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Spatial correlations of hydrodynamic fluctuations in simple fluids under shear flow: A mesoscale
simulation study
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Hydrodynamic fluctuations in simple fluids under shear flow are demonstrated to be spatially correlated, in
contrast to the fluctuations at equilibrium, using mesoscopic hydrodynamic simulations. The simulation results
for the equal-time hydrodynamic correlations in a multiparticle collision dynamics (MPC) fluid in shear flow are
compared with the explicit expressions obtained from fluctuating hydrodynamics calculations. For large wave
vectors k, the nonequilibrium contributions to transverse and longitudinal velocity correlations decay as k−4 for
wave vectors along the flow direction and as k−2 for the off-flow directions. For small wave vectors, a crossover
to a slower decay occurs, indicating long-range correlations in real space. The coupling between the transverse
velocity components, which vanishes at equilibrium, also exhibits a k−2 dependence on the wave vector. In
addition, we observe a quadratic dependency on the shear rate of the nonequilibrium contribution to pressure.
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I. INTRODUCTION

Fluctuations are an integral part of static and dynamic
properties of a fluid. At equilibrium, characteristic properties
such as viscosity, compressibility, thermal diffusivity, etc.,
are often calculated from correlations in the hydrodynamic
fluctuations [1]. The hydrodynamic fluctuations in simple
fluids at equilibrium are well known to be spatially short-
ranged [2]. However, in nonequilibrium steady states they are,
in general, long-ranged [3]. These long-range correlations are
present even in the absence of phase transitions and hydro-
dynamic instabilities. The long-range nature of hydrodynamic
fluctuations in nonequilibrium steady states was first observed
by mode-coupling theories as the enhancement of the Rayleigh
component of the structure factor under temperature gradi-
ents [4]. This observation was complemented by fluctuating
hydrodynamics calculations [5] and was also confirmed in
light-scattering experiments [6,7].

Hydrodynamic fluctuations in shear flow, similar to those
in temperature gradients, are distinctively different from the
fluctuations at equilibrium [8–13]. In Ref. [8], using fluctuating
hydrodynamics calculations, the correlations in hydrodynamic
fluctuations in a sheared fluid were evaluated for small wave
vectors and arbitrary shear rates. It was shown that the temporal
decay of the velocity and density fluctuations in shear flow
are anisotropic and shear-rate dependent, which we recently
verified using mesoscopic hydrodynamic simulations [14].
More importantly, the equal-time correlations were predicted
to be spatially long-ranged and follow an algebraic decay for
unbounded systems. The algebraic decay of the correlations in
shear flow shares some similarities with that in temperature
gradients, albeit the origin of the long-range character is
apparently different [15]. The long-range nature of the cor-
relations may also manifest as nonintensivity of the nonequi-
librium contribution to pressure [9]. Moreover, the spatial
correlations imply that the long-wavelength components of the
fluctuations are strongly affected by the presence of confining
walls [10,11,16,17].

The nonequilibrium contribution to the hydrodynamic fluc-
tuations in shear flow under normal experimental conditions

is much weaker than that in temperature gradients [8–10].
As a result, very little is known about the long-range nature
of hydrodynamic correlations from shear-flow experiments.
However, computer simulations provide alternative testing
grounds for hydrodynamic theories. In this paper, we show
by multiparticle collision dynamics (MPC) simulations, a
mesoscopic hydrodynamic simulation method [18,19], that
hydrodynamic fluctuations in shear flow are indeed spa-
tially correlated. In particular, we elucidate the wave-vector
dependence of the nonequilibrium contribution to velocity
and density fluctuations. To this end, we derive the explicit
analytical expressions for the equal-time correlation functions
in an isothermal MPC fluid under shear flow and confirm the
theoretical predictions by simulations. Our calculations are
based on those in Ref. [8], extending them to isothermal fluids
with an asymmetric stress tensor.

This paper is organized as follows. In Sec. II A, the
linearized Landau-Lifshitz Navier-Stokes equations for an
MPC fluid under shear flow are derived. In Sec. II B, the
equal-time hydrodynamic correlation functions are defined
and explicit expressions for the nonequilibrium contributions
are obtained. The details of the MPC simulations are given in
Sec. III A. The comparison between theoretical and simulation
results for the velocity and density correlations are presented
in Secs. III B 1 and III B 2. The simulation results for the
nonequilibrium contribution to the pressure are given in
Sec. III B 3. Conclusions are presented in Sec. IV.

