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Kinetic theory (KT) has been successfully used to model rapid granular flows in which particle interactions are
frictionless and near elastic. However, it fails when particle interactions become frictional and inelastic. For exam-
ple, the KT is not able to accurately predict the free cooling process of a vibrated granular medium that consists of
inelastic frictional particles under microgravity. The main reason that the classical KT fails to model these flows
is due to its inability to account for the particle surface friction and its inelastic behavior, which are the two most
important factors that need be considered in modeling collisional granular flows. In this study, we have modified
the KT model that is able to incorporate these two factors. The inelasticity of a particle is considered by establishing
a velocity-dependent expression for the restitution coefficient based on many experimental studies found in the
literature, and the particle friction effect is included by using a tangential restitution coefficient that is related to
the particle friction coefficient. Theoretical predictions of the free cooling process by the classical KT and the im-
proved KT are compared with the experimental results from a study conducted on an airplane undergoing parabolic
flights without the influence of gravity [Y. Grasselli, G. Bossis, and G. Goutallier, Europhys. Lett. 86, 60007
(2009)]. Our results show that both the velocity-dependent restitution coefficient and the particle surface friction
are important in predicting the free cooling process of granular flows; the modified KT model that integrates these
two factors is able to improve the simulation results and leads to better agreement with the experimental results.
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I. INTRODUCTION

The study of granular flow is of interest in a wide variety
of fields in fundamental and applied sciences, including
industrial flows such as pneumatic conveying and fluidized
bed reactors, and environmental flows such as sand dunes and
snow avalanches. Granular matter under rapid flow conditions
is most commonly modeled as a continuum phase. Kinetic
theory (KT) supplemented with numerical simulations is
considered to be one of the best tools to describe the behavior
of rapid granular flows [1–3]. Most of these KT models have
been derived for dilute flows of smooth, frictionless particles
[4–6], which are essentially extensions of the classical KT
of nonuniform gases [7]. However, there is one important
difference between granular particles and gas molecules:
Kinetic energy is conserved in gas molecule collisions but
dissipated in particle collisions. The dissipation of energy in
granular particle collisions is due to the particle inelasticity,
which is measured by the coefficient of restitution e. Most
of the KT models assume the coefficient of restitution e for
a specific granular material is a constant and independent of
the particle impact velocities [8–11]. Due to the macroscopic
size of particles, external fields such as gravity would have a
significant effect on granular flows. This makes it very difficult
to experimentally investigate the flow behavior of granular
materials due exclusively to particle collisions. Instead, the
discrete element method (DEM) is often used to verify the
theoretical solutions in the absence of gravity [12]. Good
agreement between theoretical predictions of the KT models
and the DEM simulations has been reported [11,13,14],
which is understandable since the same constant coefficient
of restitution e as implemented in the KT models has also
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been used in the DEM simulations. However, these DEM or
KT models that are based on a constant e fail to predict some
of the most basic features of the experimental results [15,16].

It has been widely reported that the coefficient of restitution
e strongly depends on the impact velocity of a particle in
collision [17–20]. To accurately measure e at small impact
velocities could be very challenging. Early experiments were
made in the presence of gravity with impact velocities typically
larger than 10 cm/s. The measured e shows a monotonic
decrease as the impact velocity increases [21,22]. Based on
the data from [21], Lun and Savage [23] were the first to
incorporate the velocity-dependent e into the KT. They adopted
an exponential decay function for e to roughly match the
experimental results at an impact velocity ranging from 100 to
250 cm/s. Due to the limited data for low impact velocity, at
that time it was believed that the particle deformation was
essentially elastic and the energy dissipation was small at
very low impact velocities [24,25]. As a result, the fitting
function of e in their study predicts e = 1 at very low impact
velocities.

The effect of particle surface friction is also important for
the KT of granular flows. Lun and Savage [26] considered
this effect in their KT model by using a constant tangential
restitution coefficient β. When β equals −1, the particles are
frictionless and there is no change in the tangential component
of the relative velocity. On the other hand, when β equals
1, the tangential component of the relative velocity reverses
completely and the particles are said to be perfectly rough.
However, it has been shown that the tangential restitution
coefficient β is not an independent parameter; it is related to
the particle inelasticity and surface friction [27]. To consider
the particle surface friction, sliding and sticking mechanisms
must be distinguished in the binary collision model, and a
relationship between β, the friction coefficient μ, and the
normal coefficient of restitution e has to be established.
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Furthermore, the rotational degree of freedom also needs to be
taken into consideration in the KT model; both translational
and rotational granular temperatures should be employed
to characterize the random velocity fluctuations of granular
particles [28,29]. The widely used modification of the KT
model that considers particles of small friction coefficient was
developed by Jenkins and Zhang [30]. They employed the
same structure in their model as the classical KT model for
frictionless particles, but replaced the coefficient of restitution
e with an effective coefficient of restitution that accounts
for the additional loss of translational fluctuation energy due
to friction. However, their modification does not work for
particles with large friction coefficients such as those used in
the experiment [31] which have a friction coefficient μ = 0.6.
A few more KT models have been developed since then.
These models mainly use collision integrals to produce new
constitutive relations for rough spheres. In these models both
particle friction and rotation were considered for energy fluxes
without limitation on the friction coefficient [32,33]. The
influence of these collisional parameters on the simulation
results of a gas-solid bubbling fluidized bed has been in-
vestigated; it showed improved predictions when compared
with the experimental results [34,35]. However, these models
require the inputs of the initial and boundary conditions of
rotational granular temperatures that are usually unknown for
most granular flow systems, so they have been rarely used in
the literature. It must be pointed out that the collision models
mentioned above are for binary collisions and valid only for
rapid granular flows. For dense granular flows where network
interactions dominate, the collisional stress model such as the
one proposed by Zhang and Rauenzahn [36–38] has to be
employed. It is also found that the translations and rotations
could be correlated when particles are rough [39]. Simulations
show β could be tuned to produce a huge distortion from the
Maxwellian distribution function in some cases [40].

