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Predicting tensorial electrophoretic effects in asymmetric colloids
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We formulate a numerical method for predicting the tensorial linear response of a rigid, asymmetrically charged
body to an applied electric field. This prediction requires calculating the response of the fluid to the Stokes drag
forces on the moving body and on the countercharges near its surface. To determine the fluid’s motion, we
represent both the body and the countercharges using many point sources of drag known as Stokeslets. Finding
the correct flow field amounts to finding the set of drag forces on the Stokeslets that is consistent with the relative
velocities experienced by each Stokeslet. The method rigorously satisfies the condition that the object moves
with no transfer of momentum to the fluid. We demonstrate that a sphere represented by 1999 well-separated
Stokeslets on its surface produces flow and drag force like a solid sphere to 1% accuracy. We show that a
uniformly charged sphere with 3998 body and countercharge Stokeslets obeys the Smoluchowski prediction
[F. Morrison, J. Colloid Interface Sci. 34, 210 (1970)] for electrophoretic mobility when the countercharges lie
close to the sphere. Spheres with dipolar and quadrupolar charge distributions rotate and translate as predicted
analytically to 4% accuracy or better. We describe how the method can treat general asymmetric shapes and
charge distributions. This method offers promise as a way to characterize and manipulate asymmetrically charged
colloid-scale objects from biology (e.g., viruses) and technology (e.g., self-assembled clusters).
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I. INTRODUCTION

Biology provides us many examples where the asymmetric
shape and spatial arrangement of a μm-scale object enables
its distinctive function. Often these objects, such as a virus, a
bacterium, a red blood cell, or yeast cell have these conserved
spatial features, as Fig. 1 illustrates [1]. It is now also possible
to create man-made colloidal objects with reproducible,
distinctive shapes via self-assembly methods [2,3]. Here too
the distinctive spatial structure produces distinctive motions
and interactions within the fluid environment of these objects.

One consequence of asymmetric shape is a complex,
tensorial response to an electric field; these responses have
been anticipated [4] but have not been well explored. The
objects translate and rotate in directions that depend on their
orientation relative to the field. This response gives a means
of probing and manipulating these objects. For example,
measuring the tensorial responses of a virus would specifically
reveal asymmetries in its charge distribution, complementing
other structural probes. Once the response tensors have been
determined for a given object, it can be steered and manipulated
via suitable time-varying fields [5], e.g., to separate objects
with different charge distributions.

Here we demonstrate a discrete-particle numerical method
to predict electric-field-induced motion of asymmetric shapes
straightforwardly. Comparison with known results for asym-
metrically charged spheres demonstrates the feasibility and
accuracy of the method. This method enables exploration of
different objects not feasible hitherto.

The driven motion of colloidal particles in a fluid is a
classical and well-studied subject [6]. Topics of high current
interest include active agents that produce internal driving
[7–9], non-Newtonian fluids [10], and hydrodynamically inter-
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acting suspensions [11,12]. Here we focus on the distinctive
responses owing to the geometric features of the colloidal
object. The simplest case of such a response is sedimentation,
in which an external body force F acts at a certain point
in the object. The resulting motion includes translation, with
velocity V and rotation with angular velocity �. The strongest
predictive power and experimental relevance for these motions
lies in the regime of linear response, where V and � are
proportional to the force F via tensors defined with respect to
the body’s orientation. Because of these tensors, the body may
execute cyclic, chiral motions even in steady state. If F varies
in time, the responses are richer and can be used to organize a
dispersion of many identical objects [13]. These responses are
of potential value for characterizing and organizing objects
according to their shape. However, the practical value for
colloid-scale objects is limited because the response is weak.

