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Optical band gap in a cholesteric elastomer doped by metallic nanospheres
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We analyzed the optical band gaps for axially propagating electromagnetic waves throughout a metallic doped
cholesteric elastomer. The composed medium is made of metallic nanospheres (silver) randomly dispersed in
a cholesteric elastomer liquid crystal whose dielectric properties can be represented by a resonant effective
uniaxial tensor. We found that the band gap properties of the periodic system greatly depend on the volume
fraction of nanoparticles in the cholesteric elastomer. In particular, we observed a displacement of the reflection
band for quite small fraction volumes whereas for larger values of this fraction there appears a secondary band
in the higher frequency region. We also have calculated the transmittance and reflectance spectra for our system.
These calculations verify the mentioned band structure and provide additional information about the polarization
features of the radiation.
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I. INTRODUCTION

The Bragg phenomenon is displayed by a slab of a dielec-
tric material whose electromagnetic properties are changing
periodically in the thickness direction. Its main feature is
a very high reflectance for a given wavelength interval, on
the condition the slab is thick enough to have a sufficient
number of periods. This behavior has been widely applied to
make dielectric mirrors in optics [1]. Periodicity is provided
by structural chirality which implies a helicoidal variation
of anisotropy along a certain direction. Some examples of
structurally chiral materials are cholesteric liquid crystals [2,3]
and chiral sculptured thin films [4]. For these media, when
incident electromagnetic plane waves of left- and right-circular
polarization states are reflected and transmitted differently in
the Bragg wavelength regime, the Bragg phenomenon is then
called the circular Bragg phenomenon (CBP). Exhibition of
the CBP by cholesteric liquid crystals and chiral sculptured
thin films guarantees their use as circular-polarization rejection
filters in optics [2,4]. Control of the CBP is quite useful for
tuning the Bragg regime as well as for switching applications.
One way would be to use structurally chiral materials that are
electro-optically controlled systems. This possibility, also sug-
gested by the fabrication of electro-optic filters [5], was pro-
posed and theoretically examined [6]. Cholesteric elastomers
are formed by monomers of liquid crystals cross linked to poly-
meric chains; this union produces a flexible material whose
molecular order is similar to cholesteric liquid crystals with
the advantage that in this new material it is possible to change
the optical properties by means of macroscopic deformations
[7]. The interest in the optical properties of these materials has
recently increased due to the attainment succeeded by Kim and
Finkelmann who developed a method to create monodomain
nematic and cholesteric elastomers [8]. Even more, a more
affordable procedure to produce slabs of cholesteric elastomers
by cross linking under UV irradiation has been subsequently
established [9]. For normally incident light on a contracted
cholesteric sample, a blue-shift of the photonic stop band
has been experimentally and theoretically obtained [10]. A
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numerical study of the circularly polarized reflectances due
to an elastomer slab elongated by the influence of a uniaxial
transverse strain was done [11]. Nested optical band gaps were
found for left- and right-circularly polarized light.

A different option to handle the band structure of photonic
crystals is by means of contaminating them with materials
possessing sharp optical resonances. This remarkably large
resonance has been evinced for a nanocomposite consisting
of metallic nanoballs randomly dispersed in a transparent
matrix, whereas the optical properties of host materials lack
resonant properties [12,13]. Moreover, many periodic chiral
dielectric [14] and metallic [15] structures have attracted
important consideration since some years because of its
capability to provide giant circular dichroism [14] or giant
gyrotropy [15], even for the optical regime. Nowadays, chiral
dielectric structures surpass the functioning of chiral metallic
structures by a large margin regarding their losses. Moreover,
various works have demonstrated that the photonic band gap
can be significantly distorted by inserting metallic dispersive
inclusions [16]. For instance, a graphene photonic band
structure can be tailored by including metallic sheets [17].
Also, a system owing a nonchiral band gap for which gold
helices have been inserted can act as a circular polarizer of the
same handedness of the helices [18]. Also, Lakhtakia et al.
has theoretically examined the effect of metal nanospheres
embedded in a medium which is the solid analog of a chiral
smectic liquid crystal. They have found that even for a quite
small filling factor, a meaningful red-shift was obtained [19].

