

8 and are deformed at constant strain rate ε̇ = τ−1
0 . All energies are scaled by the maximum zone activation energy α2kBTg ,

and stresses are further scaled by α2/v0. Note that replacing the δ(εel) proportionality in Eq. (18) with a θ (u,εel) proportionality eliminates the
post-softening (ε > εpysm) stress increases shown in panel (a); instead, systems exhibit perfect-plastic flow at a constant stress σflow(T ), which
in turn affects other measures of response like those shown in panels (b)–(f).

The formulation of SGR theory developed in Sec. II allowed
us to straightforwardly take the alternative approach of directly
calculating systems’ strain-history-dependent positions on
their energy landscapes, i.e., w(u,εel; ε) distributions like those
illustrated in Fig. 3. Since it allows for direct calculation
of w(u,εel; ε), the present theory has no need for a Teff-
like quantity. Similarly, since in contrast to standard SGR
(where x reflects the degree to which flow is thermalized
by mechanical “kicks” [13–15] from surrounding zones)
the present theory assumes that these kicks are themselves
thermalized by systems’ fast degrees of freedom and therefore
that their magnitude is set by the reservoir temperature T ,
it has no need for any x-like quantity. While its “T -only”
approach probably restricts its applicability to the most
thermal amorphous materials, e.g., metallic, small-molecule,
and polymeric glasses, such materials are both commonplace
and technologically important.

SGR theory assumes that the boundaries between basins on
systems’ potential energy landscapes lie atU = 0, independent
of u. This assumption can be used to justify both the traditional
SGR flow law [Eq. (18)] and the thermalized version [Eq. (12)]
discussed herein. Equation (18) is obtained by assuming
that when zones yield, they are replaced by new zones
that randomly (athermally) populate basins on the system’s
energy landscape. In contrast, Eq. (12) assumes that new zone
selection is fully thermalized, i.e., new zones populate basins
with probability proportional [Eq. (10)] to their equilibrium
occupation probability peq(u,εel,T ). Which flow law is more
realistic for a given system will depend on the degree to which
the system is thermal—i.e., upon ε̇τ0, the ratio of kBT to the
system’s mechanically relevant energy scales, as well as other

factors [20], in some presumably complicated fashion—and
the behavior of real systems lies, in all likelihood, somewhere
between these two limiting cases. Here our purpose was
not to determine where any specific system lies along the
athermal-thermal continuum, but simply to illustrate in a
pedagogical way various consequences of the differences
between the physics assumptions used to derive Eqs. (12)
and (18).

Consistent with this purpose, we made two further simpli-
fying approximations. First, following SGR-theoretic conven-
tion [13–15,21–23,27–30], we treated plastic zones as inter-
nally structureless. Since plastic zones in real systems are com-
posed of the systems’ constituent particles and their internal
entropy consequently tends to decrease with increasing strain,
the present theory may need to be modified to incorporate
a strain-dependent density-of-states function [ρ∗(u,εel)] to
optimally model real materials. Such modifications will be
highly system specific—for example, the εel dependence of
ρ∗(u,εel) will be different for polymeric vs metallic glasses
[31,32]—and are therefore beyond the scope of this initial
study. Second, the equilibrated initial condition employed
here [w(u,εel; 0) = weq(u,εel)] is obviously an idealization
that is not physically representative of most real glasses.
We chose it to set up an easily understood demonstration
of the present formulation’s potential for analyzing systems’
deformation thermodynamics, and in particular their plastic
flow over their energy landscapes. However, we emphasize that
all methods described herein can be employed with arbitrary
initial conditions. For example, to model “young” glasses, one
can set winit(u,εel) = ρ(u)peq(u,εel,Teff) with a Teff > T that
slowly approaches T during the aging process [15,18–24,49].
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FIG. 6. Rate-dependent mechanical response for thermalized
flow. Panel (a): stress-strain curves for T/Tg = 3/4, for strain rates
10−5 � ε̇τ0 � 103; brighter green indicates higher rate. Panel (b):
scaled yield stresses σ y(ε̇) (solid curves) and yield strains εy(ε̇)
(dashed curves). Systems are the same and line colors indicate
temperatures as in Figs. 1 and 2.
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APPENDIX: RATE-DEPENDENT YIELDING
AND STRAIN SOFTENING

One of the most common applications of plasticity theory
has been prediction of the temperature and strain-rate depen-
dencies of systems’ yield and flow stresses. Here we report
and discuss the ε̇ dependence of the various T -dependent
quantities presented in Table II. Figure 6 shows stress-strain
curves for thermalized plastic flow at T/Tg = 3/4 over a
wide range of strain rates 10−5 � ε̇τ0 � 103. All results are
qualitatively consistent with trends observed in experimental
studies of rate-dependent mechanical response in bulk metallic
glasses [31,37,38]. Anelastic response sets in at lower strain for
lower ε̇ because zones have more time to yield (via thermal
activation) over any given strain interval. Yield stresses and
strains increase steadily with increasing strain rate. Panel (b)
shows that these increases are approximately logarithmic in ε̇,
as is expected for thermally activated yielding [1].

Two features of the data shown in Fig. 6 are particularly
noteworthy. First, the temperature and rate dependencies of εy

are strongly coupled; εy decreases with increasing T at low
ε̇, but increases with increasing T at high ε̇. This behavior
reflects the fact that low-ε̇ yielding is primarily thermally-
activated (i.e., driven by slow thermal activation over relatively
large energy barriers), whereas high-ε̇ yielding is primarily
stress activated (i.e., the higher strain energies associated with
the larger εy lower energy barriers and speed yielding). Note
that both positive and negative ∂εy/∂T are observed in real
glasses [31,32]. Second, the strain rate dependence of σpysm

is far weaker than that of σy . Stress overshoots (i.e., finite
|σy − σpysm|) that increase with ε̇ are observed in a wide range
of glassy materials, including most polymeric and metallic
glasses [31,32]. Analysis of the thermodynamics [E(ε), S(ε),
and F (ε)] shows that while systems deformed at higher strain
rates are driven further up their energy landscapes, they return
to similar positions on their energy landscapes [i.e., have
comparable w(x,εel; ε)] at ε = εpysm even though the values of
εpysm are significantly different. Results like this illustrate the
utility of plasticity theories with properly thermalized strain
degrees of freedom.
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