The situation is more favorable for electrophoresis, motion
induced by a uniform electric field E0 [14]. As with sedimen-
tation there is a broad, experimentally relevant regime in which
the response is linear in E0 and is completely governed by two
tensors A and T defined by V = AE0 and � = TE0. These
tensors depend on the object’s shape and charge distribution.
They also depend on the electrical screening properties of the
surrounding fluid. We focus on the regime of strong linear
screening [15] attained, e.g., in ordinary salty water. This
regime gives the greatest predictive power and experimental
accessibility. We will consider objects with small enough
charge density that the screening response is described by the
linear Debye theory [15]. The electrostatic screening length
λD in these conditions is typically a few Å; we will consider
only objects that are much larger than λD .

Electrophoretic motion through a fluid is qualitatively dif-
ferent from that of sedimentation. The sedimentation response
is dominated by the momentum transmitted to the fluid by
the driving force F. In electrophoresis, no net momentum is
transmitted to the fluid; all the force exerted by the object is
canceled by the neutralizing screening charge [15]. Instead, the
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FIG. 1. Asymmetrical, self-assembled μm-scale objects from
nature and technology. (a) Spores of Tilletsiopsis fungi after Fig. IX of
Ref. [22]. Long dimension is 8–10 μm. (b) Spores of Sporobolomyces
odorus fungus after Fig. III of Ref. [22]. Long dimension is about
7 μm. (c) Human red blood cells, after [23]. Normal disk-shaped cells
in center have a diameter of about 7 μm. Elongated cells are deformed
by hemoglobin aggregates. (d) Most-probable eight-sphere colloidal
cluster assembled from 1-μm polystyrene spheres by depletion
interaction, after Ref. [2], Fig. 2. (e) Collapsed colloidal shells after
Ref. [3]. Scale bar is 3 μm.

object crawls through the fluid by displacing a thin sheath of
fluid of thickness λD around the object. This makes possible
a broader range of anisotropic responses than that seen in
sedimentation. As Long and Ajdari demonstrated [4], the
object may rotate indefinitely without translating or may
translate indefinitely in a direction perpendicular to any applied
E0 field.

The Long-Ajdari examples suggest a wide range of pos-
sibilities for real colloidal objects, though their calculations
apply to objects that are difficult to realize experimentally.
Therein lies the motivation for the present work. We seek
to provide a practical means to infer the mobility tensors A
and T for realistic colloidal objects of a given shape and
charge distribution. Procedures for calculating these tensors
have long been known [16,17] and have been applied for
simple shapes such as spheres and ellipsoids [17,18]. One
must first determine the screening charge distribution around
the object. Next one must determine the local electric field
around the object in the presence of the applied field E0. Then
one may determine the external force acting on an element of

the fluid with nonzero charge density under the local electric
field. Finally, one may calculate the velocity profile of the fluid
owing to these external forces, as modified by the no-flow
boundary condition at the nearby body surface. This velocity
profile dictates the motion of the object and thence V and
�. Though straightforward in principle, this prescription is
formidable in practice, since each step requires a separate
numerical determination of a three-dimensional field under
asymmetric boundary conditions.

We aim to circumvent these complexities using a simplified
approximate representation of the object and its charge
distribution. The approximate object is chosen to allow an
explicit determination of the fluid motion. Specifically, we
represent the object as a set of point sources of fluid drag
called Stokeslets [19]. Representing neutral bodies in this way
is a well-established procedure [20]. In Sec. II below we show
how this procedure is used for sedimentation, noting that even
well-separated Stokeslets can represent a solid body. Next,
in Sec. III we describe the basic features of electrophoresis.
Section IV describes the additional ingredients needed in our
procedure in order to treat electrophoresis: the distortion of the
electric field by the body and the forces on the fluid from the
screening charge. In Sec. V we give an explicit prescription for
spherical bodies, where we may test our methodology against
known results. In Sec. VI we describe our numerical results
and compare them to the established results. In Sec. VII we
discuss limitations and generalizations of our method.

II. STOKESLET OBJECTS

In this section we discuss the hydrodynamic representation
of an asymmetric object as an assembly of Stokeslets. Such
Stokeslet objects have the advantage that the Stokes-law flow
field around them can be calculated explicitly by a numerical
matrix inversion.

