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Bulk and local rheology in a dense and vibrated granular suspension
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In this paper, we investigate experimentally the dynamics of particles in dense granular suspensions when both
shear and external vibrations are applied. We study in detail how vibrations affect particle reorganization at the
local scale and modify the apparent rheology. The nonlocal nature of the rheology when no vibrations are applied
is evidenced, in agreement with previous numerical studies from the literature. It is also shown that vibrations
induce structural reorganizations, which tend to homogenize the system and cancel the nonlocal properties.
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I. INTRODUCTION

Granular dispersions are widely found in industrial pro-
cesses as diverse as food manufacturing (cereals), pharma-
ceutical manufactures (powders, medicines), the construction
industry (sand, concrete), the paper industry (fibers, paper
pastes), or mining engineering (clay or ores), for example [1].
Vibratory solutions are widely used in industrial processes
to control feeding of dry bulk materials, screen dry and wet
products, convey large tonnages of bulk materials, or also
for vibrating bins, bowls, and hoppers [2]. These processes
are usually designed from empirical knowledge. Optimized
solutions based on energy savings could be obtained with a
better understanding of the property-structure link from the
(micro)scale of the particle to the (macro)scale of the process.

In this article, we focus on the rheological properties
of granular materials immersed in a liquid of unequal
density, usually referred to as granular suspensions [3–6].
Their behavior clearly differs from that of density-matched
suspensions, the rheology of which has been studied in detail
in the literature [7–10]. Granular suspensions usually tend to
sediment. Due to a large concentration of granular materials,
a gravity-consolidated contact network can appear, which
suggests a description similar to dry granular matter [11,12].

Many recent studies combining rheological and light-
diffusion measurements have suggested an apparent Brownian
motion of granular suspensions when external mechanical
vibrations are applied [11,13–17]. The link between this
apparent Newtonian rheological behavior and the dynamics
at the grain scale is still not clear.

In this work, we aim to bridge the gap between constitutive
laws extracted from rheological measurements and the local
evolution of the grain motions when external vibrations are
applied. Our previous works focus on the global rheology of
vibrated granular suspensions [15–19]. However, open ques-
tions remain about how particles reorganize when vibrations
are applied, leading to measured global rheology. Here, we
study how the system reorganizes at the grain scale leading to
a decrease in its apparent viscosity.

In this paper, we show that when no vibrations are applied,
the rheology is nonlocal and suggests the existence of a
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correlation length in the sample, as proposed by recent nu-
merical studies [20,21]. We evidence that applying vibrations
homogenizes the system and induces local rheological effects.
By analyzing grain motions, we show that the apparent
Newtonian viscosity plateau observed at a low shear rate is
well related to a diffusing motion of particles, as already shown
with diffusing wave spectroscopy measurements. The compar-
ison between the relaxation time extracted from rheological
measurements and the diffusing time obtained from particle-
tracking measurements evidences that the reorganization time
induced by vibrations is related to a subdiameter deformation
of cages around each particle.

II. EXPERIMENTAL METHODS

The bulk rheology of both sheared and vibrated granular
suspensions is investigated experimentally using both classical
rheometry and an optical technique. The aim of this work is
to link the global rheology to local properties at the grain
scale. Granular suspensions used are made of borosilicate glass
beads (Sigmund Lindner ©) totally immersed in a Newtonian
interstitial fluid (glycerol). Sample properties are described
in detail in Table I. It is a gravitational and a high-viscosity
system. This has been seldom studied, and the behavior may
differ from usual studied isodense suspensions.

Rheological measurements have been obtained using a
stress-imposed rheometer (Discovery HR3). The characteri-
zation cell used is a “powder cell,” analogous to a virtual
cylindrical Couette geometry (the annular gap equals 10 mm
and the vane radius equals 7.5 mm). This device is fixed to
a vibration shaker connected to an accelerometer, a function
generator, and a power amplifier. The transmitted vibrations
are sinusoidal and computer-controlled thanks to a closed-loop
system [Fig. 1(a)]. A detailed description of the calibration
procedure and the equipment can be found in Refs. [11,15].
The vibration energy supplied to the samples can be expressed
through a mechanical vibration stress σv = 1/2ρsA

2(2πf )2,
where f and A are the frequency and amplitude of the
vibrations, respectively, and ρs is the suspension density
depending on the fluid ρf and particle ρp densities ρs =
ρpφ + (1 − φ)ρf , with φ = 0.61 [15]. In the following, results
obtained for frequencies and amplitudes in the range f = 30–
100 Hz and A = 50–400 μm are presented.

