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Edge instability in incompressible planar active fluids
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Interfacial instability is highly relevant to many important biological processes. A key example arises in
wound healing experiments, which observe that an epithelial layer with an initially straight edge does not heal
uniformly. We consider the phenomenon in the context of active fluids. Improving upon the approximation used
by Zimmermann, Basan, and Levine [Eur. Phys. J.: Spec. Top. 223, 1259 (2014)], we perform a linear stability
analysis on a two-dimensional incompressible hydrodynamic model of an active fluid with an open interface. We
categorize the stability of the model and find that for experimentally relevant parameters, fingering instability is
always absent in this minimal model. Our results point to the crucial role of density variation in the fingering
instability in tissue regeneration.
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I. INTRODUCTION

The Saffman-Taylor instability is a classic example of
interfacial pattern formation in fluid dynamics. Also known
as viscous fingering, it refers to the interfacial phenomenon
observed when a fluid is injected into a Hele-Shaw cell,
displacing a resting fluid of higher viscosity. The leading edge
of the advancing fluid does not propagate uniformly, but splits
into fingerlike protrusions [1]. While this is well understood in
the context of classical fluids, what happens when we instead
use an active fluid?

Active matter refers to any system of interacting particles in
which one or more of the agents present can expend stored or
ambient free energy to generate some form of self-propulsion
[2]. The most obvious examples of these systems are found
in biology and span many length scales, such as flocks of
birds [3], bacterial suspensions [4], and the cytoskeleton of
a eukaryotic cell [5]. In particular, epithelial tissue can be
regarded as active matter [6]. In its simplest form, as in wound
healing experiments, the tissue consists of a single layer of
tightly packed cells. These cells not only interact through
adhesion and contact forces, they can also generate motility
forces by crawling on the substrate.

The study of edge stability of an active fluid is thus highly
relevant to many important biological processes. For instance,
when an in vitro cell monolayer is scratched, or barricades
are removed [7,8], simulating a wound, the tissue spreads
to fill the void (Fig. 1). However, a common observation
from experiments is that an initially straight wound does not
heal uniformly [7,8]. Instead, fingerlike protrusions develop at
the leading edge, reminiscent of those in the Saffman-Taylor
instability. The exact reason for this pattern formation remains
unclear, with some attributing the effect to particular “leader”
cells guiding the rest [8–10]. However, simulations have shown
that the phenomenon can emerge from the collective motion
of actively crawling cells with strong cell-cell adhesion, with
no need for leader cells [11]. Other studies have investigated
the interface between competing tissues; their simulations
suggest that the interface advances at a constant speed and
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does not appear to form fingers, merely fluctuating within a
stable region of roughness [12].

Another avenue being explored is that of active nematic
models. Several works have investigated the effects of
topological defects within the structure of a tissue layer, and
how they induce motion [13,14]. In particular, by representing
a cell division event with a local nematic dipole, simulations
were able to reproduce fingerlike growth similar to that of
MDCK cells [15].

In contrast, a recent analysis of a minimal hydrodynamic
model suggested that the fingering instability could arise sim-
ply out of cells collectively crawling on a substrate [6]. A linear
stability analysis suggested that the edge of a homogeneous
incompressible planar active fluid is stable when the fluid
is moving at a constant rate, however the interface becomes
unstable if the fluid is initially stationary [6]. Here, we perform
a more thorough theoretical analysis of the same model as in
[6] and arrive at a qualitatively different conclusion.

The model system consists of an incompressible two-
dimensional active fluid propagating in the direction of its free
surface, as illustrated in Fig. 1. This setup is similar to that of
Saffman-Taylor, however we do not apply a pressure gradient
to the active fluid; any propulsion will be self-generated. We
also assume that the fluid being displaced is of negligible
viscosity and density. The flow in this region is therefore not
solved for and instead is treated as a space of constant pressure.
As in Saffman-Taylor, we seek wave numbers of unstable
perturbations, with a maximal growth rate corresponding to
a typical finger thickness. In wound healing assays, fingers
can be as few as five to ten cells thick, thus it is not clear if a
continuum model will be able to replicate these, however both
[15] and [6] observe finger formation using continuum models.