The flow created by a single Stokeslet is well known. If a
force f is exerted on a quiescent fluid of viscosity η, it gives
rise to a steady-state velocity field v(r) at a displacement r
from the forced point. The velocity is proportional to f via the
Oseen tensor G(r) [6]:

v = G(r) · f ,where Gij (r) = 1

8πηr

(
δij + rirj

r2

)
. (1)

An assembly of N such sources f β located at rβ produces a
velocity at any given point rα given by superposition:

v(rα) =
∑
β �=α

G(rα − rβ) f β. (2)

If there is a particle at rα , it transmits to the fluid a drag
force f α opposing the fluid’s motion relative to the particle. We
may suppose the particle to be a tiny sphere of radius a, whose
drag coefficient � is then 6πηa [24]. Then if the velocity of
the particle is Uα , the force f α = −�(v(rα) − Uα). We now
suppose all the sources in Eq. (2) to be similar spheres, which
are constrained to move as a rigid body with a common velocity
V and angular velocity � relative to some chosen origin in
the body. Thus Uα = V + � × rα . Using these constraints in
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Eq. (2) yields

f α = −�

⎛
⎝∑

β �=α

G(rα − rβ) f β − V − � × rα

⎞
⎠. (3)

This linear system can readily be solved for the unknown f ’s.
One may sum these forces to obtain the total drag force and
torque on the body in terms of the given V and �.

This Stokeslet prescription was devised [19] to represent
tenuous objects such as random-coil polymers [25] or colloidal
aggregates [20], where the Stokeslets are placed at each
monomer or subunit of the object. However, it is also adequate
to represent solid objects such as spheres, as illustrated
in Fig. 3. We use dilute Stokeslets to represent compact
sedimenting objects. Cortez et al. [26] use a similar method to
represent compact objects, though their Stokeslets are replaced
by objects of finite size that are not dilute.

In Appendix A we derive a nominal penetration depth ξe in
terms of the area fraction φs of Stokeslets and their radius a:

ξe ≡ a/φs. (4)

Thus for any area fraction φs however small, one can attain
a desired small ξe by choosing small enough spheres [20].
Figure 3 shows that a monolayer of 1999 Stokeslets faithfully
represents the flow around a solid sphere. The flow near the
sphere surface is smoothed at a scale, which here is evidently
much smaller than the sphere radius. Similar accuracy is
expected for smooth objects of generic form. We now consider
the effect of electric forces on the object.

III. CHARGED BODY IN ELECTRIC FIELD

A. Electrically insulating bodies and depolarization field

In addition to blocking fluid flow, an electrically insulating
body in a conducting medium must exclude any current from
its interior. Thus the current just outside the surface of the
body must be tangent to that surface. Since this current is
proportional to the electric field, the surface electric field Es

must be tangent to the surface as well [21]. Thus when a
uniform exterior field E0 is applied, the blockage of current
from the interior gives rise to a depolarization charge ρd . The
normal electric field from this charge is just such as to cancel
the normal part of the applied field, so that the total surface field
Es is tangent to the surface [see Fig. 2(a)]. Evidently the net
depolarization charge is zero, so that the depolarization field
at infinity has in general a dipolar form. The depolarization
field is necessarily present whenever there is an applied field
that produces current; it is independent of any static charge in
or near the object. Such static charges produce no current and
thus create no depolarization field.

B. Charged body strongly screened with countercharge

It is known that when a charged colloidal body is suspended
in an electrolytic solution, the mobile counterions in the
solution form a screening double layer that acts to cancel
the charge on the body, as shown in Fig. 2(b). This screening
layer has a thickness λD defined above, which depends on
factors such as ion concentration and temperature. It is set by
the balance between electrostatic and thermodynamic forces;
in the linear-response regime of interest these are negligibly

