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We address in detail the problem of true morphological phase separation (MPS) in three-dimensional or (2 + 1)-
dimensional unstable thin liquid films (>100 nm) under the influence of gravity. The free-energy functionals of
these films are asymmetric and show two points of common tangency, which facilitates the formation of two
equilibrium phases. Three distinct patterns formed by relative preponderance of these phases are clearly identified
in “true MPS”. Asymmetricity induces two different pathways of pattern formation, viz., defect and direct pathway
for true MPS. The pattern formation and phase-ordering dynamics have been studied using statistical measures
such as structure factor, correlation function, and growth laws. In the late stage of coarsening, the system
reaches into a scaling regime for both pathways, and the characteristic domain size follows the Lifshitz-Slyozov
growth law [L(t) ∼ t1/3]. However, for the defect pathway, there is a crossover of domain growth behavior from
L(t) ∼ t1/4 → t1/3 in the dynamical scaling regime. We also underline the analogies and differences behind
the mechanisms of MPS and true MPS in thin liquid films and generic spinodal phase separation in binary
mixtures.
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I. INTRODUCTION

Far-from-equilibrium systems exhibit interesting spa-
tiotemporal evolutions through formation of complex struc-
tures and patterns [1–4]. This behavior is universal and wide
ranging, existing from nano- to macroscale in length and over
large time scales [5,6]. These systems have great scientific
and technological applications [7–9]. The properties of such
systems are governed by their components as well as the
kinetic processes leading to their formation. This has led to
profound research interest in the kinetics of phase separation,
that is, the evolution of a homogeneous mixture, from unstable
or metastable state, to its segregated state [7,10–13]. These
systems are initially rendered thermodynamically unstable
due to sudden change in external parameters like temperature,
pressure, magnetic field, etc.

Thin films constitute an important class of such systems,
and phase separation in thin liquid and polymer films is an
important area in the study of kinetics of phase transitions
[14–22]. Domain growth kinetics in thin solid films has also
been the subject of extensive research [23–25]. Thin liquid
films which are initially far from equilibrium separate into
a low-curvature flat-film phase and high-curvature circular
droplets when subjected to random fluctuations [26,27]. This
phenomenon is known as morphological phase separation
(MPS) [28,29] and is observed in thin-liquid-film systems
with free-energy functionals having one finite minimum, as
shown in Fig. 1. For MPS in thin liquid films, the flat-film
phase is the only equilibrium phase, and the nonequilibrium
droplets are considered to be a defect rather than a phase
[27]. The second equilibrium phase, which corresponds to
the second minima in the double tangent construction, can be
obtained only at infinity (Fig. 1). In the absence of a second
finite minimum, the system is always in nonequilibrium state
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with diffused interfaces. There is an absence of well-defined
domains and domain boundaries corresponding to the second
phase. It was shown in earlier studies [29] that, even in the late
stages of coarsening, the system does not reach the dynamical
scaling regime. It was found that the scaled structure factor
and the equal time correlation functions also do not exhibit
dynamical scaling. Further, the growth of the average domain
sizes does not follow the predicted LS growth law [L(t) ∼ t1/3]
for diffusive dynamics [30].

For MPS in thin liquid films below 100 nm, the role
of gravity is negligible in determining the morphological
evolution. However, when slightly thicker films (>100 nm)
undergo MPS, the coarsening defects can rise to submi-
crometer ranges, upon which the effect of gravity can no
longer be neglected. The free-energy functional for these films
with gravity included (Fig. 2) yields two finite heights, P 1
and P 2, which are obtained from Maxwell’s double-tangent
construction [31,32]. These correspond to the formation of two
equilibrium phases with finite thicknesses during the MPS of
thin liquid films, i.e., a lower-thickness phase corresponding
to P 1 and a higher-thickness phase corresponding to P 2. This
MPS of thin liquid films resulting in two finite equilibrium
phases has been termed as “true MPS” [32] in order to
differentiate from the case of normal MPS, where there is
only one finite equilibrium phase.