As in many of the above-mentioned works, we use an
effective permittivity theory to characterize the nanocomposite
showing that the dielectric resonance of the whole structure is
due to the plasmon resonance of nanoparticles. Their effective
permittivity can be in excess up to 10 in comparison with the
same material without the small inclusions. Hence, dispersion
of resonant medium combined with the dispersion of helicoidal
structures provides a different tool to manipulate the circular
Bragg phenomenon.

Our research is aimed to study the band gap of a cholesteric
elastomer with metallic nanoparticles dispersed inside it,
subjected to an externally imposed deformation for tuning
the circular Bragg regime exhibited by the elastomer in the
absence of the strain. In Sec. II we discuss the elastic model
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for describing a cholesteric elastomer slab subjected to a
mechanical strain applied along the helix axis of the elastomer.
Section III contains a brief description of the optical permittiv-
ity matrix of a chiral material. Also, in this section the effective
permittivity tensor of the composite structure is obtained and
the Oseen transformation is employed to derive an analytical
expression for the band reflection in the Bragg regime. Section
IV accounts for the numerical results and discussions.

II. ELASTIC ELASTOMER ENERGY

We start by assuming a monodomain cholesteric elastomer
submitted to a longitudinal elongation. The microscopic
statistical-mechanical theory of rubber elasticity [7] allows to
derive the classical nematic rubber elasticity energy density
so called the trace formula when anisotropy is taken into
account. It is given by

F = 1
2μ Tr[l̃0 · η̃T · l̃−1 · η̃], (1)

where μ = nsκBT is the rubber shear modulus, here Tr
denotes the trace of the tensor, and the local step-length
tensors for a locally uniaxial medium are

l̃0 = Ĩ + (r − 1)n̂0n̂0, (2)

l̃−1 = Ĩ + (1/r − 1)n̂n̂, (3)

where r is the anisotropy ratio and Ĩ is the identity tensor.
In deducing Eq. (1), the entanglements, finite extensibility,

and semisoftness have been neglected. Here, the director
corresponding to the initial configuration is written as

n̂0 = (cos φ0, sin φ0,0), (4)

where the angle φ0 = q0z has a helix wave number qo = 2π/p

and a spatial periodicity or pitch p. This is determined by the
concentration and the helical twisting power [20] of the chiral
constituents. Usually, the pitch is of the same order as the
wavelength. After the distortion, the director is aligned along
the surface of a cone, which can be described by

n̂ = (sin α cos qz, sin α sin qz, cos α), (5)

where α is the azimuthal angle.
When the elastomer is elongated, a selected chain’s end-to-

end vector R will stretch proportionally to the body’s strain.
The proportionality factor is given by the deformation tensor
η̃ which in the case of an expansion parallel to the helix axis
z, η̃ is given by [7]

η̃ =

⎛
⎜⎝

1√
η

0 ηxz(z)

0 1√
η

ηyz(z)
0 0 η

⎞
⎟⎠, (6)

where we have set ηzz = η. The fact that Det(η̃) = 1 ensures
that the distortions described by this expression keep fixed
the body volume. There is no compatibility inconsistency due
to the z dependence of the elongations ηxz(z) and ηyz(z). In
contrast, the z dependence of their conjugate strains ηzx(z) and
ηzy(z) would lead to compatibility mismatch as, for instance,
the expression ∂ηzx(z)/∂z = ∂ηzz(z)/∂x cannot be fulfilled
unless we set ∂ηzx(z)/∂z = 0. Finally, ηxy and ηyx could exist
but numerical tests [21] suggest that it is not possible. The

two shear strains ηxz and ηyz should be proportional to each
other so that they are part of a shear in the plane of n̂0 and
n̂. These two shears help to accommodate the rotation of the
chain distributions by keeping the elastic energy low, while the
director n̂ rotates. That is, the network deforms to allow rotate n̂
practically without investing energy. All physical dimensions
in the stretched system are supposed to scale by the affine
strain as z → z/η which leads to the associated expansion of
the cholesteric pitch q = qo

η
.