II. THEORY

A. Linearized Landau-Lifshitz Navier-Stokes equation
of MPC fluid

We consider the non-angular-momentum conserving vari-
ant of a MPC fluid, which is characterized by the asymmetric
stress tensor [19–21]

σαβ = ηk

[
∂uα

∂rβ

+ ∂uβ

∂rα

− 2

3
δαβ

∂uδ

∂rδ

]
+ ηc ∂uα

∂rβ

, (1)
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where ηk and ηc are the kinetic and collisional parts of
the viscosity, respectively. Here, the Greek indices denote
the Cartesian coordinates, and the Einstein summation con-
vention is applied. We consider an isothermal fluid, where
the temperature fluctuations decay at a much shorter time
scale compared to density and velocity fluctuations, so that
the dynamics of the two sets are decoupled and the temperature
can be taken as constant [22,23]. The evolution of the density ρ

and velocity u of the fluid are then given by the Landau-Lifshitz
Navier-Stokes equations

∂ρ

∂t
= −∇ · (ρu), (2)

ρ

[
∂

∂t
+ u · ∇

]
u = −∇p + η∇2u + ηk

3
∇(∇ · u) + fR, (3)

with the viscosity η = ηk + ηc, the random force fR = ∇ · σR ,
and the fluctuating part σR of the stress tensor. The fluctuations
σR obey the fluctuation-dissipation relation [24]〈

σR
αβ(r,t)σR

γ δ(r′,t ′)
〉 = 2kBT ηαβγ δδ(r − r′)δ(t − t ′), (4)

where T is the temperature and kB is the Boltzmann factor.
The viscosity coefficients ηαβγ δ are related to the stress tensor
through the constitutive relation σαβ = ηαβγ δ

∂uγ

∂rδ
[24]. Using

the explicit form of σαβ from Eq. (1), we get

ηαβγ δ = ηδαγ δβδ + ηkδαδδβγ − 2

3
ηkδαβδγ δ. (5)

Equations (2) and (3) are linearized by setting ρ = ρ0 + δρ,
p = p0 + δp, and u = u0 + δu, where the mean flow velocity
is u0α = γ̇αβrβ , with the shear rate tensor γ̇αβ . We choose
x̂ as the flow direction and ŷ as the gradient direction (the
circumflex indicates unit vectors), such that γ̇αβ = γ̇ δαxδβy ,
where γ̇ is the shear rate. The MPC fluid is characterized
by the ideal-gas equation of state [18,19,23], and therefore
the pressure fluctuations at constant temperature are given by
δp = c2

T δρ, where cT is the isothermal speed of sound. On
linearizing, Eqs. (2) and (3) can then be written in the Fourier
space as [8,14]

∂ z̃
∂t

+
[
−γ̇ kx

∂

∂ky

+ L(k,γ̇ )

]
z̃ = R̃, (6)

where z̃ = (δρ̃,δũ(1),δũ(2),δũ(3)), with ũ(α) = δũ(k) · e(α)(k),
R̃α+1 = f̃ · e(α), and R̃1 = 0. Here, {e(α)} is a set of orthogonal
unit vectors with e(1) pointing along the wave vector. Thereby,
δũ(1) is the longitudinal and δũ(2) and δũ(3) are the transverse
components of the velocity fluctuations. Here, functions with
a tilde indicate the Fourier components of the hydrodynamic
fields and random forces. As in Ref. [8], we choose the unit
vectors as

e(1) = k̂,

e(2) = 1

k̂⊥

[
ŷ − e(1)e(1)

y

]
, (7)

e(3) = e(1) × e(2),

for which the matrix L(k,γ̇ ) takes a simple form. Here, k̂⊥ =
(k2

x + k2
z )1/2/k and k = |k|. The explicit form of L(k,γ̇ ) for an

isothermal MPC fluid is presented in Ref. [14]. The solution

of Eq. (6) can then be written as [13,14]

z̃i(k,t) =
4∑

j=1

Gij (k,t)z̃j [k(−t),0]

+
4∑

j=1

∫ t

0
dt ′Gij (k,t ′)R̃j [k(−t ′),t − t ′], (8)

where i ∈ {1,2,3,4} and the propagator Gij (k,t) is given by

Gij (k,t) =
4∑

l=1

ξ
(l)
i (k)η(l)

j [k(−t)]e− ∫ t

0 dτλl [k(−τ )]. (9)

Here, the time-dependent wave vector is defined as k(t) =
(kx,ky − γ̇ tkx,kz), and ξ (l) and η(l) are, respectively, the
right and left eigenvectors of the operator −γ̇ kx∂/∂ky + L,
corresponding to eigenvalue λl . In addition,

∑4
l=1 ξ

(l)
i η

(l)
j =

δij , so that {ξ ,η} forms a biorthogonal basis. The eigenvectors
and eigenvalues can be obtained perturbatively as expansions
in the wave vector [8]. The explicit expressions are given in
Ref. [14].