In our present work, we investigate true MPS in three-
dimensional or (2 + 1)-dimensional thin-liquid-film systems
under the influence of gravity. We use the analogy of generic
spinodal phase separation to explain the domain growth
kinetics during true MPS of thin liquid films.

The organization of the paper is as follows. In Sec. II,
we describe the mathematical model for the evolution of
thin liquid films under gravity. In Sec. III, we present
detailed descriptions of pattern formation and morphological
evolutions during true MPS. We also present the growth laws
of evolving patterns in terms of statistical measures such as
correlation function, structure factor, and the domain size.
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FIG. 1. Variation of dimensionless free energy f (H ) and its
second derivative f ′′(H ) with film thickness H for a system given by
Eq. (3) with G = 0. The parameters are B = −0.1 and D = 0.5. P 1
represents the minimum of the free-energy functional. For f ′′(H ) <

0, the homogeneous thin liquid film is unstable and spontaneously
segregates into a flat film given by equilibrium thickness P 1 and
nonequilibrium circular droplets.

Finally, in Sec. IV we conclude the paper with a brief summary
of our work.

II. MATHEMATICAL MODEL AND SIMULATION

The thin-film evolution equation, which is derived by the
application of lubrication approximation [14] to hydrodynamic
equations of motion, can be written in a dimensionless form
similar to the Cahn-Hilliard equation [33,34] as

∂

∂t
H (X,Y,t) = �∇ ·

[
M �∇

(
∂F

∂H

)]
, (1)

where H (X,Y,t) is the height of the film at the point (X,Y )
on a 2d substrate and time t . The mobility in Eq. (1) is height
dependent and is given by M(H ) = H 3 corresponding to the
no-slip condition of the Stokes flow. The dimensionless free-
energy functional is given by

F (H ) =
∫

dXdY

[
f (H ) + 1

2

(
�∇H

)2
]
, (2)

where the square gradient term represents the interfacial
tension and f (H ) is the local free energy. At equilibrium, the
free energy tends to lower to its minimum by minimizing the
interfaces. The square gradient term represents the energy cost
for these interfaces. It incorporates the spatial inhomogeneities
or discontinuities in the system. The thin liquid film is
supported on an apolar solid substrate with a nanocoating. The
substrate provides long-range Lifshitz-Van der Waals attrac-
tion, and coating provides relatively shorter-range Lifshitz-Van
der Waals repulsion. The corresponding free energy can be
generalized to include the effect of gravity on the film thickness
[32] as

f (H ) = −1

6

[
1 − B

(H + D)2
+ B

H 2
− GH 2

]
. (3)

In Eq. (3), D = δ/h0 is the dimensionless thickness of coating,
B = Ac/As is a system-specific constant that is always
negative, and G = 2πρgh4

0/|As | is the force corresponding
to gravity. Here, δ is the coating thickness, h0 is the thickness
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FIG. 2. Variation of dimensionless free energy f (H ) and its
second derivative f ′′(H ) with film thickness H for a system given
by Eq. (3). The parameters are B = −0.1, D = 0.6, and G =
0.022 87). P 1 and P 2 are the thicknesses corresponding to the thinner
and thicker equilibrium phases, respectively. Hm is the thickness
equidistant to both P 1 and P 2. For f ′′(H ) < 0 within the bounds
of H1 and H2, the homogeneous thin liquid film is unstable and
spontaneously segregates into the equilibrium thicknesses given by
P 1 and P 2.

of the liquid film, and Ac and As are the Hamaker constants
[35] corresponding to coating and the substrate, respectively.
Further, ρ is the density of the liquid and g is the acceleration
due to gravity.

Figure 2 presents the variation of f (H ) (top panel) and
f ′′(H ) (bottom panel) for a typical thin-liquid-film system
given by Eq. (3).