The flow field, u, of the active fluid is described by
the deterministic, incompressible version of the Toner-Tu
equations [3,16,17],

ρ

(
∂u
∂t

+ λ(u · ∇)u
)

= μ∇2u − ∇p + au − b|u|2u, (1a)

∇ · u = 0, (1b)

where ρ and μ are the density and viscosity of the active fluid,
respectively; p is the pressure, treated here as a Lagrange
multiplier to enforce the incompressibility condition (1b). The
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FIG. 1. Schematic of the model geometry. A two-dimensional
strip, with thickness L, of active fluid, bounded between a solid wall
and an empty void, is permitted to move with speed v0 in the direction
of the void. The trailing wall comoves with the bulk fluid.

two terms au and b|u|2u account for the activity, where a and b

are constants. Each of these acts in a direction tangential to the
instantaneous velocity of the fluid. The former acts as a driving
term with a > 0 inherently assuming that the propulsion forces
within the fluid align with the instantaneous velocity; a < 0
means that the active forces are acting against the motion. The
nonlinear term b|u|2u provides resistance, preventing arbitrary
growth, hence b > 0 necessarily.

Unlike conventional fluid mechanics, this system does not
conserve momentum, meaning it is a “dry” model [2]. As a
result, Galilean invariance does not apply and the prefactor
of the advective term, λ, need not be unity. A dry model is
appropriate for the system of interest as the mechanics are
dominated by interaction with the substrate. The active terms
in Eq. (1a) prescribe a preferred speed for the fluid to move
at, much like the cells crawling on the substrate. Assuming
these collective motions give a nontrivial polar order, upon
taking the hydrodynamic limit the polar order dominates and
higher-order effects such as nematic order are negligible in
this minimal model [18].

Mass is conserved in the active fluid via the incompress-
ibility condition Eq. (1b), and the density ρ is assumed to be
constant—a fair assumption as cell division and death rates are
low in comparison with the effects of motility forces in wound
healing assays [6,8].

Equation (1) is rich in physics: one of us has previously
shown that the fluctuating form of the equation is connected to
the Kardar-Parisi-Zhang model in two dimensions [19], and its
associated critical behavior is described by a novel universality
class in nonequilibrium physics [20]. Here, we will focus on
the stability criteria when an interface is present.

We now perform a linear stability analysis on these
equations using the geometry depicted in Fig. 1: a strip of
active fluid of thickness L, bounded by a solid wall on one

side with an open interface on the other. The fluid is assumed
to move with a constant uniform base flow v0 in the direction of
the open interface, with the rear wall comoving with the fluid.
In such a homogeneous flow, u = v0x̂, all of the derivatives in
Eq. (1) vanish, leaving a balance between the active terms. The
solution v0 = 0 exists for all real a, however a > 0 has the ad-
ditional solution v0 = √

a/b. We will refer to the v0 = 0 case
as the stationary case and the v0 > 0 case as the moving case.

We add a small perturbation to this flow, u = (v0 + ux)x̂ +
uyŷ, and the interface h = v0t + h̃, where |h̃|,|ux |,|uy | � 1.

We consider sinusoidal perturbations with wave number q,
using the form

ux = Aer(x−v0t)+ωt+iqy, (2a)

uy = Ber(x−v0t)+ωt+iqy, (2b)

p = Cer(x−v0t)+ωt+iqy, (2c)

h̃ = h0e
ωt+iqy (2d)

so that the real part of ω describes the growth rate of the mode,
with a positive value corresponding to instability.

Substituting Eq. (2) into Eq. (1) results in a homogeneous
system of linearized equations in the constants A, B, and C.
To have a nontrivial solution, the determinant of their matrix
of coefficients must be zero. This restricts the values of r to be
the roots of the quartic polynomial,

0 = μr4 + ρ(1 − λ)v0r
3

− [
ρω + 2μq2 − (

a − bv2
0

)]
r2 − ρ(1 − λ)v0q

2r

+ q2
[
μq2 + ρω − (

a − bv2
0

) + 2bv2
0

]
. (3)

Hence the general solution for the velocity perturbation is

ux =
4∑

j=1

Aje
rj (x−v0t)+ωt+iqy, (4)

where rj are the four roots in Eq. (3). The other perturbation
fields uy and p can also be expressed in terms of Aj using
Eq. (1).