B. Correlation functions

The steady-state equal-time correlation functions Cij (k,γ̇ )
of the hydrodynamic variables are defined by

lim
t→∞〈z̃i(k,t)z̃j (k′,t)〉 = (2π )3δ(k + k′)Cij (k,γ̇ ). (10)

From Eqs. (8) and (9), and using the condition Gij (k,t) = 0
for t → ∞, we obtain

Cij (k,γ̇ ) =
4∑

l,m=1

∫ ∞

0
dtξ

(l)
i (k,t)ξ (m)

j (−k,t)F (lm)[k(−t)],

(11)
where we have used the definitions

ξ
(l)
i (k,t) = ξ

(l)
i (k)e− ∫ t

0 dτλl [k(−τ )], (12)

〈R̃i(k,t)R̃j (k′,t ′)〉 = (2π )3δ(k + k′)δ(t − t ′)R̃ij (k), (13)

F (lm)(k) =
4∑

i,j=1

η
(l)
i (k)η(m)

j (−k)R̃ij (k). (14)

The matrix elements R̃ij (k) and therefore F (ij )(k) for the MPC
fluid can be calculated using Eqs. (4) and (5). The expressions
for F (ij )(k), and thereby the relevant correlation functions
Cij (k,γ̇ ), are identical to those presented in Ref. [8], with
the isentropic coefficients replaced by isothermal counterparts,
even though the stress tensor of the MPC fluid is asymmetric.
With the explicit form of F (ij )(k), η(k), and ξ (k,t), the
density and velocity correlations and the coupling between
the transverse velocity components can be written as [8]

Cii(k,γ̇ ) = Cii(k,0)[1 + �ii(k,γ̇ )] (15)

and

C34(k,γ̇ ) = kBT

ρ0
�34(k,γ̇ ), (16)
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where the equilibrium correlations are C11(k,0) = ρ0kBT /c2
T ,

with cT the isothermal speed of sound, and Cii(k,0) =
kBT /ρ0 for i = 2,3,4, and Cij (k,0) = 0 for i 
= j [14,25].
The nonequilibrium contributions �ij (k,γ̇ ) are given by

�11 = �22 = −γ̇

∫ ∞

0
dt

kkxky(−t)

k3(−t)
e−ν̃χ(k,t), (17)

�33 = 2γ̇

∫ ∞

0
dt

kxky(−t)

k2
e−2νχ (k,t), (18)

�34 = γ̇

∫ ∞

0
dt

[
2kxky(−t)

kk(−t)
F (k,t) − kz

k

]
e−2νχ (k,t), (19)

with the kinematic viscosity ν = η/ρ0, the sound attenuation
factor ν̃ = (η + ηk/3)/ρ0, and

χ (k,t) = k2t + γ̇ kxkyt
2 + 1

3
γ̇ 2k2

xt
3, (20)

F (k,t) = M[k(−t)] − k(−t)

k
M(k). (21)

Here,

M(k) = − kkz

kxk⊥
arctan

(
ky

k⊥

)
(22)

and k2
⊥ = k2

x + k2
z . We do not provide the expression for �44,

which corresponds to the transverse velocity correlations in
the direction perpendicular to the gradient direction, as the
corresponding simulation data suffer from large statistical
errors. We note that for an incompressible fluid �11 and �22

vanish, while �33 retains the form as in Eq. (18) [11,26]. The
simulation results for the transverse velocity component, as
will be discussed in the following section, will therefore also
hold for incompressible fluids.