The corresponding thin-film equation is now given by

∂H

∂t
= �∇ · {H 3 �∇ · [f

′
(H ) − ∇2H ]}. (4)

Substitution of Eq. (3) in Eq. (4) leads to the following
nonlinear equation for temporal evolution of the thin-liquid-
film system under gravity:

∂H

∂t
= �∇ ·

(
H 3 �∇ ·

{
1

3

[
1 − B

(H + D)3
+ B

H 3
+GH

]
−∇2H

})
.

(5)

The linear stability analysis of Eq. (5) shows that the
wavelength corresponding to the most unstable modes is

LM = 4π√−f ′′(1)
= 4π

[
1 + |B|

(1 + D)4
− |B| − G

3

]−1/2

. (6)
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FIG. 3. Phase diagram showing the binodal and spinodal regions
for a typical thin-liquid-film system under gravity.

The evolution of these instabilities leads to the formation of
two true equilibrium phases as given by the Maxwell’s double
tangent.

The three-dimensional thin-film evolution equation is
solved numerically in starting with fluctuations of small
amplitude in the initial film thickness (H � 1 ± 0.01). The
parameters D, B, and G are each varied over ranges that will
render the films unstable at H = 1. Large-scale simulations
were carried out for a system size of (32LM )2 with 32 grid
points per LM that correspond to 1024 initial sinusoidal
undulations. Thus, we were able to study true MPS across
several orders of length and time scales. A combination of
alternating direction implicit method and Gear’s algorithm has
been employed along with central differencing in space with
interpolation at half nodes.

III. RESULTS AND DISCUSSION

Numerical simulations show that morphological evolution
during true MPS in thin-liquid-film systems depends on the
initial conditions, mainly the initial film thickness h0 and
coating thickness δ. A typical phase diagram of thin-liquid-film
systems under gravity given by Eq. (3) is presented in Fig. 3.
Binodals (outer lines) in the phase diagram correspond to
equilibrium fixed points P 1 (thinner equilibrium phase) and
P 2 (thicker equilibrium phase) of the free-energy diagram
(as shown in Fig. 2). The spinodal region (within inner
spinodal lines) presents the range of unstable thicknesses. Any
fluctuations in this regime amplify and cause the initial film
to separate into two equilibrium thicknesses corresponding to
fixed points P 1 and P 2. Asymmetricity in the binodals of
the phase diagram (Fig. 3) reflects the asymmetricity in the
free-energy functional (Fig. 2). The asymmetricity introduces
two different pathways in true MPS and makes it distinct from
generic spinodal phase separation (SPS). For reference, we
define a parameter Hm = (P 1 + P 2)/2, which is the average
value of the binodal points. In the conventional SPS of binary

mixtures, the critical concentration, Hcrit, is defined as the
composition having 50%-50% of both the phases that results
in bicontinuous structures. Hcrit lies exactly halfway to the
binodals and it takes only a single value, which is Hm. For
thin-liquid-film systems undergoing true MPS, bicontinuous
patterns corresponding to Hcrit have been observed not only
for a single value, but for any value within a narrow window
of thicknesses centered around Hm. Thus, any film thickness
lying in this window of Hcrit results in a bicontinuous pattern.
Depending on the relative position of initial film height H0

with respect to Hcrit, true MPS in unstable thin liquid films
under gravity proceeds via two distinct pathways, that is, the
“direct pathway” or the “defect pathway”.

If the initial film thickness H0 in the unstable region lies
within the window of Hcrit (point B in the phase diagram),
the path taken by the true MPS is the direct pathway. In this
pathway, both the equilibrium thicknesses P 1 (corresponding
to the thinner equilibrium phase) and P 2 (corresponding to
the thicker equilibrium phase) appear simultaneously during
intermediate stages of the dynamics. If the initial film thickness
H0 lies outside the window of Hcrit (points A or C), then the
path taken by true MPS is the defect pathway. In this pathway,
one of the equilibrium thicknesses appears earlier than the
other equilibrium thickness during the intermediate stages of
dynamics. For example, if we choose initial film thickness
H0 left to the Hcrit (point A), then the equilibrium thickness
P 1 appears earlier than equilibrium thickness P 2. Conversely,
when H0 lies right to the window of Hcrit (point C), then P 2
appears earlier than P 1. For both these situations of defect
pathway, the second equilibrium thickness appears only in the
late stage of dynamics. Thus, there is a time delay between the
appearance of the first and second equilibrium phases. Since
one of the equilibrium thicknesses in this case appears in very
late stage of the dynamics, we call it a “defect” instead of
a “phase” [27]; hence, the pathway is termed as the defect
pathway.