From the above expressions, the free energy for an elas-
tomer under mechanical strain is derived. Hence, we minimize
the free Helmholtz energy first with respect to the strains ηxz

and ηyz and then with respect to χ , where χ = π
2 − α, to get

χ (η) = arcsin

√
η3/2 − 1

r − 1
. (7)

Notice from this expression that the nematic’s vector is totally
aligned with the z axis when the critical longitudinal stress
reaches the value

ηM = r2/3, (8)

where η is restrain to the interval 1 � η � ηM because a
uniaxial compression (η < 1 ) parallel to the helix axis leaves
the helical structure invariant and, an extension beyond ηM

does not change any more χ (see Fig. 1).
Equation (7) gives an expression for the director vector n̂

from which we find the local relative permittivity tensor of the
elastomer:

ε̃ = ε⊥Ĩ + εan̂n̂, (9)

where εa = ε‖ − ε⊥ is the local relative permittivity
anisotropy, ε‖ and ε⊥ are the local relative permittivities
parallel and perpendicular to the director n̂. It is wealth to
mention that the only dependence of ε̃ on the deformation
tensor is on n̂ because the main effect of stretching the
elastomer in the given interval of η is to rotate the mesogenic
molecules which remained chemically attached to the polymer
backbone [7].

III. ELECTROMAGNETIC PROPAGATION

Faraday and Ampere-Maxwell equations without sources
in SI units are given by

∇ × E = iωμoH, (10)

∇ × H = − iεoωε̃(z) · E, (11)

where the z-dependent local relative permittivity tensor of the
elastomer, submitted to an axial stress, was determined in
Sec. II. The normal incidence solutions for the above equations
can be written as

E(r) = e(z), (12)

H(r) = h(z), (13)

where ω is the wave frequency, e(z) = (ex(z),ey(z),ez(z))
and h(z) = (hx(z) ,hy(z),hz(z)) are electric and magnetic
amplitudes in the elastomer slab.

Upon substituting Eqs. (12) and (13) into Maxwell equa-
tions we find a set of equations which only depend on z.
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FIG. 1. Schematic of the system.

We solve them for ez(z) and hz(z) in terms of the remaining
components to obtain a system only for the transverse
components of the fields which can be written as the matrix
first order equation [22]

d

dz
v(z) = −iM̃(z) · v(z), (14)

where

v(z) =

⎛
⎜⎝

ex(z)
ey(z)
hx(z)
hy(z)

⎞
⎟⎠. (15)

Here, the 4 × 4 matrix is defined as

M̃(z) =

⎛
⎜⎜⎝

0 0 0 β

0 0 −β 0
εyzεzxζ

εzz
− εyxζ −εyyζ + εyzεzyζ

εzz
0 0

εxxζ εxyζ − εxzεzyζ

εzz
0 0

⎞
⎟⎟⎠,

(16)
where εmn (n,m = 1,2,3) represent the elements of the local
relative permittivity tensor ε̃, ζ = εoω, and β = μoω.

A. Effective permittivity of a dielectric matrix
with metallic inclusions

The effective permittivity of a dielectric matrix isotropic
medium containing a quite small volume fraction of randomly
dispersed inclusions can be calculated by using the Maxwell-
Garnett formula [12,23–25] which was obtained by assuming
the quasistatic approximation. Its main features are (i) the

mixture is electrodynamically isotropic, (ii) the mixture is
linear, that is, none of its constitutive parameters depend on
the intensity of electromagnetic field, (iii) the parameters of
the mixture do not change in time as a result of external
forces, (iv) the characteristic size of inclusions is small
compared to the wavelength of light in the effective medium,
(v) particles are randomly dispersed and oriented ellipsoids,
and (vi) the filling factor should be lower than the percolation
threshold, which means that below this threshold there is
no formation of long-range connectivity among constituents.
The generalization of the Maxwell-Garnett formula for a a
locally uniaxial medium has been developed [26]. A general
formalism for calculating the effective relative permittivity
and permeability tensors has been provided when both the
inclusions and matrix media are uniaxial. In the general case, it
is necessary to calculate both of them simultaneously, however,
the dielectric effective tensor can be greatly reduced in the
particular case when we neglect contributions up to third order
in the dielectric anisotropy O[(ε3 − ε1)3] of the host medium
while keeping an isotropic contaminant and a quite small
filling factor f (f � 1). In such a limit, the local effective
permittivities are [27]