Grasselli et al. [31] and Tatsumi et al. [41] experimentally
investigated the granular flow cooling processes in micrograv-
ity. Large discrepancies between the KT predictions and their
experimental results have been reported [31]. They also found
that the coefficient of restitution e decreases as the impact
velocity becomes small, which is contrary to the conventional
belief that e is close to 1 at small impact velocities and
continuously decreases as the impact velocity increases. Their
efforts to address these discrepancies include the use of e as a
function of the normalized fluctuation energy in the dissipation
rate expression of the KT model and a constant roughness
coefficient β that ranges from −1 to 1 to account for the particle
roughness. With these modifications, they were able to slightly
improve their KT model results. Nevertheless, the predictions
of their KT model still do not match the experimental results
well; the discrepancy in granular temperature is as large as
200% at the initial stage of the cooling process. We think
there are two main factors that contribute to the discrepancy:
the use of a constant tangential restitution coefficient β and
an inappropriate use of the restitution coefficient profile
in their KT model. To address these issues, a KT theory
considering both tangential restitution coefficient β and the
friction coefficient μ should be adopted. Also, instead of
employing a granular temperature-dependent e in the KT
model, an impact velocity-dependent e at particle level should

be used and the expression of e should be incorporated into
the derivation of the Boltzmann kinetic equation.

In this paper we investigate the large discrepancies between
the theoretical prediction of the existing KT models and the
experimental results and develop modified KT models for the
free cooling process of the granular flows. One of the mod-
ifications is to incorporate the velocity-dependent coefficient
of restitution e directly into the Boltzmann kinetic equation
to derive the translational fluctuation energy dissipation rate.
Unlike the velocity-dependent e profile proposed by Lun and
Savage [23], the present e profile considers the adhesive
forces at slow impact velocities as supported by the recent
experimental studies and has a much smaller value at low
impact velocities. We also examine two different approaches
that incorporate the effect of particle surface friction into the
KT models, which are named as model I and model II. Both
models are derived based on the exact rates of translational
and rotational fluctuation energy dissipation calculated by
Herbst et al. [42]. Model I is the extension of the KT
model proposed by Jenkins and Zhang [30]. It determines
the rotational granular temperature by assuming the rotational
energy dissipation rate is minimal, and the frictional effect
could be absorbed into an effective restitution coefficient eeff .
Compared to the original model which is limited to small μ

and does not consider β0 as an input, the present model I takes
both β0 and μ into consideration and it can be applied to a
system with large μ. On the other hand, model II which is
proposed by Herbst et al. [42] considers the rotational energy
dissipation and translational energy dissipation separately by
solving their coupled equations. Results from these two models
are compared to show that model I is able to produce results
that are comparable to model II. Finally, we incorporate the
velocity-dependent e into model I and model II to study the
free cooling process of a granular flow. The simulation results
are compared with the results from the existing KT models as
well as the experimental data [31].

II. VELOCITY-DEPENDENT RESTITUTION
COEFFICIENT

The coefficient of restitution e is introduced to conveniently
model particle collisions. Despite e having been cited as a
constant in many studies, early experiments have shown that
e could depend on the impact velocity for a given granular
material [43,44]. This phenomenon was explained by the fact
that the collision force depends on a combination of factors,
including the elastic deformation at low impact velocities and
the increased energy dissipation due to the plastic deformation
at high impact velocities. The effect of the velocity-dependent
e on the KT models has been analyzed by Lun and Savage [23],
who adopted a varying e that decays exponentially with the
increasing impact velocity. However, contrary to the previous
finding that e increases at small impact velocity [15,18,20,45],
recent experiments show that for spheres as large as a few
millimeters, the restitution coefficient e sharply decreases
when the impact velocity becomes small. This new finding was
further explained by the existence of van der Waals attraction
at relatively low surface energies for typical grain materials.
Many granular systems have particle collisions with a small
impact velocity typically below 20 cm/s; the van der Waals
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adhesion between the flattened parts of a particle’s surface can
lead to a reduced restitution coefficient at these low impact
velocities [19,46].

In the experimental study of the granular cooling process
by Grasselli et al. [31], the authors attempted to consider the
velocity-dependent e by incorporating it into the fluctuation
energy dissipation rate of the KT model, implying that the
use of e is based on the granular temperature or normalized
fluctuation energy of granular materials. This cannot be
accurate since e is defined for each individual particle collision
and, therefore, has to be a function of the impact velocity of two
particles involved in the collision. In the present KT model,
the velocity-dependent e is used to derive the dissipation term
directly from the Boltzmann kinetic equation by integrating
the velocities of all the particles in collisions.