III. SIMULATION APPROACH

A. MPC simulations

In MPC simulations, the fluid is represented by point par-
ticles and their positions, and velocities evolve in alternating
discrete steps: streaming and collision. In the streaming, the
particles moves ballistically; i.e., the positions are updated as

ri(t + h) = ri(t) + hvi(t), (23)

where h is the time step. In the collision, the particles are
grouped into cubic cells of length a, and a stochastic rotation
of the relative velocities, with respect to the center-of-mass
velocity, of the particles is performed in each cell; i.e.,

vi(t + h) = vcm(t) + R(α)[vi(t) − vcm(t)], (24)

where

vcm = 1

Nc

∑
i∈cell

vi . (25)

Here, Nc is the number of particles in the cell which contains
particle i. R(α) is the rotation matrix around a randomly
oriented axis, and α is the rotation angle [18,19]. The shear
flow is implemented by Lees-Edwards boundary conditions,
in which the flow is generated by moving periodic simulation
boxes by a velocity proportional to the boxes’ vertical position
compared to the primary box [27,28]. This boundary condition

is well suited for studying bulk properties of sheared fluids,
as it eliminates finite size effects due to solid boundary
walls. In order to maintain an isothermal state under shear,
we employ a cell-level Maxwell-Boltzmann rescaling of the
relative velocities of the particles [29]. This rescaling method
for MPC fluid has been shown to reproduce the isothermal
states consistent with the fluctuating Navier-Stokes equations
in equilibrium and under shear flow [14,25].

Length and time scales in our simulations are given in terms
of the length a of a cubic cell and τ =

√
ma2/kBT , where m

is the mass of a MPC fluid particle. The rotation angle α

is chosen as 130◦, the average number of fluid particles per
cell as 〈Nc〉 = 10, and the time steps h = 0.1τ and 0.2τ are
used. The length of the simulation box ranges from L = 20a

to 120a. The values of the transport coefficients for a given
set of simulation parameters can be evaluated from theoretical
expressions [19,21,30] and are given by ν = 0.870a2/τ and
ν̃ = 0.886a2/τ for h = 0.1τ and ν = 0.508a2/τ and ν̃ =
0.540a2/τ for h = 0.2τ .

B. Simulation results and discussion

In order to calculate the correlations in the simulations, the
velocity field of the fluid in Fourier space is defined as

δũ(k) = m

ρ0

N∑
i=1

[vi − γ̇ yi x̂]e−ik·ri , (26)

where ρ0 = mN/V is the mean mass density and V = L3.
The mean flow is subtracted from the particle velocity; hence,
δũ represents the thermally fluctuating part. The velocity
correlation functions are then evaluated as

Cij (k,γ̇ ) = V −1〈δũ(i−1)(k)δũ(j−1)(−k)〉, (27)

where i,j ∈ {2,3,4}. C22 corresponds to the longitudinal and
C33 and C44 to the transverse components. At equilibrium,
i.e., γ̇ = 0, the velocity correlation functions with velocity
fields defined as in Eq. (26) are given by Cii = kBT /ρ0 and
Cij = 0 for i 
= j . In order to avoidO(N2) computational time
in evaluating correlation functions in shear flow implemented
by Lees-Edwards boundary conditions [31], the sampling is
carried out at every 1/γ̇ time steps, at which the usual periodic
boundary conditions apply [O(N ) computational time].

1. Velocity fluctuations

As is well known, the velocity fluctuations in a fluid at
equilibrium are isotropic and spatially δ correlated. Thus, in the
Fourier-space representation, the correlations are independent
of the wave vector k. However, as is evident from Eqs. (17)
and (18), the nonequilibrium contribution �ij to the correla-
tions in shear flow depends on the magnitude as well as the
direction of the wave vector, thereby rendering the fluctuations
spatially correlated and anisotropic. Figure 1 displays the
nonequilibrium contributions of the longitudinal (e(1) direc-
tion) and transverse (e(2) direction) velocity correlations for a
wave vector in the flow-gradient plane pointing at an angle 45◦
to the flow direction. The correlations decay as k−2 for large
wave vectors. This power-law dependence for the transverse
velocity correlations has been derived previously [10].
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FIG. 1. The nonequilibrium contribution to the transverse (�33,
top) and longitudinal (�22, bottom) velocity correlations for kx = ky

and kz = 0. The lines correspond to the theoretical predictions given
by Eqs. (17) and (18), and the symbols indicate simulation results.
Parameters: γ̇ = 0.04τ−1 and h = 0.1τ .