The remaining unknowns Aj and h0 are fixed by the
boundary conditions. No-slip is applied at the rear wall,
meaning all velocity perturbations (ux,uy) in the flow field
must decay this far from the interface and thus at the rear wall
x = v0t − L,

ux |x=v0t−L = uy |x=v0t−L = 0. (5)

The velocity of the interface h(y,t) must be continuous with the
flow field. Linearized at the free surface equilibrium, x = v0t ,
this becomes

∂h̃

∂t
= ux

∣∣∣
x=v0t

. (6)

The fluid occupying the void region in Fig. 1 is of negligible
viscosity compared to that of the active fluid. Hence this region
is not solved for and is assumed to be of constant pressure.
Therefore, the tangential stress on the interface must be zero,
Eq. (7a). The normal stress must be balanced by the surface
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tension γ and the pressure difference across the interface,
Eq. (7b). Linearized about x = v0t , these conditions are

∂ux

∂y

∣∣∣∣
x=v0t

+ ∂uy

∂x

∣∣∣∣
x=v0t

= 0, (7a)

2μ
∂ux

∂x

∣∣∣∣
x=v0t

− p|x=v0t
= γ

∂2h̃

∂ŷ2
. (7b)

The five boundary conditions give another system of
homogeneous linear equations, this time in terms of the four Aj

and h0 (see Appendix A). Again, for a nontrivial solution the
matrix of coefficients, denoted by M and defined in Eq. (A2),
must have zero determinant. We now let f (ω,q) = det M and
seek to find roots of f (ω,q).

II. STATIONARY CASE

In the stationary case, v0 = 0, factoring out nonzero
constants reduces f (ω,q) = 0 to

0 = μω

γ

{
− k cosh[L(k − q)]

ρ2

μ2

(
ω − a

ρ

)2

+ k(1 − cosh[L(k − q)])

[
8q4 + 4q2 ρ

μ

(
ω − a

ρ

)]

− sinh(Lk) sinh(Lq)(k − q)2(k3 + k2q + 3kq2 − q3)

}

− ρ

μ

(
ω − a

ρ

)
q3{k cosh(Lk) sinh(Lq)

− q sinh(Lk) cosh(Lq)}, (8)

where

k =
√

q2 + ρ

μ

(
ω − a

ρ

)
. (9)

We first consider the long-wavelength limit (small q). Ex-
panding the terms in powers of q, we obtain an asymptotic
expansion for ω:

ω = a

ρ
− μ

ρL2

(
nπ + π

2

)2

+ μ

ρ

(
1 + 16(−1)n+1

(1 + 2n)π

)
q2 + O(q4), (10)

where n is any integer. It follows that ω is real for sufficiently
small q. Our numerical calculations suggest that this holds for
all real q, and we will assume that ω is real henceforth.

With this assumption, we can show by contradiction that
ω is bounded above by a/ρ. If we assume that ω is greater
than a/ρ, Eq. (9) implies that k > q. Upon inspection, we
find that each line of Eq. (8) is strictly negative, and thus
the right-hand side cannot be zero. This means there are no
solutions if ω > a/ρ. This, in particular, resolves the diverging
growth rate encountered in [6]. Our result also provides a finite
range in which to search for unstable modes.