εe
⊥(ω) = ε⊥

[
1 + f

ε⊥/[εm(ω) − ε⊥] + (1 − f )/3

]
(17)

and

εe
‖(ω) = ε‖

[
1 + f

ε‖/[εm(ω) − ε‖] + (1 − f )/3

]
, (18)
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FIG. 2. Resonance wavelength of the relative permittivities (a) εd

and (b) εe
⊥ versus filling factor parametrized for various values of the

deformation parameter.

where ε‖ and ε⊥ are the local relative permittivities parallel
and perpendicular of the dielectric matrix or host material,
and εm(ω) is the local relative permittivity of the metallic
particles or guest medium. It is well to stress that this formalism
yields physically implausible results when the volumetric
fraction of the metal is significantly high in a two-constituent
composite material [28,29]. However, that implausibility is not
a significant issue in the present context because f of the metal
is not expected to exceed 0.02.

We assume in addition the Drude model for a metallic ma-
terial which provides us an approximation for the permittivity
of the nanoparticles. It is written as

εm(ω) = ε0 − ω2
p

ω(ω + iγ )
, (19)

with ε0 the background dielectric constant taking into account
contributions from interband transitions, ωp the plasma fre-
quency, γ the plasma relaxation rate, and, as said above, ω is
the frequency of the propagating wave.

Notice that expressions (17) and (18) show a resonant
frequency at (neglecting small factor γ 2)

ω0 = ωp

(
1 − f

3εh + (1 − f )(ε0 − εh)

)1/2

, (20)

where εh is a local relative permittivity of the host material
(ε‖ or ε⊥), notice that ω0 depends on the primary dielectric
properties and the filling factor. A straightforward analysis
of (20) demonstrates that, for fixed ε0 and εh, the resonant
frequency ω0 shifts towards the long-wavelength regime as
the fraction of nanoinclusions f increases. In Fig. 2, we depict
the associated resonance wavelength �0 = 2πc/ω0 as shown
for (a) εd and (b) εe

⊥ against the filling factor for various
values of the deformation parameter η. We have assumed silver
nanoballs inclusion with ε0 = 5 and ωp = 1.367 × 1016 Hz.
This plot clearly exhibits that �0 increases as a function of
f and diminishes as the elastomer is stretched. Hence, we

can tune the properties of the band structure by varying these
parameters.

B. Effective relative permittivity tensor of a doped
elastomer cholesteric

Expressions (9), (17), and (18) can be used to state the
effective relative dielectric tensor of the combined structure
studied here. Indeed, because the nanoparticles are randomly
dispersed in the whole structurally chiral material, the effect on
the dielectric properties is to have local effective permittivities
εe
‖ and εe

⊥ that depend on the propagation frequency ω

accordingly to Eqs. (17) and (18). Thus, the expression for
the effective relative permittivity tensor for a cholesteric
elastomer is completely analogous to (9) with the local
effective permittivities given by Eqs. (17) and (18):

ε̃eff = εe
⊥(ω)Ĩ + [εe

‖(ω) − εe
⊥(ω)]n̂n̂. (21)

Substitution of each element of this effective relative per-
mittivity tensor into Eq. (14) provides the set of differential
equations that satisfies the four transversal components of
electromagnetic wave field. Notice that, in this case, there
are two resonant frequencies due to the two different local
effective permittivities.

C. Oseen transformation

The differential system given by Eq. (14) can be solved
using a numerical integration. Nevertheless, it is possible to
find a reference system, for a normally incident wave, for
which the solution can be obtained analytically. Using the
Oseen transformation [30], where the reference system rotates
along the z axis in the same way as the director n̂.