Figure 2 displays the nonequilibrium enhancement of trans-
verse velocity correlations for the wave vector pointing along
the flow direction, i.e., ky = kz = 0. As predicted by the theory,
the correlations decay as k−4 for large wave vectors. Since the
k−4 dependence corresponds to diverging correlations in real
space, a slower decay is expected for smaller wave vectors.
From the asymptotic analysis of the correlation functions, it
was shown that the velocity correlations decay as k−4/3 for
small k [9,10,26]. This power-law dependence corresponds to
a r−5/3 decay in real space and is independent of the direction
of the wave vector [10]. Unfortunately, we are not able to probe
this small wave vector decay due to limitations in system size
and shear rate in our simulations. However, it is clear from our
simulation results that the velocity correlations indeed show
a crossover from k−4 (Fig. 2) and also k−2 (Fig. 1) decay

10-3

10-2

10-1

100

101

10-1 100

k-4
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Δ 3
3(

k,γ
. )
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FIG. 2. The nonequilibrium contribution to the transverse veloc-
ity (e(2) direction) correlations for ky = kz = 0. The lines correspond
to the theoretical prediction as given in Eq. (18) and points represent
the simulation data. Parameters: h = 0.2τ and γ̇ = 0.02τ−1 (top) and
γ̇ = 0.01τ−1 (bottom).
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FIG. 3. The coupling between the transverse velocity components
for kx = ky = kz > 0. The inset shows the variation of the coupling
with the shear rate for kz = 2π/60. The lines represent the theoretical
predictions by Eq. (19), and the simulation data are represented by
points. Parameters: h = 0.1τ and γ̇ = 0.04τ−1 for the main plot.

to a slower decay for small wave vectors. The agreement
between the simulation results and the theoretical expressions
for the wave vectors accessible for finite-system sizes strongly
suggest that the correlations for infinite systems would indeed
be long-ranged. It is noteworthy that rigid boundaries, which
are absent in our simulations, is expected to modify the k−4/3

small wave vector decay of the velocity correlations to a k2

dependence [10,11,32].
The transverse components of the fluid-velocity field at

equilibrium are well known to be identical and decoupled.
Under shear, the degeneracy is lifted and the components
become coupled [8,14]. The strength of the coupling is given
by Eq. (19). Figure 3 shows the variation of the coupling for
the wave vector pointing out of the shear-gradient plane. The
coupling decays as k−2, corresponding to r−1 decay, for the
entire range of wave vectors in our simulations. In agreement
with the theory, the coupling increases linearly with shear rate
(cf. inset of Fig. 3). As is evident from Eq. (22), the coupling
vanishes for wave vectors in the shear-gradient plane (kz = 0).

For large shear rates and small wave vectors, we observe
deviations for the velocity correlations obtained by simulations
and predicted theoretically (Fig. 2 top curve). We notice that
a similar unexpected behavior was found for the large-length-
scale decay of real-space correlations in sheared granular flu-
ids [12]. This effect may be attributed to a density dependence
of the viscosity of the fluid. For fluids with density-dependent
viscosity, the density fluctuations will be coupled to the mean
flow velocity through an additional term in the linearized
Navier-Stokes equation. This coupling is non-negligible for
high shear rates and modifies the eigenvalues and eigenvectors
and thereby the hydrodynamic fluctuations. We hope to address
this issue in detail in the future.

2. Density correlations

The density fluctuations, similar to the velocity fluctuations,
become spatially correlated in shear flow. The correlation in
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FIG. 4. Spatial correlations in density fluctuations in shear flow.
The line represents Eq. (29) and symbols simulation results. The
correlations are measured in the shear-gradient plane and in the
direction 45◦ to the flow. Parameters: h = 0.2τ , γ̇ = 0.01τ−1, and
L = 120a.

the density fluctuations is defined as

Cρρ(r) = 〈δρ(r)δρ(0)〉, (28)

where δρ(r) = ρ(r) − ρ0. In simulations, the correlation is
measured as m2〈δn(r0)δn(r0 + r)〉, where n(r) is the number
of MPC particles in a given cell, with r0 and r taken as the
centers of the cells. The theoretical expressions for Cρρ(r) can
be obtained by inverting C11(k,γ̇ ) [see Eq. (15) and subsequent
discussion] and is given by

Cρρ(r) = mρ0

V

∑
k

[1 + �11(k,γ̇ )] cos(k · r), (29)

where �11(k,γ̇ ) is given by Eq. (17).
Figure 4 shows a comparison of the MPC simulation results

for the density correlations and the numerically evaluated
theoretical expression (29). The agreement between the two
results is good for moderate length scales. The deviation of
the simulation results for small length scales is first due to
the fact that the theoretical expression for the nonequilibrium
contribution �11(k,γ̇ ) is a good approximation for small
wave vectors only. Second, the validity of Navier-Stokes
equations for a MPC fluid breaks down at small length
scales r � π

√
νh [25]. One the other hand, for large length

scales, the simulation data suffer from large statistical errors.
However, for intermediate length scales, the correlations are
well reproduced.