Figure 2(a) depicts the full unstable solution for the
specified parameter values, obtained by solving f (ω,q) = 0
numerically. Where necessary, we have excluded the zeros of
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FIG. 2. Stability diagram for the stationary case (v0 = 0). Red
circles indicate unstable solutions, ω > 0; blue crosses indicate stable
solutions, ω < 0. Plot (b) is the same as (a) but focused on a smaller
range of ω. The solid blue curves in (b) show the results obtained
when the inertial terms are ignored [6]. The dashed lines are added
as visual aides. The physiologically relevant parameter values are
ρ = 103 kg m−3, μ = 104 Pa s [21,22], γ = 103 Pa μm [23], and L =
100 μm [7]. The steady-state speed of the tissue,

√
a/b, is 2.7 ×

10−3 μm s−1 [8]. λ is irrelevant in the stationary case. For a and b,
we use the parameters employed in [6]: a = 60 Pa s μm−2 and b =
107 Pa s3 μm−4. This choice of a satisfies the condition in Eq. (12)
for instability, and the choice of b sets the steady-state speed to be
2.45 × 10−3 μm s−1, in line with the physiological value above. This
also facilitates comparison with the results of [6]. Indeed, according
to Eq. (12), the minimum a for instability is about 2.5 Pa s μm−2, and
as we will explain in Sec. IV, it is likely too large to be physiologically
relevant.

f corresponding to degenerate cases of Eq. (3). These must be
treated separately to determine if they are genuine solutions
(see Appendix B).

As the growth rate is now bounded above by a/ρ, there
are no singularities as discussed in [6], and we seek the wave
number that provides the largest growth rate. The highest curve
outlined in Fig. 2(a) appears to obtain its maximum in the limit
as q → 0. This is in accord with the expansion in Eq. (10)—the
constant part of ω is largest when n = 0, at which point the
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coefficient of the next lowest order term, q2, is negative. As
such, the growth rate initially decays away from its peak at
q = 0. The actual value q = 0 is not a valid mode. This would
correspond to a flat wave, which would necessarily violate
conservation of mass if it were to grow.

To understand why the most unstable mode occurs as q

goes to 0, recall that there is no external pressure, and the
only driving force in our system is the internally generated
active force au. This force provides the same growth rate for
all wave numbers q. The motion is resisted by viscosity and
surface tension. The strength of each of these increases with
q, thus suggesting that the maximum growth should be in their
absence, namely in the limit q → 0.

Viscosity counteracts shear within the velocity field. Due
to the no-slip condition at the rear wall coupled with the
incompressibility condition, any velocity perturbation at the
free surface naturally induces shear throughout the fluid, as
depicted schematically in Fig. 1. As q drops to zero, the shear
due to variation in the y direction becomes negligible, however
the shear in the x direction remains, as the velocity must vanish
across the width L. Hence the very minimum we require for
any perturbation to grow is for the driving force au to be
stronger than the viscosity component corresponding to the
latter direction, μ∂2u/∂x2. We therefore expect instability to
occur only if

aU > C
μU

L2
(11)

for some typical speed U and an unknown dimensionless con-
stant C. We can quantify C by returning to the asymptotic ex-
pansion (10). Since maxq ω is achieved for n = 0 as q → 0, we
indeed find that the stationary case is linearly unstable only if

aL2

μ
>

π2

4
. (12)

Hence we have a condition for instability. Evidently, a
negative value of a implies the system is stable—an expected
result as both active terms would be acting against the motion.

We have concluded that the most unstable mode is simply
the largest wavelength that the domain permits; our model
assumed the strip to be infinitely long, hence no restriction was
placed on the wave number. In the context of wound healing,
our model suggests that the typical thickness for the growing
fingers will be of the system size and thus does not generate
the behavior exhibited in wound healing experiments. We will
comment on this further in Sec. IV.

Figure 2(b) focuses on a region of much smaller ω. Also
plotted are the results obtained using the analysis of [6]. Within
this region, the solutions actually align very well, revealing that
their simplification to ignore the inertial terms in their analysis
is valid when |ω| is “small.” We can clarify the meaning of
small by returning to the governing equation (1a). Deeming
ρ∂u/∂t to be negligible with respect to au is to assume
that |ω| � a/ρ, hence their solution is valid only within this
region. Ultimately this means that although the flow has a very
small Reynolds number Re, it also has a very small Stokes
number St, which are given by the ratios

Re = ρ(u · ∇)u
μ∇2u

and St = (u · ∇)u
∂u/∂t

. (13)
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FIG. 3. Stability diagram for the moving case (v0 = √
a/b)

showing the growth rate vs the wave number of the perturbation.
Results are numerical (crosses) and plotted alongside the solution
obtained after ignoring inertial terms (curve). All parameter values
are the same as those in Fig. 2. In addition, we set λ = 1 for simplicity.