Let us define a new vector as

v′(z) = G̃(z) · �(z), (22)

where

G̃(z) =

⎛
⎜⎝

cos qz sin qz 0 0
− sin qz cos qz 0 0
0 0 cos qz sin qz

0 0 − sin qz cos qz

⎞
⎟⎠. (23)

Substituting the above equation into the differential system
Eq. (14), we obtain

d

dz
v′(z) = −iM̃ ′ · v′(z), (24)

with

M̃ ′(z) =

⎛
⎜⎝

0 iq 0 β

−iq 0 −β 0
0 −ζ εe

⊥ 0 iq

ζ εd (η) 0 −iq 0

⎞
⎟⎠, (25)

where we have introduced the notation

εd (η) = εe
⊥εe

‖
εe
⊥ cos2 α(η) + εe

‖ sin2 α(η)
. (26)

Note that M̃ ′(z) is independent of z and, as a consequence,
Eq. (14) can be solved analytically. The eigenvalues of M̃ ′
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FIG. 3. Averaged refraction index nav = (n1 + 2n2)/3 for an
elastomer without deformation versus wavelength parametrized by
the volume fraction f . (a) Real part and (b) imaginary part. In both
panels, insets are shown.

are given by the secular equation Det(M̃ ′ − kĨ ) = 0 which is
given explicitly by

k4 − k2[βεe
⊥ζ + βζεd (η) + 2q2] + β2εe

⊥ζ 2εd (η)

−βεe
⊥ζq2 + q4 − βζq2εd (η) = 0 (27)

and whose different solutions are

k2
1,2 ≡ q2 + 1

2 [εd (η) + εe
⊥]ζβ

∓1

2

√
ζβ{8q2[εd (η) + εe

⊥] + ζβ[εe
⊥ − εd (η)]2}. (28)

In the case when there are no inclusions, f = 0, hence there
exists a region of wavelengths where k1 is purely imaginary
and the propagation of electromagnetic waves is not allowed.
This interval is defined by the positive roots of the equation

FIG. 4. The same as Fig. 3 but parametrized by the deformation
parameter η for the volume fraction f = 0.001. (a) Real part and
(b) imaginary part. In both panels, insets are shown.

FIG. 5. The same as Fig. 4 but parametrized by the deformation
parameter η for the volume fraction f = 0.01. (a) Real part and
(b) imaginary part. In both panels, insets are shown.

k2
1 = 0 whose corresponding wavelengths are given by

λ1 ≡ 2πη

qoc

√
εd (η), λ2 ≡ 2πη

qoc

√
εe
⊥, (29)

where c = (μ0εo)−1/2. In this interval, k±
1 are pure imaginary

and their corresponding eigenvectors are linearly polarized.
Notice that the eigenvalue k2 is purely real for any

value of λ. As mentioned above, the interval of wavelengths
λ1 � λ � λ2 is known as the Bragg reflection regime where

FIG. 6. Refraction indexes n1 and n2 for the elastomer with-
out contamination (f = 0) against wavelength parametrized by η.
(a) Real part of n1, (b) imaginary part of n1, and (c) real part of n2.
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FIG. 7. Refraction indexes for a doped elastomer without deformation (η = 1) parametrized by f . (a) Real part of n1, (b) imaginary part
of n1, (c) real part of n2, and (d) imaginary part of n2.

circularly polarized plane waves with the same handedness
as the structural handedness are not allowed to propagate
through the material. This prohibition is not present when
a circularly polarized plane wave of the contrary handedness
is incident [2]. In Ref. [31], the optical band gap of a liquid
crystal cholesteric elastomer without inclusions is controlled
by elongating the sample. It was found that a circular-
polarization-filtering band gap is closed when elastomer is
stretched. In this paper we analyze the properties of such a
band gap but for a doped cholesteric elastomer, that is under
the influence of small inclusions in the sample for different
small filling factors.