The classical rheometry provided us with the bulk rheology
of the sample, for different values of σv . To conserve the
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TABLE I. Studied sample properties.

Borosilicate Glycerol Fluorescent dye

nD = 1.473 nD = 1.473
ρp = 2.23 g/cm3 ρf = 1.26 g/cm3 Rhodamine 6G
d = 1 mm η = 1.49 Pa s

initial sample state, the granular suspension is mixed and then
forced by vibrations (at σv = 21.03 Pa during 5 min) before
each experiment. Continuous shear rate (γ̇ = 10−3–102 s−1)
or shear stress ramp (σ = 1–103 Pa) experiments have been
carried out to obtain the bulk rheology. We have checked that
all data points have been obtained in the steady state.

Particle motions of granular suspensions at the local scale
require us to image the bulk of the sample. For that, we
used refractive-index matched scanning (RIMS). Wiederseiner
et al. [22] published a review on this widely studied technique
[23–26]. This method is an optical technique that relies on
submersing granular media in a well chosen fluid that have
the same refractive indices nD . The sample becomes then
transparent and the quality of refractive index matching can
be reliably and easily estimated by checking the readability
of a text through the prepared suspension (Fig. 2). RIMS
is a tomographic-like imaging technique. To detect particle
positions, we add a fluorescent dye in the liquid part of the
suspension. The peak in the absorption spectrum of the dye
is matched with the excitation wavelength of the laser sheet
(λlaser = 518 nm). Depending on the emission spectrum, a
long-pass filter is chosen only to extract the fluorescent light
from the fluid that can be detected with a camera (here,
λ = 550 nm). This allows us to visualize the particles as dark
spots in a well-defined cross section of the sample. A CCD
camera (1280 × 1024 pixels) and a tilted mirror placed above

FIG. 1. (a) Sketch of the experimental setup: the granular
index-matched suspension is placed in a characterization cell (vane
geometry). A rheometer and a vibration shaker are used to analyze
the rheological behavior of the granular media. The particle motion
in the 2D cross section, illuminated by a laser sheet, is recorded by a
camera through a tilted mirror. (b) A typical 2D cross section of the
sample, obtained with RIMS: borosilicate beads (d = 1 mm) appear
as dark spots in a bright background.

FIG. 2. Top view of the sample to test the readability of a text
through 10 particle sizes. The sample is made of borosilicate beads of
d = 1 mm diameter in air (left), and the refractive index is matched
with bidistilled glycerol (right): media and fluid have optical indexes
equal nD = 1.473.

the sample is used to record grain motions in half of the cross
section. The acquisition frequency of the camera is a multiple
of the vibration frequency (fps = 1–20 s−1). A typical image
is given in Fig. 1(b).

Imposed shear stress and imposed shear rate experiments
(peakhold) have been carried out for different values of σv .
From the recorded images, particle image velocimetry (PIV)
measurements provided us with velocity profiles in the gap.
For that, we used the algorithm software PIVLAB [27,28].
Recorded images are filtered in order to detect particles. The
light intensity has been standardized thanks to the “Enable
CLAHE” function. Light reflections have been excluded with
the “Enable Intensity Capping” function. The contrast between
the beads and the interstitial fluid has been increased removing
noise with a “Wiener2 denoise filter” for each picture. The
velocity field is obtained thanks to the 2D Gauss estimator
by measuring the motion of individual particles between two
images separated by a known time interval. The profile near
the vane (from r = 7.5 to 8.5 mm) cannot be extracted due
to visualization limitations, however we expect lubrication
effects in this region. The local rheology can be extracted
from the velocity profiles measured in the gap at a ten-particle-
diameter depth from the free surface of the sample.

Particle tracking velocimetry (PTV) measurements pro-
vided us with the trajectories of individual particles with time.
To extract particle trajectories, we used a tracking algorithm
(TrackMate-Fiji [29])1.