If St ∼ O(1) and Re � 1, both of the terms (u · ∇)u and ∂u/∂t

would be negligible, however in this case only the former is
negligible.

III. MOVING CASE

In the case v0 = √
a/b, the roots of Eq. (3) cannot be written

explicitly in a useful format, hence we present only numerical
results. As all numerical solutions obtained found ω to be real,
we assume that this is true generally. As for the stationary case,
ω has multiple values for each q. There are also degenerate
cases that were found to be removable (see Appendix B).
Figure 3 displays the highest roots found for the tested values
of q, plotted alongside the original results obtained using the
analysis of [6]. They align very well, confirming that the
inertial terms have little effect on the dominant behavior of
the solution in the moving case, and it is always stable.

IV. SUMMARY AND DISCUSSION

We have performed a linear stability analysis on a strip
of incompressible active fluid governed by the hydrodynamic
equation of motion in Eq. (1) about a stationary system and
a constant uniform flow. The fluid density was assumed to
be constant and uniform. We found that from a stationary
position, the interface can be unstable, subject to the criterion in
Eq. (12), and we identified that it describes a balance between
the viscosity and active driving force. However, the instability
that occurs is of the order of the system size. The moving flow,
with velocity

√
a/b, is always linearly stable. Our results are

qualitatively different from those obtained in [6], due to the
inclusion of the inertial terms in our analysis.

In the context of wound healing, the lack of a maximal
mode would suggest that our incompressible active fluid model
is insufficient to produce the fingering behavior exhibited in
wound healing experiments. Furthermore, using physiolog-
ically relevant parameters (see the caption of Fig. 2), the
minimal a required for instability is 2.5 Pa s μm−2 according
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to Eq. (12). However, in a typical experiment the time scale is
of the order of hours. If we assume that it takes 1 h to achieve
a steady state, we would expect dimensionally for ρ/a to be
about 1 h. Using the same value of ρ, the density of water,
a, would therefore be of the order of 2.8 × 10−13 Pa s μm−2.
This is many orders of magnitude smaller than the minimum
required for instability, explaining why instabilities of the
order of the system size are not observed in experiments.
Note that the actual density of the cell layer never needs to
be incorporated into the analysis in [6] since the left-hand side
of Eq. (1) is set to zero.

Our work thus strongly indicates that compressibility of the
tissue is critical for fingering instability. Indeed, examining
wound healing assays reveals a stark difference between the
typical diameter of a cell in the bulk of the tissue, and
that of a cell in the fingerlike protrusions, with the latter
being significantly larger [7]. Even without an interface, the
velocities of cells within a confluent layer have been shown to
vary with cell density [24]. All of these suggest that variations
in the cell density should not be ignored.

Our work has relevance beyond tissue regeneration. Since
we have shown that the boundary perpendicular to the moving
direction of two-dimensional incompressible active fluids is
stable, our work suggests that the recent predictions on the
scaling behavior of incompressible active fluids in the moving
phase [19] may be studied on an open system, thus potentially
facilitating the experimental verification of the theory.
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APPENDIX A: DERIVING f (ω,q)

The boundary conditions provide a homogeneous system
of linear equations in Aj (j = 1, . . . ,4) and h0. After factoring
some arbitrary nonzero terms, such as i and exp(iq + ωt), out
of the equations, the system can be expressed as

Mv = 0, (A1)

where

M =

⎛
⎜⎜⎜⎜⎝

e−Lr1 e−Lr2 e−Lr3 e−Lr4 0
r1
q
e−Lr1 r2

q
e−Lr2 r3

q
e−Lr3 r4

q
e−Lr4 0

1 1 1 1 −ω
r2

1 +q2

q

r2
2 +q2

q

r2
3 +q2

q

r2
4 +q2

q
0

c1 c2 c3 c4 γ q2

⎞
⎟⎟⎟⎟⎠ ,

(A2)

cj = μrj

(
3q2 − r2

j

) + [
ρω − (

a − bv2
0

)]
rj + ρv0(1 − λ)r2

j

q2
,

and v = (A1,A2,A3,A4,h0)T . For the solution to be nontrivial,
we require that M has vanishing determinant. Because the rj ’s
are the roots of Eq. (3), and thus determined by ω and q, the
determinant f (ω,q) = det M is a function of ω and q.