It is worth to remark that, in the general case for f > 0,
due to the resonant properties of the relative permittivity tensor,
when the resonant wavelength lies inside the band gap, there
will be significant changes in band structure with respect to the
system without inclusions. Also, we notice that the condition
k1 = 0 will provide multiple band edges due to the complex
dependence of the permittivities on λ. Moreover in addition,
k2 will no longer be purely real for any value of λ.

D. Reflection and transmission

By virtue of linearity, the solution of the 4 × 4 matrix
ordinary differential equation (24) must be of the form

v(z2) = Ũ (z2 − z1) · v(z1) . (30)

With z1 = 0, the matrix Ũ (L) may be computed using the
piecewise homogeneity approximation method [4].

The procedure to obtain the unknown reflection and
transmission amplitudes thus involves the 4 × 4 matrix relation

fexit = Ũ (L) · fentry, (31)

where the column 4 vectors

fentry = 1√
2

⎛
⎜⎝

(rL + rR) + (aL + aR)
i[−(rL − rR) + (aL − aR)]

−i[(rL − rR) + (aL − aR)]/ηo

−[(rL + rR) − (aL + aR)]/ηo

⎞
⎟⎠ (32)

and

fexit = 1√
2

⎛
⎜⎝

tR + tR
i (tR − tR)

−i(tR − tR)/ηo

(tR + tR)/ηo

⎞
⎟⎠ (33)

contain ηo = √
μo/εo as the intrinsic impedance of free space.

The reflection amplitudes rL,R and the transmission ampli-
tudes tL,R can be computed for specified incident amplitudes
(aL and aR) by solving (31). Interest usually lies in determining
the reflection and transmission coefficients entering the 2 × 2
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FIG. 8. Refraction indexes for a doped stretch elastomer (η = 1.054) parametrized by f . (a) Real part of n1, (b) imaginary part of n1,
(c) real part of n2, and (d) imaginary part of n2.

matrices in the following two relations:

(
rL

rR

)
=

(
rLL rLR

rRL rRR

) (
aL

aR

)
, (34)(

tR
tR

)
=

(
tLL tLR

tRL tRR

)(
aL

aR

)
. (35)

Both 2 × 2 matrices are defined phenomenologically. The
copolarized transmission coefficients are denoted by tLL and
tRR , and the cross polarized ones by tLR and tRL, and similarly
for the reflection coefficients. Reflectances and transmittances
are denoted, e.g., as TLR = |tLR|2.

IV. RESULTS AND DISCUSSION

Hitherto we restrict our calculations for particular host and
guest materials of the kind we have discussed above. The
cholesteric elastomer parameters we use for our calculations
are r = 1.16, L = 8.56 μm, p

2 = 214 nm, ε⊥ = 1.91, ε‖ =
2.22, μ = 1 which correspond to a real sample made by a
siloxane backbone chain reacting with 90 mol % and 10%
of the flexible difunctional cross-linking groups (di-11UB).
The rodlike mesogenic groups are present in the proportion
4:1 between the nematic 4-pentylphenyl-4’- (4-buteneoxy)
benzoate (PBB) and the derivative of chiral cholesterol

pentenoate (ChP) [32]. Finally, we take silver nanospheres
ε0 = 5, ωp = 1.367 × 1016 Hz, and γ = 3.03 × 1013 Hz.

As a starting point of this section, we examine certain
aspects concerning the dielectric resonance of the whole
nanocomposite structure. For this purpose, in Figs. 3–5 we
plot the real and imaginary parts of the average refractive
index nav , which is defined as [33]

nav(λ) = (
√

εe
⊥(λ) + 2

√
εd (η,λ))

/
3, (36)

for several filling fractions. Here, εe
⊥(λ) and εd (η,λ) are given

by expressions (17) and (26), respectively.
In Fig. 3 we have depicted the case of an undeformed

elastomer as function of the wavelength. It can be evidently
observed in Fig. 3(a) for Re[nav], that the inclusion of metallic
nanoparticles into the chiral medium provokes the appearance
of two optical resonances which are contained in the interval
(350 and 500 nm). The magnitude of the resonances increase
and their peaks displace towards longer wavelengths as the
filling factor gets larger. Complementarily, Fig. 3(b) for
Im[nav] show two maxima of absorptions whose magnitude
depends strongly on the filling factor.