Figure 4 presents the morphological evolution of a thin
liquid film undergoing true MPS through the defect pathway
(point A in the phase diagram). Panels 4(a)–4(c) present the
lateral view of the 3D patterns and panels 4(d)–4(f) present the
corresponding top view. Random fluctuations to the surface of
the thin liquid film rearrange into spinodal waves [Figs. 4(a)
and 4(d)] of wavelength predicted by the linear stability
analysis [Eq. (6)]. The instabilities grow until the troughs
of the wave reach the thickness corresponding to the thinner
equilibrium phase P 1, resulting in domains of thin flat film
and circular droplets (defects). The defects grow both radially
and vertically [Figs. 4(b) and 4(e)] due to coarsening until they
reach the thickness corresponding to the thicker equilibrium
phase (P 2). Once the drops reach P 2, coarsening ceases in the
vertical direction but continues laterally, resulting in flattening
of the drops [Figs. 4(c) and 4(f)]. This pattern of true MPS
is characterized by true equilibrium phases of “flat film and
cylindrical drops”. This sequence of morphological changes
has been observed for true MPS in all unstable thin liquid films
lying to the left of Hcrit in the phase diagram. Thin films to
the right of Hcrit also undergo true MPS through the defect
pathway (point C in the phase diagram), but there, P 2 is the
equilibrium phase that appears first and P 1 is the equilibrium
phase that appears after a time delay. A self-similar pattern of

062804-3



KUMAR, NARAYANAM, KHANNA, AND PURI PHYSICAL REVIEW E 96, 062804 (2017)

FIG. 4. Pattern formation during true MPS of a 320-nm homoge-
neous film on 192 nm coating, leading to a flat film and cylindrical
drops (the defect pathway). The left panels present the lateral view
of the system, and the corresponding right panels present the top
view. Parameters are B = −0.1, D = 0.6, and G = 0.022 87, and
the system size is 1024L2

M .

“circular holes and cylindrical ridges” is observed for these
films, and the figures depicting the evolution are presented in
Fig. 5.

Figure 6 presents the lateral [Figs. 6(a)–6(c)] and top
[Figs. 6(d)–6(f)] views of a thin liquid film (point B in the
phase diagram) within the region Hcrit that undergoes true
MPS through the “direct pathway”. For these systems, both
the crests and the troughs of the amplified spinodal waves
[Figs. 6(a) and 6(d)] reach the thicker and thinner equilibrium
phases (P 2 and P 1) simultaneously [Figs. 6(b) and 6(e)]. This
results in a bicontinuous pattern [Figs. 6(c) and 6(f)] analogous
to the critical quenching of generic spinodal phase separation
in binary mixtures. A specific kind of pattern is a signature of
the initial film thickness.

The asymmetricity of the binodals gives rise to an interest-
ing phenomenon, wherein only some of the systems shown in

FIG. 5. Pattern formation during true MPS of a 384-nm homoge-
neous film on 192 nm coating, leading to circular holes and cylindrical
ridges (the defect pathway). The left panels present the lateral view
of the system, and the corresponding right panels present the top
view. Parameters are B = −0.1, D = 0.5, and G = 0.022 87, and
the system size is 1024L2

M .