The choosing of restitution coefficient e is very important
in the KT modeling; it is the primary factor that determines the
rate of dissipation of granular flows. The simplest experiment
to measure e would be to drop a sphere onto a flat horizontal
plate with the help of gravity, and then determine the velocities
both before and after the collision. However, the impact
velocities for this kind of experiment are typically larger
than 1 m/s. Small velocities may not be easily achieved
because of gravity. Consider dropping a bead at a height of
1 cm; its impact velocity when it strikes the plate could reach
44 cm/s in free fall without considering air drag. It will require
a much smaller height in order to produce a small impact
velocity. However, the accuracy of measurement deteriorates
as the height decreases. Another method to study two-particle
collision at small velocities is to suspend the two particles
on a pendulum, each particle held by a string, then release
one or both spheres from a certain height. This setup allows
particles to collide at very low velocities when the strings
are long enough. A more sophisticated approach, which only
recently became possible, is to conduct the experiments in
a microgravity environment. Without gravity, there will be
no constraints on the motion of particles and extremely low
impact velocities can be achieved. In Fig. 1, the experimental
results at low impact velocities from two different approaches,
one using a pendulum [20] and the other using microgravity
[31], are compared. The diameters of steel beads used in
the experiments are 3 and 2 mm, respectively. The data
collected from these two experiments show a similar profile of
velocity-dependent e. As the impact velocity changes from 25
to 100 cm/s, the restitution coefficient e approaches 0.9, which
is the value of the restitution coefficient of steel cited in many
studies. However, both experiments show a rapid decrease of
e when the impact velocity drops below 25 cm/s. Considering
that the two sets of data were obtained by two different methods
yet they match each other very well, they provide strong
evidence to support the existence of adhesive forces when
the surface energies are small and the impact velocity is low.

As explained by the Johnson, Kendall, and Roberts (JKR)
theory [46], the adhesive forces between particles could
cause e to decrease at low impact velocities. Some models
that consider adhesive forces have successfully explained
these experimental results [17,19,20]. However, those models
require more specific material properties such as the van der
Walls surface energy and viscous relaxation time that are
hard to measure experimentally, and the expressions for e are

FIG. 1. Normal restitution coefficient e the normal impact ve-
locity. Solid circles show experimental results under microgravity
condition from Grasselli et al. [31]; solid triangles show results using
a pendulum from Sorace et al. [20]; solid line is the fitting result given
in Eq. (1).

usually much more complicated. Consider a collision between
two identical spheres, each with a pre-collision velocity c1
or c2, and c12 = c1-c2 is the relative velocity. The unit-vector
connecting the center of two spheres is denoted by k. In the
present study we chose a velocity-dependent e profile for steel
particles by fitting the experimental data shown in Fig. 1:

e = e0{1 − A exp[−(c12 · k/Va)2]}. (1)

Here, e0 = 0.9, V 2
a = 200 cm2/s2, and A = 0.4. This

expression will be used in our KT model later on. It must be
pointed out that the expression in Eq. (1) is only for systems
of low granular temperature and low particle velocity since it
is based on impact velocities below 100 cm/s. For systems of
high granular temperature and high impact velocities, particle
collisions may result in plastic deformation and reduce the
coefficient of restitution, and different fitting profiles will be
needed.

III. KINETIC THEORY WITH LARGE
SURFACE FRICTION

The original KT models are derived for frictionless and
nearly elastic particles without particle rotational motion.
However, granular materials are frictional and inelastic. The
particles can rotate after a collision due to surface friction,
so translational kinetic energy may be converted to rotational
energy, affecting the dissipation rate of translational kinetic
energy. Two kinds of collisions are defined in collision
mechanics. The first one is sliding collision. In such a collision,
the tangential collision force F t

ij exceeds the maximum friction
force (F t

ij > μFn
ij ), causing the particles to slide. Here, Fn

ij

is the normal component of the collision force; μ is the
static friction coefficient. The tangential force arises from
the Coulomb friction associated with the relative motion
between the two spheres at the contacting surfaces. The other
one is called sticking collision. In this case the tangential

062907-3



YIFEI DUAN AND ZHI-GANG FENG PHYSICAL REVIEW E 96, 062907 (2017)

FIG. 2. A pair of colliding particles.

component of the collision force is below the maximum
friction force (F t

ij < μFn
ij ) and there is no relative motion

between the contacting surfaces. In most KT models and
hard sphere simulations, collisions are not resolved and the
restitution coefficient e is given as a constant. Similarly, earlier
models involving particle rotations considered the tangential
coefficient of restitution β as merely a constant averaged over
the entire range of sticking and sliding contacts [26,27]. The
sliding and sticking mechanisms were later distinguished with
the use of the friction coefficient μ, the normal restitution
coefficient e, and the tangential restitution coefficient β0 for
sticking collisions [47–49].