1Preprocessing was done to obtain images in which beads appear
as white spots in a dark background. A plain LoG (Laplacian of
Gaussian) segmentation on the image is applied with the “LoG
detector” (the calculations are made in Fourier space). An estimated
diameter of the beads is then input, and a subpixel localization
is required. The particle-linking algorithm “Simple LAP (linear
assignment problem) tracker” is chosen. This tracker allows us to deal
with gap-closing events, only based on time and distance conditions.
For our experiments, the “linking max distance” and the “gap-closing
max distance” are chosen as half of the bead diameter.
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FIG. 3. Evolution of the shear stress σ with respect to the shear
rate γ̇ for different values of the vibration stress σv . The dashed line
represents the value of the frictional stress σf (Coulomb’s law), and
the solid horizontal lines are the error bar. Markers are data from the
bulk rheology. Experiments have been carried out at an imposed shear
rate for the curve at σv = 0, and performed at imposed shear stress
for the vibrating case. Solid lines are data from the local rheology.
Inset: the bulk viscosity η vs the shear rate γ̇ . Solid lines denote the
fits given by Eqs. (2) and (4).

III. RESULTS AND DISCUSSIONS

A. Bulk rheology

The evolution of the shear stress σ and the bulk viscosity
η are plotted as a function of the shear rate γ̇ for different
values of σv (Fig. 3). For vibrated suspensions, we define three
regimes. (i) A low γ̇ values regime (10−4 < γ̇ < 10−3), where
a viscosity plateau appears whose amplitude depends on σv .
(ii) An intermediate γ̇ values regime (10−3 < γ̇ < 1), where
the viscosity decreases with the shear rate, but still depends on
the vibrations. (iii) Finally, a high γ̇ values regime (1 < γ̇ <

103), where all the data collapse on a single curve for all σv .
In the following, we will discuss the low and intermediate γ̇

values regimes for the nonvibrating case and the vibrating one.

1. Nonvibrating case

When no vibrations are applied (σv = 0 Pa, in Fig. 3), σ

remains constant until γ̇ ≈ 1 s−1 and then increases with it. A
typical yield stress behavior is observed for the studied sus-
pension, in agreement with previous results [15,19]. The bulk
flow curve follows the Herschel-Bulkley law σ = σf + kγ̇ n,
with the values k = 16.9 Pa sn, n = 0.71, and σf = 105.32 Pa.
A frictional stress can be defined as σf = μPg , with μ =
0.5 ± 0.1 the intergrain friction coefficient and Pg the average
granular pressure given by [11]

Pg = 	ρφgz̄, (1)

where g is the gravitational constant, φ is the volume fraction,
	ρ is the relative density of the beads and fluid, and z̄ is
the average height of the packing. Coulomb’s law leads to
σf = 90 ± 18 Pa, in agreement with the experimental result.
It has been shown in the literature that the evolution of the

viscosity with the shear rate can be written as [19]

η = σ

γ̇
= GM

γc

γ̇
+ ηH , (2)

where GM is the shear modulus of the whole suspension,
γc is a critical deformation (rupture of the contact network
in the suspension), and ηH is the viscous contribution to
the stress transmission. The nonvibrating rheological data
have been fitted to Eq. (2) (Fig. 3). The value of the shear
modulus is GM = 342.71 Pa. In this framework, the frictional
stress equals σf = GMγc = 117.81 Pa, in agreement with the
previous proposed values. The flow curves obtained in the
absence and in the presence of vibrations merge for σ = σf :
this value is then a transition between the two regimes [15].

2. Vibrating case

The flow curves presented in Fig. 3 are in agreement with
previous works that have shown that the frictional stress σf is
a limit between two domains [15]. For σ � σf , the apparent
yield stress is suppressed and a viscosity plateau appears at
low shear. The value of the viscosity plateau (η = cst = η0)
decreases with an increase in the vibration stress. Such a
behavior can be explained by a fluidization of the packing
due to the increase of the particle mobility. After the viscosity
plateau, the viscosity drops with the increase of the shear stress
(intermediate regime) and depends on the value of σv . In this
intermediate regime, the friction entirely controls the flow.
For σ � σf , the viscosity curves follow the nonvibrating case.
The suspension flow behavior is totally controlled by the shear
stress, whatever the value of σv [30,31]. In the following, we
focus on the case σ � σf .