the phase diagram (Fig. 3) show all three patterns. For example,
for the δ = 192-nm system, Hm lies inside the spinodal region;
hence, depending on the initial film thickness H0, all three
patterns of true MPS can be observed (as explained above for
points A, B, and C in Fig. 3). In contrast, only one pattern of flat
film and cylindrical drops is observed for all the unstable film
thicknesses (say, point J in Fig. 3) of the δ = 96-nm system,
wherein Hm lies outside the spinodal region. Thus, depending
on whether Hm lies within the spinodal region or outside the
spinodal region, we may observe either all the three patterns
or only one pattern, respectively. The reason for the systems
going via different pathways can be attributed to asymmetry in
the free-energy functionals (i.e., finite minima having unequal
depths). Normal MPS is different from the true MPS in a sense
that it corresponds to a single finite minima, a single pathway,
and a single pattern (flat-film phase and circular droplets).
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FIG. 6. Pattern formation during true MPS of a 350-nm homoge-
neous film on 192 nm coating, leading to a bicontinuous pattern (the
direct pathway). The left panels present the lateral view of the system,
and the corresponding right panels present the top view. Parameters
are B = −0.1, D = 0.549, and G = 0.022 87, and the system size is
1024L2

M .

The two pathways, i.e., the defect and the direct path-
ways, in true MPS are analogous to off-critical and critical
quenching, respectively, in spinodal phase separation of binary
mixtures. In the defect pathway, both the equilibrium phases do
not appear simultaneously. As stated above, if the initial film
thickness is left to Hcrit, equilibrium thickness corresponding
to P 1 appears earlier than P 2. It seems as if there is a
small barrier which hinders the achievement of equilibrium
thickness P 2. To understand the delay in the formation of
second true phase in this pathway, we assert the fact that it
is very hard to sharply define the spinodal boundary between
the metastable and unstable regions [36]. In fact, the spinodal
is smeared. Even though the initial film thickness is in the
spinodal region, there is some effect of metastability on height
fluctuations. If we move away from Hcrit and choose initial

film thickness H0 more closer to the spinodal boundary, it
is observed that the time delay between the appearance of
two equilibrium thicknesses is longer. One of the equilibrium
thicknesses near to H0 is achieved shortly, but the growth of
the second one is slowed down. This complex behavior of the
defect pathway can be attributed to the asymmetricity of the
free-energy functional.

Figure 7 presents the variation of height along the diagonals
H (X = Y ) for the morphological evolutions presented in
Figs. 4, 5, and 6, respectively. The delay in the formation
of the second equilibrium phase during the defect pathway
is clearly evident from the top and middle panels of Fig. 7,
which correspond to the flat-film phase and circular drops and
circular holes and cylindrical ridges patterns, respectively.
Similarly, the simultaneous formation of both the phases
during the direct pathway can be observed in the bottom panel
of Fig. 7, which corresponds to the bicontinuous pattern.

The patterns corresponding to the defect and direct path-
ways of true MPS in thin-liquid-film systems have been
further analyzed using statistical quantities, and the results are
presented in Figs. 8 and 9. The statistical measures widely used
for probing the domain structure are the equal-time correlation
function,

C(�r,t) = 〈H ( �R,t)H ( �R + �r,t)〉 − 〈H ( �R,t)〉〈H ( �R + �r,t)〉,
(7)

and the equal-time structure factor, which is the Fourier
transform of C(�r,t):

S(�k,t) = 〈δH (�k,t)δH (−�k,t)〉 =
∫

C(�r,t) exp(i�k · �r) �dr.

(8)

Structure factor can be directly measured in the scattering
experiments of neutrons (or x rays, light, etc.). Dynamical
scaling states that at late times t , there is only one time-
dependent length scale L(t) in the emerging pattern. The
domain morphology is independent of time when lengths are
scaled by L(t) [7]. In that case, C(�r,t) and S(�k,t) show the
following dynamical scaling forms:

C(�r,t) = f [�r/L(t)] = f (x), x = r/L, (9)

and

S(�k,t) = Ldg(kL) = Ldg(y), y = kL. (10)

Here, f and g are scaling functions, x and y are the scaled
variables, and d is the spatial dimensionality.