Consider a collision between two identical spheres (Fig. 2),
each with a precollision velocity c1 or c2. Postcollision
properties are primed. The relations between these velocities
are

c′
1 = c1+�c, (2)

c′
2 = c2 − �c. (3)

Similarly, the angular velocity ω changes after a collision
as follows:

ω′
1 = ω1 + �ω, (4)

ω′
2 = ω2 + �ω. (5)

The relative velocity at the point of contact g is given by

g = c1 − c2 + d

2
k × (ω1+ω2). (6)

According to the definition of restitution, we have

g′ · k = −e(g · k), (7)

g′ × k = −β(g × k). (8)

Based on Eqs. (2)–(8) and the conservation laws for
linear and angular momentum, the translational and rotational
velocity changes during a collision are equal to

�c = −1

2
(1 + e)(c12 · k)k − ηk ×

(
c12 × k + d

2
ω12

)
, (9)

�ω = 2η

qd
[k × c12 + dk × (k × ω12)], (10)

where c12 = c1-c2, ω12 = ω1 + ω2, η = [1 + β]q/[2(1 + q)],
and q = 4I/md2. Here d, m, and I are the particle diameter,
mass, and the moment of inertia, respectively. k is the unit

vector directed from the center of particle 2 to particle 1. The
tangential coefficient of restitution β has to include both sliding
collisions (−1 � βf � 0) and sticking collisions (0 � β0 �
1). The tangential restitution coefficient for sliding collisions
βf depends on the impact angle at the point of contact θ

between g and k as well as the surface friction coefficient μ

[50], while the tangential restitution coefficient for sticking
collisions β0 should be constant. Whether a collision is of
the sliding or sticking type depends on θ . When this angle is
greater than a critical angle θc, a sliding collision occurs. On
the other hand, a sticking collision take places if this angle
is less than or equal to θc. The effective tangential restitution
coefficient is found to be

β =
{
βf θ � θc

β0 θ < θc
, (11)

and the critical angle θc can be obtained by forcing β to be
continuous,

tan θc = μ
1 + e

1 + β0

1 + q

q
, (12)

where βf = −1 + μ
1+q

q
(1 + e) cot θ ; Eq. (12) has been

proven to have good agreement with the experimental results
[49,51]. In general, if we consider e as a function of impact
velocity, both θc and βf could be affected. It is noted
that at small impact velocity, there should be more sliding
collisions (decreasing θc) and less rotational energy dissipation
(decreasing βf ) for sliding collisions compared to a system
with constant e. However, when the results for constant e

and velocity-dependent e of Eq. (1) are compared, as shown
in Fig. 3, we find the effect of velocity-dependent e on the
particle rotational behaviors is insignificant. For example, if
μ is small such as the case μ = 0.1 in Fig. 3, the change of
θc at different impact velocities (when velocity-dependent e

is used) is small. By assuming θc as a constant, most of the
collisions would be of the sliding type since θc is small and the
dissipation of rotational fluctuation energy mainly depends on
βf . However, the change of βf is also small between a constant
e and a velocity-dependent e even at low impact velocities, as
shown in Fig. 3. On the other hand, if μ is large such as the
case μ = 0.6, the critical angle θc would also be large but the
change of θc at different impact velocities is still insignificant
when velocity-dependent e is used. At large θc, the portion
of sliding collisions where θ > θc would be small compared
to sticking collisions. Even though βf can vary a lot during
sliding collisions, the sticking collisions take β0 as the tangen-
tial restitution coefficient which is a constant and βf would
have little impact on the rotational energy dissipation rate.
Therefore, as an approximation we will assume both θc and
βf are independent of the impact velocity when we integrate
the Boltzmann kinetic equations at the end of this section.

To account for the energy dissipation due to particle
rotations, we focus on the dissipation term of the Boltzmann
kinetic equation. Since we only consider free cooling cases in
this study, the collisional source term is given by

χ (�) = dN−1

2

∫
c12·k<0

��(c12 · k)f (2)(c1,ω1,r1,c2,ω2,r2,t)

× dkdc1dc2dω1dω2, (13)
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FIG. 3. The effect of velocity-dependent e on the critical angle θc (left) and on the tangential restitution coefficient of sliding collisions βf

(right).

where N is the number of dimensions, �� represents the
change of � during a collision, and f (2) is the coupled particle
velocity distribution function,

f (2)

(
c1,ω1,r − d

2
k,c2,ω2,r + d

2
k,t

)

= g0f1f2

(
1 + d

2
k · ∇ ln

f2

f1

)
. (14)

Here φ is the solid volume fraction; we choose g0(φ) =
2−φ

2(1−φ)3 for three-dimensional systems [52] and g0(φ) =
1−7φ/16
(1−φ)2 for two-dimensional systems [5], which is the ex-

pression for the radial distribution function at contact. In
the homogeneous cooling state, by assuming the rotations
and translations of particles are independent of each other,
the unperturbed (zeroth-order) particle probability distribution
function is of Maxwellian form for both the translational and
rotational velocity fluctuations [53]; that is,

f (c,ω,r,t) = n

(
1

2π�T

)N/2(
I

2πm�R

)N/2

× exp

(
− Iω2

2m�R

− c2

2�T

)
. (15)

The translational granular temperature is defined as �T =∫
c2f dcdω

nN
and rotational granular temperature is defined as

�R = I
∫

ω2f dcdω

nmN
, where n is the particle number density.