The low shear viscosity plateau can be related to a vis-
coelastic rearrangement time τR as shown in Refs. [16,17,19]:

η0 = GMτR. (3)

In the following, we evaluate the viscosity plateau η0, the
shear modulus GM , and the reorganization time τR in the
suspension τR = 1/fb by fitting our data (Fig. 3) to the models
proposed by Hanotin et al. [19]:

η = σ

γ̇
= GM + ηH γ̇ /γc

fb + γ̇ /γc

= η0 + ηH γ̇ /γ̇c

1 + γ̇ /γ̇c

, (4)

where γ̇c is the critical shear rate corresponding to the critical
deformation γc. The viscosity ηH and the shear modulus
GM [Eq. (4)] are assessed by fitting the global curves. The
values of γ̇c and η0 for each case are extracted by reporting
values of ηH in the fits. The value of the shear modulus can
be considered as a constant (Fig. 4, inset). A mean value is
then calculated and equals 〈GM〉 = 275.17 ± 94 Pa. Finally,
the macroscopic rearrangement times τR responsible for the
value of the viscosity are obtained through Eq. (3).

The evolution of the viscosity plateau η0 and the macro-
scopic rearrangement time τR as functions of σv are plotted in
Fig. 4. The values of these two quantities are controlled by the
rearrangement dynamics and decrease with (σv)−1/2 (Fig. 4).
When the energy supplied to the system through the applied
vibrations increases, the particle reorganization frequency
increases. This dependency has already been evidenced in a
previous work [17].
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FIG. 4. Viscosity plateau η0 and rearrangement time τR values,
evaluated through Eq. (4), as functions of the mechanical vibration
stress σv . In the inset, the shear modulus GM vs σv . The dashed line
is a guide for the eyes.

The result η0 ∝ τR ∝ (σv)−1/2 suggests that the value of
the viscosity plateau is controlled by the applied vibrations.
It is then of interest to study how vibrations affect particle
reorganization.

B. Local study

In this subsection, local information is extracted and
compared with global information. The local values of the
shear rate are given by deriving the raw data of the velocity
profile γ̇loc = −r ∂

∂r
( uθ (r)

r
), where uθ (r) is the angular velocity.

The local shear stress in the gap is given by σloc(r) = T
2πr2h

,
with h = 5 cm the height of the vane and T (N m) the torque
given by the rheometer. The local viscosity is then given by
ηloc(r) = σloc

γ̇loc
(r).

The evolution of the torque with the depth of the sample
is not known. Some measurements at z = 8 mm have been
performed, and almost no deviations from the case z = 10
mm have been observed. Dilatancy effects that change the
behavior significantly have been observed for 0 < z < 8 mm.
Moreover, it has been impossible to see deeper than z = 10 mm
for experimental constraints.

We thus assume that the suspension is homogeneous
near the vane in the depth: the averaged σ imposed by the
rheometer is nearly the same all along the z direction. In the
following, all the local measurements have been performed
at z = 10 mm depth, and the torque value is taken from the
global measurements.

1. Nonvibrating case—Correlation lengths

The velocity profiles in the gap have been plotted for the
nonvibrating case for some values of imposed shear rates γ̇

(Fig. 5, inset). We observe a localization of the flow at r = rloc

where the angular velocity uθ (r) drops to zero. Only a part of
the suspension is forced by the vane to flow for r < rloc; the
other part is totally jammed. When γ̇ increases, the localization
length in the gap increases.

FIG. 5. Shear stress σ vs shear rate γ̇ for the case σv = 0. The
solid line is data from the bulk rheology. Markers are data from the
local rheology (γ̇loc;σloc) obtained for various values of the imposed
shear rates, well fitted to a fluidity model (dashed lines). In the inset,
the logarithmic plot of the corresponding velocity profiles in the gap.

From torque balance and differentiation of velocity profiles,
the local shear stress σloc and the local shear rate γ̇loc are
computed, respectively. The local and bulk flow curves are
plotted in Fig. 5. A strong departure is observed from what is
expected regarding the bulk rheology. We also point out that
while the local stress state is far below the bulk yield stress,
the suspension flows over a large part of the gap. This suggests
a nonlocal rheological law with local plastic events spreading
over a given characteristic length. Such an effect has already
been observed in many soft materials [32–34] and in numerical
studies of granular rheology [20,21]. In this paper, such a result
is evidenced experimentally in dense granular suspensions of
non-Brownian particles.