We should mention that nav(λ) is independent of the
wavelength when there is no contamination in the elastomer,
but it still depends on the stretching factor. In contrast, when
the filling factor is not vanishing but small (f = 0.001)
Re[nav(λ)], as it displayed in Fig. 4(a), exhibits two maxima
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FIG. 9. Refraction indexes for a doped stretch elastomer (η = 1.104) parametrized by f . (a) Real part of n1, (b) imaginary part of n1,
(c) real part of n2, and (d) imaginary part of n2.

and minima versus wavelength which red-shifts when the
elastomer stretches. Additionally, in Fig. 4(b) Im[nav(λ)]
shows various absorption maxima as a function of wavelength
which changes from two to the one in the shortest wavelength,
as the elastomer is stretched.

We have depicted in Figs. 5(a) also nav(λ) but for a larger
filling factor (0.01). In this case, the maxima of the curves
of Fig. 5(a) get larger almost by an order of magnitude in
comparison with Fig. 4(a) whereas the relative differences
among the curves corresponding to the various stretch are less
remarkable than in Fig. 4(a). Also Fig. 5(b) shows a similar
behavior as Fig. 4(b) but in this case the respective absorption
peaks are consistently much larger.

We have plotted separately in Fig. 6 the refraction indexes
n1 and n2 for the elastomer without contamination (f =
0) versus the wavelength parametrized by η. Figure 6(a)
for Re[n1] presents explicitly the typical reflection band of
a cholesteric which for this material is delimited to the
interval (592 and 636 nm) when the sample is not deformed.
Nevertheless, when the elastomer is stretched the lower band
edge displaces until the band reflection get closed as was
already reported in Ref. [31]. Figures 6(b) and 6(c) present
Im[n1] and n2 which also have the usual profile for cholesterics,
in which the first one has a semicircle form starting in one band

edge and finishing in the other, whereas n2 does not have any
band reflection.

In Fig. 7, we have depicted the real and imaginary parts
of both refraction indexes n1 and n2 versus the wavelength of
an undeformed elastomer (η = 1) parametrized by the filling
factor f . Figure 7(a) for Re[n1] exhibits how both edges of the
band reflection greatly red-shifts as the filling factor increases.
Indeed, these edges displace about a quarter of the whole
bandwidth when the filling factor changes from 0 to 1% as it is
also shown in the bottom inset. Alternatively, we can express
this red-shift as the average of 1300 nm per unit of volume
fraction (UVF) for silver nanospheres which is of the same
order as the red-shift found by Lakhtakia [19] in silver doped
chiral sculptured thin films.

Besides, in the top inset it is displayed a region in the near
infrared where oscillations of Re[n1] emerge whose amplitude
grow with f . On the other hand, Fig. 7(b) corresponding
to Im[n1] shows how the absorption in the top inset and
the evanescence in the bottom inset vary with the filling
factor. The amplitude of the first one increases whereas the
position of the second red-shifts as f gets larger. The second
refraction index n2 is also influenced by the presence of the
inclusion as it is evidenced in Fig. 7(c) for Re[n2] which
oscillates stronger against wavelength as f grows. Figure 7(d)
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FIG. 10. Refraction indexes for a doped stretch elastomer (f = 0.01) parametrized by the deformation parameter η. (a) Real part of n1,
(b) imaginary part of n1, (c) real part of n2 and (d) imaginary part of n2.

for Im[n2] presents two peaks of absorption induced by the
particulate nanospheres.

We have plotted in Fig. 8 the refraction indexes correspond-
ing to a partially stretched elastomer when the deformation
parameter is η = 1.054. The two featuring intervals, that is
the reflection band and the oscillating region obtained without
deformation in Fig. 7, are also found for this case. However,
their positions are translated to other wavelengths. In general
the same characteristic of Fig. 7 is shared by Fig. 8.