The scaling function f (x), for small scaling variable
x (i.e.,r � L), has a characteristic linear behavior

f (x) = 1 − ax + · · · , (11)

for both conserved and nonconserved dynamics. Here, a is
a constant. This is a simple consequence of the existence of
“sharp,” well-defined domain walls in the systems. Because
of this short-distance singularity in the correlation function,
which is caused by order-parameter anticorrelations as one
scans across domain boundaries, the structure factor scaling
function g(y) exhibits a power law tail

g(y) ∼ y−(d+1), y(= kL) � 1, (12)

which is also known as the Porod law [37].
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FIG. 7. Variation of the height field along a diagonal cross section
(X = Y ) for thin liquid films of thicknesses 320, 384, and 350 nm,
respectively. The top, middle, and bottom panels correspond to the
patterns presented in Figs. 4, 5, and 6, respectively.

Our three-dimensional thin-liquid-film system (X,Y,H ) is
actually a (2 + 1)-dimensional system as the height fluctuation
H (X,Y ) is a function of substrate variables X and Y . All our
statistical measures are calculated in the (X,Y ) plane; i.e.,
d = 2. In this plane, the morphologies are isotropic and have
no directional dependence; see the right-hand frames of Figs. 4
and 6.

FIG. 8. Statistical measures for the evolution presented in Fig. 4.
The top, middle, and bottom panels correspond to the correlation
function, structure factor, and length scale of the domain size,
respectively.

The top panels of Figs. 8 and 9 present the scaled correlation
function at different times. These plots show that there is
excellent dynamical scaling. The middle panels of Figs. 8
and 9 present the spherically averaged structure factor on a
log-log scale. We observe that the structure factor tail for all
the thin-liquid-film systems undergoing true MPS follows the
Porod law [37], confirming the formation of sharp interfaces.

Next, we turn our attention to the characteristic length
scale L(t). Most physical quantities depend on time t only
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FIG. 9. Statistical measures for the evolution presented in Fig. 6.
The top, middle, and bottom panels correspond to the correlation
function, structure factor, and length scale of the domain size,
respectively.

through this length scale. The bottom panels of Figs. 8
and 9 present the length scale calculated in two different
ways, that is, from the correlation function and from the
spherically averaged structure factor. (1) Lc, calculated from
the correlation function, is defined as the length scale up to
which C(r,t) decays to half of its maximum value. (2) Ls ,
calculated from the spherically averaged structure factor, is
defined as the inverse of the first moment of S(k,t),

Ls = 〈k〉−1, (13)

where

〈k〉 =
∫ ∞

0 kS(k,t)dk∫ ∞
0 S(k,t)dk

. (14)

The asymptotic domain growth is characterized by Lifshitz-
Slyozov growth law [L(t) ∼ t1/3] for both the pathways.
However, in the defect pathway (Fig. 7), there is a crossover
in the growth law from [L(t) ∼ t1/4 → t1/3]. The exponent
1/3 is characteristic of the very late stage of spinodal
phase separation in binary mixtures for the conserved order
parameter. This is related to the bulk diffusion mechanism.
In this kind of diffusive transport, when the length scale is
L(t), the growth of the domain dL(t)/dt is related to diffusive
flux [∼ γ /L(t)2, where γ is the interfacial tension]:

dL(t)

dt
∼ γ

L(t)2
⇒ L(t) ∼ t1/3. (15)

Similar arguments follow for exponent 1/4, where domain
growth is believed to follow surface diffusion mechanism
[38,39].

The crossover in growth laws has many physical impli-
cations in phase-separation dynamics. Many studies have
focused on 1/4-coarsening laws, which occur due to surface
diffusion [38,40,41]. In particular, the 1/4-growth law has been
studied extensively in thin solid films [23–25].

