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Rheology of dense granular flows for elongated particles
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We study the rheology of dense granular flows for frictionless spherocylinders by means of 3D numerical
simulations. As in the case of spherical particles, the effective friction μ is an increasing function of the inertial
number I , and we systematically investigate the dependence of μ on the particle aspect ratio Q, as well as that of
the normal stress differences, the volume fraction, and the coordination number. We show in particular that the
quasistatic friction coefficient is nonmonotonic with Q: from the spherical case Q = 1, it first sharply increases,
reaches a maximum around Q � 1.05, and then gently decreases until Q = 3, passing its initial value at Q � 2.
We provide a microscopic interpretation for this unexpected behavior through the analysis of the distribution of
dissipative contacts around the particles: as compared to spheres, slightly elongated grains enhance contacts in
their central cylindrical band, whereas at larger aspect ratios particles tend to align and dissipate by preferential
contacts at their hemispherical caps.
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I. INTRODUCTION

Rheology of dense granular flows is an active domain
of research, motivated by fundamental questions on this
“complex fluid” as well as by practical needs in soil mechanics
and geotechnical engineering. Since the 1950s a number of
models have been suggested, including Bagnold’s scaling
[1,2], the theory of the rapid flow regime [3], and other
regimes [4]. A major step in the description of the dense
regime was achieved 10–15 years ago with the development
of the framework of the now so-called μ(I ) rheology [5,6],
which successfully describes these flows in the absence of
strong spatial gradients or temporal changes. This approach
has shown that the constitutive equations, which augment the
conservation laws for a complete rheological description of
these flows, can be formalized in terms of the “inertial number”
I = γ̇ d/

√
p/ρ, where γ̇ is the shear rate, p is the pressure, d is

the average grain diameter, and ρ is the density of the particles’
material. This dimensionless number can be interpreted as the
ratio of the characteristic time scale d/

√
p/ρ of microscopic

rearrangements and the macroscopic time scale 1/γ̇ of the
deformation. In the case of rigid grains, for which the pressure
is the only stress scale, the dimensional analysis tells us that
the effective friction μ of the flow, defined by the ratio of
the shear stress to the pressure, and the volume fraction φ of
the granular packing are functions of I . The shape of these
functions has been determined both by simulations [7–9] and
experiments [10,11].

The μ(I ) formalism has been successfully applied in a
number of flow geometries [5], recovering the Bagnold scaling
in flows down an inclined plane [2] and describing chute
flow [12–15], silo discharge [16], granular column collapse
[17,18], and dynamic compressibility effects in spontaneous
oscillatory motion [19,20]. This rheology has been extended
in a number of ways, taking into account various effects
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like cohesion [21], finite pressure or soft particles [22], and
self-propelling particles [23]. Another example for extension
is the description of granular suspensions [24–26]. In this case,
a new time scale, that of the viscous dissipation, is introduced,
which is captured by a new dimensionless group, the “viscous
number” J . This formalism describes Brownian suspensions
as well [27] and has been incorporated to diphasic models for
sediment transport [28–30].

Another trend in granular physics is considering shape
anisotropy for the particles; see the recent review [31] and
references therein. One of the fundamental results is the
observation that elongated particles get oriented in shear
flow [32–35]. The average orientation angle θav, which is
the angle between the average orientation of the particles
and the streamlines, is nonzero; it decreases with the length-
to-width aspect ratio Q of the particles, but only weakly
depends on the shear rate [36]. There is an interplay between
this orientational ordering and the packing fraction or the
contact force network [37–39]. The quasistatic behavior of
two-dimensional (2D) systems has been investigated with
rounded-cap rectangular particles in a biaxial setup [37]. The
fast regime (typically I > 0.1) has been explored in various
2D configurations, including a volume-fraction-controlled
shear cell, with dumbbells [40,41]. In this paper, we study
the rheological properties of assemblies of 3D frictionless
spherocylinders in a pressure-controlled shear cell. We explore
the range of shear rate for which the μ(I ) formalism is
expected to apply, i.e., from the quasistatic limit (I → 0) to the
beginning of the kinetic regime I � 0.1. We unexpectedly find
a nonmonotonic behavior of the quasistatic friction coefficient
with the particle aspect ratio, a key result missed by previous
studies [37,41]. We also report the emergence of normal stress
differences, whose marginal presence was already noticed
for 3D flows of spheres [42], but which clearly develop for
elongated particles in a way qualitatively similar to those in
suspensions of fibers [43,44]. A very recent experimental study
of the rheology of noncolloidal suspensions of rigid fibers
has investigated the effect of the particle aspect ratio in the
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FIG. 1. The simulation box, here containing 500 spherocylindri-
cal particles of aspect ratio Q = 2 in the stationary state, is sheared
in the x direction. A feedback loop adjusts Ly to ensure a controlled
applied stress −py in the y direction. The shear rate is γ̇ = v/Ly .

range 3–15, indicating an aspect ratio independent friction
coefficient, but a decreasing jamming packing fraction with
increasing Q [45]. A nonmonotonic dependence of the packing
fraction on Q has been observed previously also in nonsheared
systems [46–48].