To go further, we analyze our data in the framework of the
kinetic elastoplastic model, which introduces the concept of
local fluidity [35]: f = γ̇

σ
. Fluidity obeys a stationary diffusion

equation:

ξ 2 � f = f − fR, (5)

where ξ is the cooperative length over which spatial re-
arrangements take place, and fR[σ (r)] is the bulk fluidity
obtained in the absence of nonlocal terms. The first step
in solving the fluidity equation [Eq. (5)] is to look for an
axisymmetric solution. For that, the bulk rheological behavior
in the nonvibrating case is assessed independently using the
vane rheometer: the data for σv = 0 (Fig. 3) are fitted to
the classical Herschel-Bulkley law (parameters are given in
Sec. III A 1). These parameters are now kept constant in the
following fluidity analysis. In summary, fR is given by the
Herschel-Bulkley model:

fR[σ (r)] =
{

1
σ (r)

( σ (r)−σf

k

)1/n
for σ > σf ,

0 otherwise.

The second step is to numerically integrate Eq. (5) with
two boundary conditions at the outer wall and at the vane
rotor. Since the suspension is totally jammed beyond rloc, the
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FIG. 6. Velocity profiles in the gap (at z = 10 mm) for different
values of mechanical vibration stress for an imposed shear stress
σ = 54 Pa. In the inset, uθ vs r for some values of σv and for an
imposed shear stress σ = 70 Pa.

fluidity at the outer wall is fixed to zero. Due to the lack of
velocity measurements close to the vane, the fluidity cannot be
measured precisely. So we choose to keep the fluidity boundary
condition at the vane and the correlation length ξ as adjustable
parameters in the fitting procedure [20,34,35]. The values of
ξ depend weakly on the applied shear rate with an average
〈ξ 〉 = 2d. This average value is used to plot the nonlocal model
in Fig. 5, and it shows relatively good agreement with our
experimental data. Our cooperative length 〈ξ 〉 compares well
with numerical simulations of granular rheology obtained for
stress values below the dynamical yield stress σf : 3 � ξ

d
� 5

[20,21].

2. Vibrating case—Intermediate γ̇ values

The intermediate regime is defined for a range of γ̇ values
corresponding to a transition between the viscosity plateau and
the collapse of all the data with the nonvibrating case.

From PIV measurements, the local velocity profiles can be
extracted for various values of the imposed shear stress and
σv (some examples are given in Fig. 6). From these profiles,
the local rheology has been calculated with a torque value
corresponding to the mean torque applied to the sample. In
contrast to the nonvibrating case, our results suggest that the
local rheology is the same as the macroscopic one (Fig. 3).
When vibrations are applied to the granular suspension, the
nonlocal effect no longer persists due to the breaking of the
contact network of grains preventing the propagation of plastic
rearrangements. It also depends on the applied vibrations, like
the bulk rheology.

In this intermediate regime, reorganizations occur due to
both vibrations and shear. The bulk rheology is the same as
the local one due to the homogenization of the suspension.
Vibrations cancel the localization and the apparent yield stress
of the suspension. Therefore, the assumption that the averaged
σ imposed by the rheometer is nearly the same all along the z

direction seems to be valid.

FIG. 7. (a) 2D map of particles trajectories, for imposed shear
stress σ = 5 Pa and σv = 14.61 Pa. Inset: typical trajectory of a
particle followed during 2500 s. Most of the time, the grain remains
confined in a cage formed by its nearest neighbors. (b) Mean-square
displacement as a function of time, for imposed shear stress σ =
5 Pa and various values of the mechanical vibration stress σv . The
data are well fitted to 〈r2(t)〉 ∝ Dt (dashed lines). In the inset, D vs
σv for the same data. The dashed line is a guide for the eyes.