To outline the stages of true MPS analogous to generic
spinodal phase separation, we start from a homogeneous
thin-liquid-film system, which is rendered thermodynamically
unstable. This can be achieved by changing the coating
thickness from the stable region in the phase diagram to
the unstable or spinodal region. Such a process is generally
referred to as a quench in the language of spinodal phase
separation. Just after a quench, long-range correlations start
developing in the system. The extent of the correlations is
such that the system is rendered unstable, and, subsequently,
macroscopic thickness develops inhomogeneities. In the initial
stage, which is also referred to as the linear regime, the change
in thickness δH = [H (x,y,t) − H0] is small, and the equation
of motion can be linearized with respect to δH . The linear
stability analysis shows that, corresponding to a particular
wavelength fluctuation LM [Eq. (6)], the height fluctuations
grow most rapidly. In the second stage, the intermediate regime
thickness grows, and δH becomes appreciable. The film now
enters the nonlinear regime. In the third stage, we encounter the
crossover regime, where we expect the thicknesses to attain the
equilibrium values P 1 and P 2 all over the system, and sharp
interfaces start appearing. Inhomogeneities in the system are
very large and higher-order nonlinear terms in the gradients
of H play important roles in determining the phase-order
dynamics. In the fourth stage, the dynamical scaling regime,
very sharp interfaces are developed, and domain growth results
in larger and larger domains. The dominant mechanism in
this regime is the drive to reduce curvature. The material is
transported diffusively as in the Cahn-Hilliard equation of
phase-separation kinetics. In the coarsening process atoms
evaporate from smaller droplets and condense onto larger
droplets.
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IV. CONCLUSIONS

In summary, thin-liquid-film systems undergo true mor-
phological phase separation (under gravity), whenever a
Maxwell’s double-tangent construction is possible. The free-
energy functionals corresponding to true MPS are asymmetric,
which result in the following two distinct pathways of phase
separation. First is the defect pathway, whereby one of the
equilibrium phases appears earlier, and the second equilibrium
phase appears only after considerable coarsening of domains.
A pattern on flat film and cylindrical holes is observed in
thin liquid films, where the initial film thickness is closer
to the thinner equilibrium phase. A pattern of circular holes
and cylindrical ridges is observed in thin liquid films, where
the initial film thickness is closer to the thicker equilibrium
phase. Second is the direct pathway, whereby both thinner and
thicker equilibrium phases appear simultaneously, resulting
in a bicontinuous pattern. For systems with double-well
symmetric potentials, the bicontinuous pattern for SPS is
observed at a critical mixture, which is exactly halfway to
the binodals. However, for the asymmetric potential systems
of true MPS, the bicontinuous pattern has been observed for
a range of thicknesses, centered around the thickness halfway
to the binodals.

Two different scaling regimes are observed for coarsen-
ing in the defect pathway. There is a crossover from the
nonequilibrium defect regime [38] to the diffusive coarsening
of equilibrium domains. The corresponding growth laws are
L(t) ∼ t1/4 for the coarsening of defects and L(t) ∼ t1/3 for the
coarsening of equilibrium domains. The single scaling regime,
corresponding to domain coarsening, L(t) ∼ t1/3, is observed
for the direct pathway.

In both pathways, the system enters into the scaling regime
during the late equilibrium coarsening stages and shows
complete dynamical scaling. Also, the late-stage growth laws
are the same as that of conventional SPS in conserved systems.
The structure factor tail follows Porod’s law, and the late-stage
coarsening (similar to Ostwald ripening) of the dynamics
follows the Lifshitz-Slyozov growth law L(t) ∼ t1/3.

Finally, the asymmetricity of the free-energy functional and
the uniqueness of the “defect pathway” facilitate different per-
spectives on the longstanding metastable-spinodal boundary
discussions. Our work shows the possibility of fabricating
homogeneous nanostructures of desired thicknesses from
unstable thin liquid films. This has direct implications in
nanopatterning, and we hope that our results are tested in
relevant experimental frameworks.
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