The total change of translational energy in a collision equals
�E = 1

2m(c′2
1 + c′2

2 − c2
1 − c2

2). Based on Eq. (9), we find

�E = {− 1
4m(1 − e2)(c12 · k)2}

+{mη(η − 1)[|c12|2 − (c12 · k)2]

+md2η2|k × ω12|2 + mdη(2η − 1)(k × ω12) · c12}.
(16)

By letting �� be �E, Eq. (13) can be integrated to obtain
the rate of dissipation of translational fluctuation energy per
unit volume. The integration results could be divided into two
parts, �T = �T 1 + �T 2, corresponding to the two terms in
Eq. (16). The first term �T 1 is the energy dissipated due to the
inelastic interactions in the normal direction; the second term
�T 2 is caused by the interactions in the tangential direction.
By assuming a constant normal restitution coefficient e, the
exact rate of dissipation of the translational fluctuation energy
calculated by Herbst et al. [42] has the form

�T 1 = −12[1 − e2]K(�T ), (17)

�T 2 = −48η0

[
1

2

(
arctan σ

σ
+ 1

σ 2 + 1

)

− 1

σ 2 + 1
(λ + 1)η0

]
K(�T ). (18)

Therefore, the three-dimensional (3D) translational
fluctuation energy dissipation rate for homogeneous
cooling is

�T = −12[1 − e2]K(�T ) − 48η0

[
1

2

(
arctan σ

σ
+ 1

σ 2 + 1

)

− 1

σ 2 + 1
(λ + 1)η0

]
K(�T ). (19)

Similarly, the dissipation rate of the rotational fluctuation
energy takes the form

�R = −48η0

[
1

2

(
arctan σ

σ
+ 1

σ 2 + 1

)
λ

− 1

q

(
1

σ 2 + 1

)
(λ + 1)η0

]
K(�T ), (20)
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where

K(�T ) = ρφ2g0

d
√

π
�

3/2
T . (21)

Here, η0 = [1 + β0]q/[2(1 + q)], σ = (λ + 1)1/2 cot θc; φ

is the solid volume fraction; λ = �R

q�T
is the ratio related to

rotational granular temperature and translation granular tem-
perature. For two-dimensional (2D) systems, the translational
and rotational fluctuation energy dissipation terms reduce to
the following [54]:

�T = −4[1 − e2]K(�T ) − 16

{
η0

2

1 + σ 2

(1 + σ 2)3/2

− η2
0

2

(1 + λ)

(1 + σ 2)3/2 − η2
0tan2θc

[
1 − 1 + 3

2σ 2

(1 + σ 2)3/2

]}

×K(�T ), (22)

�R = −16

{
λ

η0

2

1 + σ 2

(1 + σ 2)3/2 − η2
0

2q

(1 + λ)

(1 + σ 2)3/2

− η2
0tan2θc

q

[
1 − 1 + 3

2σ 2

(1 + σ 2)3/2

]}
K(�T ). (23)

It must be pointed out that the above equations are derived
for constant coefficient of restitution e and they have to be
modified for velocity-dependent e. Since e is defined for an

individual particle collision, it has to be a function of the
impact velocity of two particles involved in the collision.
This coefficient should be used to derive the rate of energy
dissipation directly from the Boltzmann kinetic equation.
According to Eq. (13), the translational energy dissipation rate
is

�T = dN−1

2

∫
c12·k<0

�E(c12 · k)f (2)(c1,ω1,r1,c2,ω2,r2,t)

× dkdc1dc2dω1dω2. (24)

The velocity-dependent e primarily affects the energy
dissipated due to the inelastic interactions in the normal
direction �T 1. The portion in the tangential direction �T 2 and
rotational fluctuation energy dissipation rate �R remains the
same since we assume a velocity-dependent e would have
insignificant effect on θc and βf , as discussed earlier in this
section. We only need to reintegrate the energy dissipation
term �T 1 with a velocity-dependent e given by Eq. (1),

�T 1 = dN−1

2

∫
c12·k<0

[
1

4
m(1 − e2)(c12 · k)2(c12 · k)

× f (2)(c1,ω1,r1,c2,ω2,r2,t)dkdc1dc2dω1dω2

]
. (25)

Details of the integration are provided in the Appendix.
Overall the 3D translational fluctuation energy dissipation rate
�T has the form

�T = −12

{
1 − e2

0 + Ae2
0V

4
a

[
2(

4�T + V 2
a

)2 − A(
8�T + V 2

a

)2

]}
K(�T )

− 48

[
η0

2

(
arctan σ

σ
+ 1

σ 2 + 1

)
− 1

σ 2 + 1
(λ + 1)η2

0

]
K(�T ). (26)

Similarly, the 2D translational fluctuation energy dissipation rate follows:

�T = −4

{
1 − e2

0 + Ae2
0V

4
a

[
2(

4�T + V 2
a

)2 − A(
8�T + V 2

a

)2

]}
K(�T )

− 16

{
η0

2

1 + σ 2

(1 + σ 2)3/2 − η2
0

2

(1 + λ)