3. Vibrating case—Low γ̇ values

a. MSD calculations. The tracking (PTV) measurements
on the viscosity plateau provide us with two-dimensional
(2D) maps of particles trajectories for each vibration energy
during one experiment [Fig. 7(a)]. On the viscosity plateau,
PIV measurements are impossible because of very low shear
rate values. PTV measurements have been performed for a
particular interrogation window chosen in the middle of the
cross section to avoid (i) the velocity field that could appear
near the vane, and (ii) the boundary condition at the outer wall.
Moreover, experiments in which no shear but only vibrations
are applied have been carried out. The PTV results show the
same process, with the same slope for a given σv , as in the
case when both vibrations and low shear are applied. For this
high-viscosity system, the time that would be needed for a
bead to travel over a diameter length due to the shear is much
larger than that due to vibrations. To only take into account the
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FIG. 8. Logarithmic plot of the rearrangement times τ ∗
R and τvib

calculated with 〈α〉, as functions of the mechanical vibration stress
σv . The dashed line is a guide for the eyes. In the inset, α vs σv .

vibrations effect, the grain-averaged motion due to the shear
has been subtracted from the measurements when necessary.
Therefore, the viscosity plateau is related to a rearrangement
time induced by vibrations, which we called τvib.

A typical grain trajectory is plotted in Fig. 7(a) in the inset.
We observe that particle cages diffuse with time. We extract
the mean-square displacement (MSD) of the beads submitted
to various values of σv . The results suggest a purely diffusing
process without the subdiffusive cage effect [Fig. 7(b)], well
described by

〈r2(t)〉 ∝ Dt (6)

with D the diffusion coefficient depending on the vibration
stress. The value of D increases with increasing σv , such as
D ∝ (

√
σv)β [Fig. 7(b), inset], with β = 1.16 ± 0.04. This

suggests that τR is related to D as τR ∝ D−1. These results are
perfectly in agreement with DEM simulations investigating
compaction dynamics of a granular media subject to vertical
taps, which suggests the existence of a glassy dynamics of
the system, as observed here [36]. Actually, increasing the
vibration energy allows the increase of velocity fluctuations,
and thus the decrease of the viscosity.

The microscopic rearrangement time τvib has to be equal
to the corresponding macroscopic time extracted from the
bulk rheology at z = 10 mm. It has been shown, through
multispeckle diffusing wave spectroscopy (MSDWS) exper-
iments on suspensions, that the decorrelation time is directly
proportional to z, the distance from the free surface of the
sample [17]. Therefore, we calculate the rearrangement time
τ ∗
R extracted from rheological measurements and evaluated at

z = 10 mm. The rearrangement time τvib, which is the time
between two contact-breaking events induced by vibrations,
is related to a particle displacement over a fraction α of its
diameter. This diameter fraction is evaluated by combining
Eqs. (3) and (6), such as τ ∗

R = τvib = 〈(αd)2〉/D. The value
of α is plotted as a function of the vibration stress σv (Fig. 8,
inset). We see that α remains constant regardless of the value
of σv , and it equals 〈α〉 = 0.061 ± 0.005. The rearrangement
time τvib due to vibrations seems to be the time for a particle

displacement of 0.06d. The evolution of τvib calculated with
〈α〉 is plotted in Fig. 8. The macroscopic and the microscopic
rearrangement times collapse on the same straight line and
scale with (

√
σv)−1 in that case.

These results suggest that the value of the viscosity plateau
η0 appearing under vibrations is controlled by a rearrangement
time. For our experiments, it seems that τ ∗

R is the time for a
particle displacement of 0.06d.

b. Free volume approach. To go further, we decided to
study the distribution of the interstitial voids in the packing
microstructure and how this evolves with the vibration inten-
sity. Following previous works [36–43], we focused on the
free volume associated with each particle, computed through
the Voronoï tesselation.

We define the surface in two dimensions occupied by a
particle as the Voronoï polyhedron, v. This corresponds to
the cell area around a particle in which all points are closer
to that particle than to any other particle in the packing.
The Voronoï tesselation allows us to partition the image into
Voronoï polyhedra needed to map the space.