II. NUMERICAL SETUP

To model homogenous shear flow, we used a 3D plane-
Couette geometry, with periodic boundary conditions in the x

(flow) and z (neutral) directions and Lees-Edwards boundary
conditions in the y (velocity gradient) direction (Fig. 1); this
way undesirable effects of walls could be eliminated [49].
Instead of cylinders [50] we chose the spherocylindical shape,
because of the availability of efficient numerical algorithms
[51] and continuous transition to the reference spherical shape.
The spherocylinders were parametrized by their length-to-
diameter aspect ratio Q = �/2R. The repulsive force Fij

between particles i and j was proportional to their normal
overlap, and we employed a viscous velocity-difference-based
term for dissipation: Fij = (−k δij + b vc,ij · ĉij ) ĉij , where
δij and ĉij are the magnitude and unit direction vector of the
normal overlap between the particles, and for the velocity
difference vc,ij at contact the rotation of the particles was taken
into account as well. There is no tangential component of the
force that would result from a Coulombic contact friction.
The stiffness k of the contacts, the particle diameter 2R,
and the density ρ were set to unity, implicitly defining the
length, time, and mass units of the simulation. Importantly,
some polydispersity is introduced to reduce the effects of
crystallization at large Q, and while we kept the aspect ratio
constant, we have drawn the radii of the particles from a
uniform distribution with a ratio of standard deviation to mean
of 10%. The prefactor b in the dissipative term was set by
specifying a given restitution coefficient for binary collision.
The equations of motion were integrated by the velocity-Verlet
scheme, representing particle rotations by quaternions [52].

We created the initial conditions of random particle orien-
tation with overdamped dynamics and afterwards sheared the
system at constant shear rate γ̇ . During shear we employed
stress control, where one side of the box, Ly , was adjusted
by a feedback loop such that the corresponding normal stress
σyy fluctuated around a specified value −py . We have used
py = 10−3 in these units, corresponding to the rigid limit
where rescaled results become independent of py . We kept Lx

and Lz fixed in order to avoid the development of a singular box
shape due to normal stress differences. All measurements were
taken in the stationary state, reached after a deformation of
γ = 25 when starting from the initial conditions or of γ = 10
from the stationary state of a different shear rate. All quantities
of interest were time-averaged at least over an additional
deformation of γ = 5. In the steady state, the packing fraction
as well as all stress components σij were homogenous, and
the velocity profile was linear (no shear banding). Finally, we
checked that our results were independent of the integration
time step, set to 1/100 of the duration of a binary collision,
and qualitatively insensitive to the value of the restitution
coefficient in the range 0.3–0.7, and here set to 0.5.

III. RESULTS

We measured the inertial number dependence of different
quantities. In Fig. 2(a) we show the effective friction μ =
σxy/py vs I for spherocylinders of a few selected aspect ratios
and for spheres for reference. (Note that in the definition of
I we used the value py , controlling the stress, instead of the
pressure p.) Similarly to Ref. [26], we fitted the empirical form

μ(I ) ≈ μc + μ1I
α , (1)

allowing us to extrapolate to the quasistatic friction μc in
the I → 0 limit. Best fitting is of course obtained when
all three parameters are adjusted, but we then fixed the
exponent to its average, α = 0.4, yielding less noisy data with a
two-parameter fit (μc and μ1). This value of α is in agreement
with that deduced from 3D simulations of frictionless hard
spheres [53] and similar to the exponent 0.5 observed for
frictionless circles [54]. Figure 2(d) displays the aspect
ratio dependence of μc, showing a surprising nonmonotonic
function: it rises steeply for aspect ratios slightly larger than
one and takes the highest value around Q = 1.05, followed
by a slow decrease—we give a microscopic interpretation of
this behavior later. Similarly, we show the normalized first
and second normal stress differences N1/py = (σxx − σyy)/py

and N2/py = (σyy − σzz)/py in Figs. 2(b) and 2(c). Their
quasistatic values, extrapolated with a fit like Eq. (1) (also
with fixed α = 0.4), are shown in Figs. 2(e) and 2(f). As
expected, the quasistatic first normal stress difference vanishes
for spheres and increases close to linearly for aspect ratios
of Q � 2.5. The second normal stress difference is negative,
although 2–3 times smaller in amplitude than N1 (even for
spheres N2c/py � 1%), and has a very strong aspect ratio
dependence for nearly spherical particles.