In Fig. 9 we have depicted the refraction indexes of a
complete stretched elastomer. Under these circumstances, the
reflection band in Fig. 9(a) has been completely closed in
such way it has turned out into a single point of the band
structure. Consistently, Fig. 9(b) for Im[n1] only displays a
unique absorption peak associated with the metallic resonance.
Figures 9(c) and 9(d) for n2 have the oscillations corresponding
to the same metallic resonance.

In Fig. 10 the refraction indexes for a doped stretched
elastomer (f = 0.01) are parametrized by the deformation
parameter η instead of the filling factor. This plot allows to
observe how the changes induced by the contamination are
larger than those generated by the elastomer deformation even
though the stretching is able to close the band reflection. For

this small value of f , the oscillation caused by the metallic
resonance is not so large. The absorption peaks of Fig. 10(d)
and the absorption and evanescence peaks of Fig. 10(b) are
congruously present.

It is also worth to mention that in all the plots for the
real part of the diffraction indexes analyzed, there are various
wavelength intervals for which the slopes of the curves are
negative which correspond to region where the group is
negative as well dω/dk < 0. In these regions, the Poynting
vector is antiparallel to the wave vector which is a feature
characterizing the behavior of a metamaterial which in some
sense is to be expected because the helical geometry of
the cholesteric resembles some of the structure proposed in
the literature for metamaterials.

In Fig. 11 reflectance (RRR , RLR , and RLL) and trans-
mittance (TRR , TLR , and TLL) spectra as function of the
wavelength, corresponding to a slab of metal doped elastomer
cholesteric of 22 periods made with the same materials
considered for the other plots. We have taken a filling factor
f = 0.01, with η = 1 for (a) and (b) while η = 1.05 for (c)
and (d). In the right panel of Fig. 11(a) two peaks are shown
for RRR , RLL where the second one is twice larger than the
first one, while RLR show also both peaks which are four times
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FIG. 11. Reflectance (RRR, RLR , and RLL) and transmittance (TRR , TLR , and TLL) versus vacuum wavelength for f = 0.01, in (a) and
(b) η = 1 and in (c) and (d) η = 1.05. The right panels display the interval (350 nm, 500 nm) whereas the left panels show the interval (550 nm,
700 nm).

larger and their positions are red-shifted. Figure 11(b) presents
essentially the same reflection band for the three polarized and
copolarized transmittances. Figure 11(d) exhibits the same two
peaks but they are nearer when the elastomer is stretched. The
right panel of the same plots exhibits the highest wavelength
interval which exhibit a typical spectrum for a cholesteric
structure whose bandwidth is reduced by keeping its form
when the elastomer is stretched (η = 1.05) as can be observed
in Figs. 11(c) and 11(d).

V. CONCLUSIONS

We have studied the reflection band for axially propagating
electromagnetic waves throughout a nanocomposite made with
a cholesteric elastomer doped by silver nanospheres randomly,
whose dielectric properties can be represented by a resonant
effective uniaxial tensor. We have established the Maxwell
equations in a 4 × 4 matrix representation. We have computed
the eigenvectors and eigenvalues of the corresponding matrix
in the system rotating along with the chiral structure for a
specific sample. One of the eigenvalues showed wavelength

intervals where a circularly polarized optical wave is not
allowed to propagate. We have found that the band gap
properties of the periodic system depends strongly on the
volume fraction of nanoparticles in the chiral matrix, even
for quite small values of the volume fraction. The cholesteric
elastomer phase we use for our study is a sample made by a
siloxane backbone chain reacting with 90 mol % and 10% of
the flexible difunctional cross-linking groups (di-11UB). We
have found that the center of the cholesteric band reflection
displaces even until a quarter of the band width, when the
volume fraction increases from 0 to 0.01. Also, the bandwidth
decreases until it vanishes as the elastomer is gradually
stretched. To confirm our results, we have calculated the
transmittance and reflectance spectra for our system. These
calculations are in agreement with the band structure findings.
We hope that our research could promote the construction of
this type of hybrid media.
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