Each particle can “rattle” in a cage, more or less spacious,
depending on the vibration energy. The particle center can
translate, given that all others are fixed. In this paper, we have
defined the free volume for each particle as the difference
between the Voronoï volume associated with one grain and
the area of the closest regular polyhedron of this grain
(vg = √

3/2) [39]: vf = v − vg . Free volume distributions for
different values of σv are plotted in Fig. 9. The distributions
are asymmetric with exponential tails, which are standard
features of the Voronoï distributions. In granular media, these
distributions are well approximated by a γ law, in agreement
with previous works [39–43]:

P (vf ) = (vf )a−1

ba�(a)
e−vf /b (7)

with a the shape parameter and b the scale parameter. The mean
free volume equals 〈vf 〉 = ab and σ 2

vf = ab2. The mean value
〈vf 〉 and the standard deviation σvf increase with increasing
σv . Increasing vibration energy allows the increase of void
volumes at the local scale, and therefore the decrease of the
viscosity at the macroscopic scale. However, the distributions
collapse on the same master curve when σvf P (vf ) is plotted
[Fig. 9(a), inset] as a function of the rescaled quantity
(vf − 〈vf 〉)/σvf . Moreover, it is exactly the same scaling
that has been observed in MD simulations of glass-forming
liquids by Starr et al. [44], and supported by experimental
data on granular packs by Aste et al. [45]. This tends to
confirm the existence of a sole underlying geometrical system,
where the vibration effect is included into the average and the
variance of the free volume distributions. Figure 9(b) displays
the distributions of free volumes in a semilogarithmic plot. One
still observes exponential tails for free volumes high enough to
allow rearrangements. In this region, one can define a critical
free volume vf ∗

beyond which spatial rearrangements become
possible [36,39,41]: P (vf ) ∼ exp(−vf /vf ∗

). The value of vf ∗

does not depend on the value of σv [Fig. 9(b), inset]. The mean
critical free volume equals 〈vf ∗ 〉 = 0.1866 ± 0.0115 mm2.
This value is the value of the area crown corresponding to
(〈α〉d), vf ∗ ≈ 2πR(〈α〉d) = 0.188 mm2.
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FIG. 9. Free volume distributions for different values of the
mechanical vibration stress σv . (a) The data are well fitted with a
γ law presented in Eq. (7) (solid lines). Inset: plot of the rescaled
distributions. The same scaling has been found by Starr et al. [44]
and Aste et al. [45]. (b) Semilogarithmic plot of raw data: well-defined
exponential tails appear, with characteristic free volumes vf ∗

. In the
inset, vf ∗

vs σv .

We suggest that the relation linking the rearrangement time
τ ∗
R (proportional to the viscosity) to the free volumes is given

by Doolittle’s free-space equation [46], which is common in
previous works [37,38,47]:

η0 ∝ τ ∗
R ∝ A exp

(
B

vg

〈vf 〉
)

, (8)

where A and B are constants depending on the nature of
the fluid. This model usually works well for polymer liquids
submitted to a change in temperature. The data are well fitted to
this empirical model (Fig. 10), with A = 3.4695 ± 0.0527 Pa s
and B = 0.93614 ± 0.0142 in agreement with the fact that B

is found by Doolittle to be a constant of order unity. We have
finally linked a dynamical property of the suspension τ ∗

R to a
structural parameter 〈vf 〉.

FIG. 10. Evolution of the rearrangement time τ ∗
R as a func-

tion of vg/〈vf 〉. The solid line is Doolittle’s model presented in
Eq. (8).

IV. CONCLUSIONS

In this paper, we studied experimentally the bulk and the
local rheology of a gravitational and a high-viscosity vibrated
granular suspension. We show that applying vibrations sup-
presses the yield stress. This creates a viscosity plateau at low
shear and a frictional regime for intermediate shear rate values.
The viscosity of the suspension decreases with an increase in
the vibration intensity.

The refractive-index matching technique allows us to
visualize inside the sample and therefore to study the rear-
rangements of the grains at the local scale:

(i) When no vibrations are applied, we evidence the
nonlocality of the rheology and extract a correlation length
that does not depend on the applied shear rate: ξ = 2d. This
value is in agreement with previous numerical simulations
from the literature.

(ii) In the intermediate regime, the local rheology collapses
on the bulk rheology, showing that action of both shear and
vibrations homogenizes the system.

(iii) On the viscosity plateau, we extract a rearrangement
time induced by vibrations using the PTV technique. We
evidence that the rheological time τR∗ corresponds to the time
a particle needs to move from 0.06d.

(iv) Analyzing free volume distributions, we show that the
length 0.06d is related to a critical free volume vf ∗

beyond
which cage reorganization becomes possible.

It would be of great interest to study the dependency of the
velocity field in the gap with the depth z of the sample, for
instance through x-ray tomography measurements.
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