(1 + σ 2)3/2 − η2
0tan2θc

[
1 − 1 + 3

2σ 2

(1 + σ 2)3/2

]}
K(�T ). (27)

To consider the rotational effect in the KT, we examined
two models based on two different approaches: Model I is an
extension of a simplified model originally proposed by Jenkins
and Zhang [30] which includes the rotational effect into the
dissipation rate of translational fluctuation energy; model II is a
model developed by Herbst et al. [42] which solves the coupled
ordinary differential equations (ODEs) of Eqs. (19) and (20)
(note the dissipation rate is related to the time derivative
of granular temperature) and considers the rotational and
translational fluctuation energy dissipation separately. Since
both model I and model II consider the effect of particle
surface friction, we would compare the energy dissipation rates
predicted by different models at constant e. The combination
of both velocity-dependent e and particle surface friction will
be studied and compared with experimental results in Sec. IV.

A. Model I: Inclusion of the frictional effect by modifying
translational granular temperature

In model I, the rotational granular temperature described
in Eqs. (20) and (23) is not solved directly but the increased
translational fluctuation energy dissipation caused by particle
rotations is incorporated into the model by modifying the
translational granular temperature. Similar to the assumption
made in [30], we assume that the rotational fluctuation energy
dissipation rate is very small (i.e., �R ≈ 0). This allows
us to find λ from Eqs. (20) and (23), which is treated
as a constant for given particle properties. The modified
translational fluctuation energy dissipation rates could then be
obtained from Eqs. (19) and (22). Previous studies have shown
that the extra translational fluctuation energy dissipation
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FIG. 4. Effective restitution coefficient derived from various
models for a system with e = 0.9 and β0 = 0.1.

caused by the particle surface friction can be absorbed into
an effective normal restitution coefficient [55]. Following
this approach, several different effective restitution coefficient
models have been proposed by different groups, including
eeff = e − π

2 μ + 9
2μ2 [30], eeff = e − μ + 2μ2(1 + e) [56],

and eeff = e − 3
2μ exp(−3μ) [11].

In model I, the frictional effect is also included in the
effective restitution coefficient. Compared to other models,
the current model I has two main advantages: (a) There
is no limitation on the friction coefficient μ, and (b) the
tangential restitution coefficient for sticking collisions β0 will
be included. Figure 4 shows the comparison of the effective
restitution coefficients between model I and other models
found in the literature for a system with constant e = 0.9.

From Fig. 4 we find that the original model by Jenkins
and Zhang [30] and Yoon and Jenkins [56] only works at
small restitution coefficient μ; it starts to deteriorate as μ

increases, and eventually becomes unphysical when μ > 0.4,
resulting in eeff > 1 and a prediction of the increase of granular
temperature that is not possible. The fitting expression from
the DEM simulation data by Chialvo and Sundaresan [11]
matches well with the results of the present model for 3D
systems when μ < 0.05. However, their model shows a rising
trend when μ > 0.4, which is hard to explain since rougher
particles should dissipate more energy. Unlike these original
modifications that do not consider the tangential restitution
β0 for sticking collisions in the expression of eeff , β0 is
incorporated into model I. It is found that β0 has a limited
impact on the dissipation rate when μ is small. This explains
why the original model [30] that ignores β0 can still predict
reasonable results [57]. However, as μ increases, the ratio of
sticking collisions to sliding collisions also increases, resulting
in a significant change of dissipation rate as seen in Fig. 5, and
the original model is no longer applicable.

We also found the increased translational fluctuation energy
dissipation rate caused by the frictional effect is less significant
in a 2D system than in a 3D system. This finding is useful to
help understand the discrepancy found between the theoretical

FIG. 5. The impact of tangential restitution coefficient β0 on the
effective restitution coefficient. The two dashed lines on the bottom
show the ratio of rotational granular temperature to translational
granular temperature from model I.

predictions and the experimental measurements discussed in
the next section. The experimental technique used in [31] was
only able to measure two translational velocity components.
In the experiment the particles were confined between two
parallel plates with a distance equal to the particle diameter
to make the system 2D. However, in order for the particles
to move freely in the 2D plane, the distance between the
two parallel plates would be slightly larger than the particle
diameter, and there will be a small velocity component in
the direction that is normal to the plane. Therefore, the
experimentally measured translational granular temperature
should be slightly less than the predictions of an ideal 2D
system.

B. Model II: Inclusion of the frictional effect by solving
rotational granular temperature

In this model we solve the two coupled ODEs given in
Eqs. (22) and (23). Contrary to the model I in which the ratio
λ is a constant and calculated by forcing �R = 0, λ in model
II is a variable determined by solving the additional governing
equation for the rotational granular temperature. In addition,
the initial rotational granular temperature �R0 is needed as an
input in model II. To understand the importance of different
initial rotational granular temperature and compare it with
model I, we set up a free cooling granular case with a different
initial rotational granular temperature �R0. Three cases are
considered with the same initial translational temperature �T 0

and different initial rotational temperatures of �R0
�T 0

= 0, �R0
�T 0

=
0.25, and �R0

�T 0
= 1, respectively.