In complement to the stress behaviors, we show the volume
fraction in Fig. 3(a). As for spheres, φ decreases with I as larger
shear rates generate a more dilute system. Also, consistently
with what has been observed for spherocylinders [46] and
ellipsoids [47] in nonsheared systems, the volume fraction of
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FIG. 2. Top row: (a) effective friction and (b) first and (c) second normal stress differences, as functions of I . The normal stress differences
are normalized by the absolute value of the imposed stress, py . The solid curves are fits of Eq. (1) with α = 0.4 in the range 10−3.5 � I � 10−2.
Bottom row: Aspect ratio dependence of the quasistatic (I → 0) values of the same quantities: (d) effective friction and (e) first and (f) second
normal stress differences. The first few points correspond to Q = 1, 1.01, 1.02, 1.05, and 1.1.

elongated particles first quickly increases with Q, followed by
a slow decrease—the behavior beyond Q � 2.5 is discussed
later. Finally, we computed the coordination number Z. A
static packing of frictionless hard spheres takes the isostatic
value 6. Once the particles become elongated, due to the
two extra rotation degrees of freedom per particle, this value
jumps to 10. In Fig. 3(b) we plot the measured values. For
spheres, Zc is slightly larger than 6 due to the finite pressure,
or equivalently the softness of the particles. For increasing
aspect ratio, Zc increases initially sharply but continuously,
reaching a flat maximum around Q ≈ 1.8. The inset shows
the inertial number dependence, demonstrating an expected
decrease of contacts for more violent flows.

Next we look at the orientational order induced by the shear
deformation. Figure 4 shows, for a few selected aspect ratios,
the distribution of the angle θ between the streamlines (x axis)
and the projection of the particle axis onto the x-y shear plane.
For more elongated particles the distribution is narrower and
its mode and mean are closer to zero. The average angle θav is
slightly off the mode due to asymmetry of the distribution. The
aspect ratio dependence of θav and the nematic order parameter
S, which is defined as the largest eigenvalue of the order tensor,
are shown in the inset: increasing Q results in increasing S

and reducing θav, in almost linear fashions. Note that even the
smallest aspect ratio considered, Q = 1.01, has a small but
finite nematic order, with θav � 45◦.

FIG. 3. The aspect ratio dependence of the quasistatic values of (a) the volume fraction and (b) the coordination number. Insets: I

dependencies for a few Q values. Solid lines: Fits of Eq. (1), with respective fixed exponents 0.4 and 0.5.
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FIG. 4. Orientation distributions for five different aspect ratios
(see legend). The symbols locate the average orientation θav. Inset:
Average orientation θav (black bullets, left axis) and nematic order
parameter S (white circles, right axis) as functions of Q. These data
are for I = 3.16 × 10−4.

Finally we determined which region of the particles’ surface
is most responsible for dissipation (Fig. 5). The highest
dissipation density was observed in the cylindrical band of
the Q = 1.05 spherocylinder. More spherical particles showed
a more homogenous distribution, but the slight enhancement
of the dissipation near the cylindrical band is visible even
for Q = 1.01. For more elongated particles, the dissipation
becomes dominated at the hemispherical caps.

IV. DISCUSSION AND PERSPECTIVES

The framework of the μ(I ) rheology can be extended
to elongated particles. The aspect ratio dependence of the
rheological quantities display two remarkable features: (i) the
dissipation, quantified by μc, is maximal around Q = 1.05,
and (ii) the normal stress differences, the volume fraction as
well as the coordination number, behave nonmonotonically for
Q � 2.5.

Issue (i) is closely related to the highest observed density of
dissipation in the cylindrical band of the Q = 1.05 particles.
We suspect that this effect is particularly strong for sphero-
cylindrical particles, where the surface is not analytic (one
of the curvatures is not continuous). An analysis similar to
what is shown in Fig. 5 revealed that not only the dissipation
density but also the contact density is increased in that region:
a larger than expected number of particle pairs locked in a
configuration where the contact is carried by the cylindrical
region for at least one of the particles. We explain issue (ii)
by the high nematic and partial spatial order observed for

Q = 1.5Q = 1.01

Q = 1.05 Q = 2

0

1.1 × 10−3

FIG. 5. Average dissipative power per unit area visualized on a
discrete mesh for four aspect ratios (see legends and color code).
Dissipation at each contact is accumulated in triangular bins, such
that the axes of the differently oriented particles are turned into a
canonical orientation, in which the mesh is defined. These data are
for I = 3.16 × 10−4.

sufficiently elongated frictionless spherocylinders. While the
introduction of polydispersity destroyed the crystalline order
perpendicular to the streamlines, we still observe short-range
chains of particles which follow each other on a streamline.
This can also explain why the tips of the particles become
the dominant location for dissipation for the more elongated
particles.

The robustness of these results should be assessed by
complementary simulations, e.g., in 2D, with other shapes
like ellipses, possibly including frictional contacts, as well as
by experiments [45,55]. A better understanding of the large
Q behavior probably requires the use of larger systems, and
here our data for Q = 3 may be affected by a too small size.
This issue motivates further studies towards the flow of fibers
and entangled materials [48], whose rich mechanics suggest
interesting rheological properties.
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