3. Pressure fluctuations

The nonequilibrium contribution to the velocity correla-
tions is also manifested in a shear-rate dependence of the
pressure of the fluid [9]. The pressure in our simulations was
measured as the time average of the diagonal components of
the instantaneous pressure tensor [21]

pαβ = m

V

N∑
i=1

[
viαviβ + 1

h
�viαr ′

iβ + δαxδβy

γ̇ h

2
v2

iy

]
, (30)
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 /a
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FIG. 5. The nonequilibrium contribution to the pressure tensor
[Eq. (30)] for the gradient (triangles) and vorticity (squares) compo-
nents. Parameters: L = 60a, h = 0.1τ .

where vi = vi − γ̇ yi x̂ is the thermal velocity after streaming,
�vi is the change in the velocity in the collision step,
and r′

i is the position of the particle in the grid-shifted
frame in the collision step. The pressure tensor for a MPC
fluid at equilibrium is given by the ideal-gas equation
of state pαβ = δαβn0kBT , where n0 is the mean number
density.

Figure 5 displays the deviation of the diagonal components
of the pressure tensor from the equilibrium value. We observe
that for high shear rates, the deviations vary as γ̇ ζ , with ζ =
2. The exponent ζ associated with the change in pressure
has been controversial. Mode-coupling theory [33] predicts
ζ = 3/2, which has been confirmed in simulations of Lenard-
Jones fluids at the triple point [34]. However, in atom-scale
simulations using two- and three-body potentials, the exponent
was observed to be ζ ≈ 2.0 away from the triple point [35].
The deviation was ascribed to two-body interactions [36,37].
Further systematic studies using the Lenard-Jones potential
found the exponent in the range ζ = 1.2–2.0 as a function
of density and temperature [38], thereby rendering ζ = 3/2
only a special case. Fluctuating hydrodynamics calculations of
incompressible fluids, on the other hand, predict two limiting
regimes of the variation of pressure, depending on the value
of the dimensionless parameter λ = γ̇ L2/ν [9]. The exponent
is expected to be ζ = 2 for λ � 1 and ζ = 3/2 for λ � 1.
However, our simulations yield ζ = 2 even for λ � 1, which
is not a contradiction, as MPC fluid is highly compressible. It
therefore remains for further theoretical and simulation studies
to establish a unified picture of the exponent associated with
the hydrostatic pressure under shear.

IV. CONCLUSIONS

Using MPC simulations, we have unambiguously demon-
strated that the hydrodynamic fluctuations in simple fluids
under shear flow, in contrast to the fluctuations at equilibrium,
are spatially correlated. The correlations in velocity and
density fluctuations are shown to be anisotropic and spatially
correlated over the entire volume of the system. For large
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wave vectors, the decay of the velocity correlations exhibits a
power-law dependence in the wave vector. We observe a k−4

decay for a wave vector pointing along the flow direction
and a k−2-dominated decay along off-flow directions. For
small wave vectors, we observe a crossover to a slower decay,
indicating an algebraic decay of real-space correlations at large
distances. In contrast to the case at equilibrium, the transverse
velocity components are coupled under shear, with a k−2

dependence for the entire range of wave vectors accessible in
our system, corresponding to r−1 real-space correlations. We
find good agreement between the simulation results and the
predictions of fluctuating hydrodynamics without any fitting
parameters.

Although we have shown that the hydrodynamic fluctua-
tions under shear are spatially correlated, it remains for further
simulation studies to show they are truly long-ranged, i.e.,
for instance, that the transverse velocity fluctuations decay
as k−4/3 for small wave vectors. This demands either higher

shear rates or larger system sizes than those accessible in
our current study. Since MPC fluid is compressible with
a density-dependent viscosity, large density fluctuations—
although they are physical—arise under such conditions.
Other hydrodynamic simulation methods for incompressible
fluids, which incorporate thermal fluctuations, may therefore
alternatively prove adequate.

We also find in our simulations that the nonequilibrium con-
tribution to the hydrostatic pressure follows a γ̇ 2 dependency
on shear rate, in contrast to the γ̇ 3/2 dependency predicted
by mode-coupling theory. Our mesoscale simulation result
is in agreement with the findings of previous atom-scale
simulations studies using a range of interaction potentials,
where deviation from the γ̇ 3/2 dependency was observed. A
fundamental understanding of the hydrostatic pressure under
shear is still lacking. The effect of confining walls on pressure
and spatial correlations in hydrodynamic fluctuations are also
yet to be addressed in simulations.
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