From Fig. 6(a) we can see that the collisions are able to
transfer more translational energy to rotational energy in the
initial stage if the initial rotational granular temperature is low,
causing an increase of the rotational granular temperature in a
short period of time. After the rotational granular temperature
reaches its maximum value, both rotational and translational
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FIG. 6. The granular temperature vs time for three cases with
the same initial translational granular temperature but different initial
rotational granular temperature: (a) �R0

�T 0
= 0, (b) �R0

�T 0
= 0.25, and

(c) �R0
�T 0

= 1. μ = 0.6 and β0 = 0.1 are used in all three cases. The
two dashed lines on the top of each graph show the translational
granular temperature profiles predicted by the present models and the
dashed line on the bottom shows the dimensionless rotational granular
temperature from model II (model I does not solve the rotational
granular temperature, so the λ which is related to the ratio of rotational
to translational granular temperatures is kept at its initial value during
the cooling process).

FIG. 7. The effective restitution coefficient vs time during a
cooling process. The dashed line on the bottom shows the ratio
of the rotational granular temperature to the translational granular
temperature in model II during the cooling process for a 2D system
with e = 0.9, β0 = 0.1, and μ = 0.6.

granular temperatures start to decrease. The second case
shown in Fig. 6(b) predicts a translational granular temperature
slightly higher than the first one due to the larger amount of
initial rotational granular temperature. Finally, with �R0

�T 0
= 1,

Fig. 6(c) shows that a large amount of rotational energy could
be converted to the translational energy during collisions,
making the translational granular temperature decay slowly.
Overall, both model I and model II predict similar results, but
their discrepancy becomes larger for systems with high initial
rotational granular temperatures.

To better compare model I and model II, we make the
initial rotational granular temperature �R0 the same for both
cases. The case in Fig. 6(b) was selected since its �R0 is
calculated by forcing �R = 0 in Eq. (23), which is the same
as that in model I. The resultant effective restitution coeffi-
cients are plotted in Fig. 7. It is observed that when a system
starts to cool down from its equilibrium state, λ, which is
related to the ratio of the rotational to the translational granular
temperatures, increases and eventually reaches a constant
value that is higher than the initial value. A similar trend was
also reported in the previous work by Brilliantov et al. [39].
The increased λ forces more rotational energy to be converted
to translational energy. This explains the smaller translational
fluctuation energy dissipation rate predicted by model II when
compared to model I, since model I simplifies the rotational
effect by fixing the ratio λ at its initial value, which is smaller.
Overall both models predict an effective restitution coefficient
that is very close to the value derived from the DEM simulation
results by Chialvo and Sundaresan [11].

IV. COMPARISONS WITH EXPERIMENTAL RESULTS

We test the two different KT models, model I and model
II, that consider the effect of particle surface friction from the
last section, by applying them to the free cooling process of
granular materials. The experiments were performed using
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FIG. 8. Granular temperature along with the time during the
free cooling process. The black line represents the experimental
measurements from Grasselli et al. [31]. The two dashed lines on
the top show the theoretical predictions with the constant e by the
classical KT 2D and 3D models; the other lines show the results of the
KT models considering surface friction by Chialvo and Sundaresan
[11], the present model I and model II.

a granular system composed of spherical particles under
parabolic flights [31]. The particles were confined between two
horizontally placed plates with a small gap slightly larger than
the particle diameter. The plates were made of glass in order to
cancel out the electrostatic effects and to minimize the friction
between the particles and the walls. This setup only allows the
free motion of particles that are parallel to the plane, resulting
in a 2D system. The granular system was initially vibrated
and gradually came to rest due to the inelastic collisions. By
analyzing the trajectories of the particles using a high-speed
camera, their velocities could be determined, so the granular
temperature of the systems could be calculated. Since the
image analysis can only be performed in two dimensions, only
two velocity components could be obtained. Such a setup used
in the experiments with one layer of spherical particles could be
treated as a 2D system filled with disks in KT models, and the
area fraction instead of the volume fraction should be used in
the calculations. For the steel beads, the restitution coefficient
e = 0.9; the friction coefficient μ = 0.6 and β0 = 0.1, as
provided in [31]. However, e may decrease at small impact
velocities as shown in Fig. 1 and a velocity-dependent e of
Eq. (1) will be used in our simulations.

Figure 8 shows the translational granular temperature vs
time predicted by various KT models. The experimental results
are also plotted for comparisons. It could be seen that the
classical KT model which considers the system as 3D differs
significantly from the experimental result; the discrepancy
becomes even larger if we consider the system as a 2D system.
Both Eqs. (26) and (27), which treat the system as 3D and
2D, respectively, underpredict the energy dissipation rate and
show a much slower decay of the granular temperature. This
is because the classic KT models do not account for the extra
energy dissipation due to the particle surface friction and the
increased inelasticity at a small impact velocity. If we consider

FIG. 9. Granular temperature along with the time during the free
cooling process. The solid line represents the experimental data from
Grasselli et al. [31]. The two dashed lines show the theoretical
predictions of translational granular temperature from model I and
model II with the velocity-dependent e, respectively.

the rotational motions with the given particle roughness while
keeping the restitution coefficient e constant, the three models
including the model by Chialvo and Sundaresan [11], model
I, and model II produce almost the same results. The initial
rotational granular temperature in model II is calculated by
assuming the system at the equilibrium state. As shown
in Fig. 8, even though all three models have significantly
improved their predictions in comparison to the classical KT
models, they still significantly underestimate the decay rate
of the translational granular temperature compared to the
experimental results.