APPENDIX B: DEGENERATE SOLUTIONS

Some roots of f (ω,q) are not solutions to our system. If
any of the columns of the matrix M are identical, then the
determinant is trivially zero. This occurs if any of the roots rj

are repeated, that is, if the quartic [Eq. (3)] is degenerate. This
situation arises along a small number of curves, ωi = ωi(q).
In these cases, the form of the general solution is no longer
given by Eq. (4), and M , as given in Eq. (A2), is not valid.
Therefore, f (ω,q) cannot be used to determine whether or
not ωi(q) is a solution; f is trivially zero. The analysis must
be repeated in these cases, using the correct general solution
and deriving a new fi(ωi(q),q). This new function depends
only on q, so the solutions we seek are pairs (ωi(q∗),q∗),
where fi(ωi(q∗),q∗) = 0. Here we derive the conditions for
degeneracy and analyze them in turn.

For v0 = 0, Eq. (3) reduces to

μr4 − (ρω + 2μq2 − a)r2 + q2(μq2 + ρω − a) = 0

(B1)

hence

r2 = q2 + (ρω − a) ± (ρω − a)

2μ
. (B2)

This is degenerate in two cases,

ω1 = a

ρ
, ω2 = a

ρ
− μ

ρ
q2. (B3)

In the moving case, v0 = √
a/b, the quartic equation (3) cannot

be solved in a useful format for general parameters, hence for
simplicity we restrict our attention to the special case λ = 1.
Therefore, Eq. (3) becomes

μr4 − (ρω + 2μq2)r2 + q2(μq2 + ρω + 2a) = 0, (B4)

so

r2 = 1

2μ
(ρω + 2μq2 ±

√
ρ2ω2 − 8μaq2). (B5)

Roots are repeated in the cases

ω3 = −2a

ρ
− μ

ρ
q2, ω± = ±

√
8μa

ρ
q. (B6)

The former provides only negative values of ω, which are
stable and thus do not require further analysis. The remaining
cases must be treated separately and a corresponding M must
be derived, which must once again have zero determinant.

In what follows, let ux = eiqy+ωt ũx(x − v0t), and similarly
for uy and p.

1. Stationary case: ω1 = a/ρ

The general solution is

ũx = (A1 + A2x)eqx + (A3 + A4x)e−qx. (B7)

The corresponding ũy and p̃ are obtained from Eq. (1) and are
given by

ũy = i

q
{[A1q + A2(1 + qx)]eqx (B8)

− [qA3 + A4(−1 + qx)]e−qx},
p̃ = 1

q2
{A1q(a − ωρ)eqx
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+A2[(a − ωρ)(1 + qx) + 2q2]eqx

−A3q(a − ωρ)e−qx

+A4[(a − ωρ)(1 − qx) + 2q2]e−qx}. (B9)

As before, the boundary conditions provide a linear system
of equations in Aj and h0. The determinant of the matrix of
coefficients must be zero, which reduces to

0 = 2 + 4(Lq)2 + 2 cosh 2Lq

+ ργ

aμ
[q sinh(2Lq) − 2(Lq)2]. (B10)

This equation has no solutions for any real q regardless of the
parameter values, hence the root ω1 = a/ρ can be disregarded.