Figure 1 clearly shows that the restitution coefficient e

could be much smaller than the constant value e = 0.9 when
the particle impact velocity is slow. Noting that the impact
velocities in the experiments are generally below 20 cm/s, we
believe the use of a constant e = 0.9 results in an underestimate
of the energy dissipation, as observed in Fig. 8. To investigate
the effect of a velocity-dependent e on the granular flow
cooling process, the energy dissipation rate equation (27) is
used in our improved KT models. As shown in Fig. 9, there
is a significant drop in the granular temperature predicted
by both model I and model II. This shows the use of a
velocity-dependent e can be crucial in improving the accuracy
of KT models for granular flows. Also, the fact that both model
I and model II predict similar results may indicate that in this
particular free cooling case, the ratio λ has an insignificant
impact on the dissipation rate of the translational fluctuation
energy, and the assumption of small rotational fluctuation
energy dissipation rate used in model I is reasonable.

However, the modified KT models still slightly overes-
timate the translational granular temperature, especially at
the initial stage. As explained in the previous section, such
discrepancy could be caused by the existence of a small
gap between particles and the glass walls, and the recent
finding that the translations and rotations are correlated when
particles are rough could also contribute to the error since
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the Maxwellian distribution function used here will no longer
be accurate. Nevertheless, the results in Fig. 9 clearly show
that our improved KT models which incorporate the velocity-
dependent restitution coefficient e and the frictional effect are
able to lower the predicted granular temperature and produce
results that agree well with the experimental measurements.

V. CONCLUSION

Previous modifications of the KT models for granular flows
are limited to small restitution coefficients and result in a
reduced energy dissipation rate that is not physically possible
at large friction coefficient. These models could significantly
underestimate the decay rate of the granular temperature in
the system during the free cooling process. To improve the
accuracy of current theory and facilitate the modeling of
a wide range of granular flow systems, we have developed
improved KT models that are able to incorporate the particle
surface friction and the increased inelasticity at small impact
velocities. By fitting the experimental data found in the litera-
ture, a velocity-dependent normal restitution coefficient profile

has been derived and used in the present KT models. Two
different approaches that consider the particle surface friction,
named as model I and model II, were examined and evaluated.
Model I simply absorbs the effect of particle rotation into the
effective restitution coefficient and only translational granular
temperature is solved; model II solves the coupled equations
for both rotational and translational granular temperatures,
resulting in a better accuracy. For this free cooling case, both
model I and model II could predict similar results with good
accuracy. Comparing with the experimental results, we have
shown that both the velocity-dependent restitution coefficient
and the particle surface friction are important in accurately
predicting the granular temperature of the system; our KT
models that integrate these two factors are able to improve
the simulation results and produce good agreement with the
experimental measurement.
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APPENDIX

For 3D systems the unperturbed particle distribution function could be written as

f (c,ω,r,t) = n

(
1

2π�T

)3/2(
I

2πm�R

)3/2

exp

(
− Iω2

2m�R

− c2

2�T

)
. (A1)

The part of the translational fluctuation energy dissipation that is related to the normal restitution coefficient in the homogeneous
cooling state is given by

�T 1 = d2

2

∫
c12·k<0

1

4
mg0
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0
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[
− (c12 · k)2

V 2
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]}2
⎞
⎠(c12 · k)3

× n2

(
1

2π�T

)3(
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exp
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ω2

1 + ω2
2
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2m�R

−
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c2

1 + c2
2

)
2�T

]
dkdc1dc2dω1dω2. (A2)

Since the energy dissipated due to the inelastic interactions in the normal direction is independent of the angular velocities,
the integration of the above expression over dω1dω2 would yield to

�T 1 = d2

2

∫
c12·k<0

1

4
mg0

⎛
⎝1 − e0

2

{
1 − A exp

[
− (c12 · k)2

V 2
a

]}2
⎞
⎠(c12 · k)3n2

(
1

2π�T

)3

exp

[
−

(
c2

1 + c2
2

)
2�T

]
dkdc1dc2. (A3)

To obtain the integrations in Eq. (A3), we need to transform the integral variables dc1dc2 to dc12dc′
12, where c1= c′

12+c12

2 and

c2 = c′
12−c12

2 . The Jacobian of this transformation is 1/8.

�T 1 = d2

64
mg0

∫
c12·k<0

⎛
⎝1 − e0

2

{
1 − A exp

[
− (c12 · k)2

V 2
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]}2
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(
1

2π�T
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× exp
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12
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4�T
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12. (A4)

We obtain

�T 1 = −12

{
1 − e2

0 + Ae2
0V

4
a

[
2(

4�T + V 2
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)2 − A(
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d
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π
�

3/2
T . (A5)
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By treating θc as constants and βf independent of the impact velocity, expression for the decay rate of translational fluctuation
energy would be

�T = −12

{
1 − e2

0 + Ae2
0V

4
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2(
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Similarly, for 2D systems we have
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