2. Stationary case: ω2 = a/ρ − (μ/ρ)q2

The general solution is

ũx = A1e
qx + A2e

−qx + A3x + A4. (B11)

The corresponding det M = 0 reduces to

0 = μ

ρ
(μq2 − a)[4 − 5 cosh(Lq) + Lq sinh(Lq)]

+ γ q[Lq cosh(Lq) − sinh(Lq)]. (B12)

It is not obvious how many solutions there are to this equation,
if any at all; it depends heavily on the parameter values. For the
values used in Fig. 2, there are exactly two solutions for which
ω2 > 0. These match the points where the curve ω2 = a/ρ −
(μ/ρ)q2 intersects the curves obtained from the nondegenerate
cases. Assuming this result applies for all parameter sets, we
could garnish information about the full solution from the
number of valid points on the degenerate curve ω2(q). For
example, if there are no such solutions to Eq. (B12), then
we can conclude that all of the unstable solution curves are
bounded below ω = a/ρ − (μ/ρ)q2. Otherwise, we would
have discontinuities in our full solution.

3. Moving Case: ω+ = +√
8μaq/ρ

The general solution has the form

ũx = [A1 + A2(x − v0t)]e
r(x−v0t)

+ [A3 + A4(x − v0t)]e
−r(x−v0t), (B13)

where r is the positive solution to

r2 = q2 +
√

2a/μ q. (B14)

It is not apparent what the corresponding ũy and p̃ are, so we
assume the following:

ũy = (B̂1 + B̂2)erξ + (B̂3 + B̂4)e−rξ , (B15)

p̃ = (Ĉ1 + Ĉ2)erξ + (Ĉ3 + Ĉ4)e−rξ , (B16)

where the B̂j and Ĉj are all functions of ξ = x − v0t , and
relate directly to Aj , for each j , respectively. Using the
incompressibility condition, we obtain

B̃1 = ir

q
A1, B̃2 = i(1 + rξ )

q
A2, (B17)

B̃3 = − ir

q
A3, B̃4 = i(−1 + rξ )

q
A4. (B18)

By substituting B̃j into the momentum equation for uy , we can
obtain

C̃1 = − r[μ(q2 − r2) + ρω]

q2
A1, (B19)

C̃2 = − [μ(q2 − r2) + ρω](1 + rξ ) − 2μr2

q2
A2, (B20)

C̃3 = r[μ(q2 − r2) + ρω]

q2
A3, (B21)

C̃4 = − [μ(q2 − r2) + ρω](1 − rξ ) − 2μr2

q2
A4. (B22)

Applying the boundary conditions and factoring out constants,
we get a matrix system Mv = 0 as before, this time

M =

⎛
⎜⎜⎜⎝

e−Lr −Le−Lr eLr −LeLr 0
re−Lr (Lr − 1)e−Lr −reLr (Lr + 1)eLr 0
−1 0 −1 0 ω

r2 + q2 2r r2 + q2 −2r 0
c1 c2 −c1 c2 γ q2

⎞
⎟⎟⎟⎠,

(B23)

where

c1 = r[μ(3q2 − r2) + ρω], (B24)

c2 = 3μ(q2 − r2) + ρω. (B25)

Once again, the determinant of this matrix must be zero,
explicitly

0 = 2γ q4r(2 sinh 2Lr − 4Lr)

+μω{r4(2 cosh 2Lr + 14 − 4L2r2)

+ q2[r2(8L2r2 + 12 cosh 2Lr − 12)

+ q2(12L2r2 + 6 − 6 cosh 2Lr)]}
+ω2ρ{r2(2 cosh 2Lr − 2 + 4L2r2)

− q2(2 cosh 2Lr − 2 − 4L2r2)}. (B26)

By examining each of these lines, we can deduce that there
are no solutions. Recall that all of our parameters are positive,
including r , q, and ω. By inspection, the first two lines are
strictly positive individually. The square brackets straddling
lines 3 and 4 are also strictly positive, seen using the fact
that r2 > q2 from Eq. (B14). Similarly, the curly brackets
straddling lines 5 and 6 are also strictly positive. Hence there
is no way that the expression on the right-hand side can be zero,
so we conclude that the degenerate root ω+ = +√

8μaq/ρ is
not a solution to our system, and can be disregarded from
numerical results.
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