FIG. 2. (a) Depolarization charge, shown as pluses and minuses,
on an insulating body in a conducting medium in the presence of an
applied field E0. The charge creates a field Edp , which cancels the
normal component of E0 at the surface, as no current (and therefore
no field) can penetrate the body. The resultant field Es is the total
field at the object’s surface. (b) Physical picture of electrophoresis.
Counterions in the surrounding fluid form a screening cloud (upper
blue gradient band) of thickness λD , which act to screen the surface
charge (lower solid red band) of the object. (c) Stokeslet picture of
electrophoresis. Both the body surface charges (lower layer of red
dots) and screening charges (upper layer of blue dots) are represented
as point sources of drag called Stokeslets, and exert respective drag
forces f α and gγ on the fluid. The two layers of Stokeslets are
separated by a length λD .

perturbed by the applied field E0. We only consider cases
where λD is much smaller than the object. There is an electric
potential ζ set up in the screening layer, known as the ζ poten-
tial, which depends on λD and the surface charge density σ :

ζ = σλD

ε
, (5)

where ε is the dielectric permittivity of the fluid. If we consider
a uniformly charged body of size R in electrophoresis, its
motion is independent of the shape of the body in the limit
λD � R. The velocity V is given by V = μE0 where the
coefficient μ is called the mobility [21]:

μ = εζ

η
, (6)

where η is the viscosity of the fluid. A uniformly charged
object will move in the direction of the applied field and
will not rotate, so the mobility μ completely characterizes its
electrophoretic response.

When a body has nonuniform charge, the ζ potential
depends on the position s on the body’s surface. We can
no longer describe the motion with a single scalar quantity.
Instead, the motion is characterized by translational and
rotational mobility tensors A and T, where V = AE0 and
� = TE0. It is useful to normalize ζ (s) [as well as μ(s)
and σ (s)] by their rms values, e.g.,

√
〈ζ 2〉, thus defining,

e.g., ζ̃ (s) ≡ ζ (s)/
√

〈ζ 2〉. We then can define reduced mobility
tensors Ã and T̃ such that

V =
√

〈μ2〉ÃE0 (7)

� =
√

〈μ2〉
R

T̃E0, (8)
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where R is the Stokes radius of the body [27]. This defini-
tion guarantees the mobility tensors will be invariant under
rescalings of the object size or charge density.

For a nonuniformly charged sphere, these tensors are given
by [17]

Ã = 〈ζ̃ 〉I − 1
2Q̃ (9)

T̃ = 9
4 [[ p̃×]], (10)

where the matrix [[ p̃×]] is defined such that [[ p̃×]]E0 =
p̃ × E0, I is the identity matrix, and 〈ζ̃ 〉, p̃, and Q̃ are
the normalized monopole, dipole, and quadrupole moments,
respectively, of the ζ potential:

〈ζ̃ 〉 = 1

4π

∫∫
ζ̃ (s) d� (11)

p̃ = 1

4π

∫∫
ζ̃ (s)n̂(s) d� (12)

Q̃ = 1

4π

∫∫
ζ̃ (s)(3n̂(s)n̂(s) − I)d�, (13)

where n̂(s) is the unit vector normal to the sphere’s surface at
s. We note that Eq. (10) describes the familiar response of a
dipole. The object rotates transiently until its dipole moment
is aligned with the applied field. However, the translational
motion is more distinctive. Steady-state translational motion
is not in general parallel to E0.

C. Conservation laws

We noted above that electrophoresis has a qualitatively
different effect on the surrounding fluid than sedimentation
has. We define everything within the screening layer to be
a mechanical system. This system emits no electric field to
the exterior. Having fixed these charges, we now apply an
exterior field such as E0. Since the system is equivalent to an
uncharged body, there can be no net force or torque on it. If one
considers the perturbation of the system charge owing to E0,
the resulting polarization effects can exert forces or torques.
However, these forces are of order E0

2 and are not considered
here.

Though there can be no net force, there can be local
forces that add to zero. Indeed, the translational motion of the
body must displace the outer (incompressible) fluid, requiring
viscous work. The needed displacement field is that required
to remove the object’s volume at the original position and
then insert it at its translated position. This displacement field
is a potential flow known as a mass dipole [28]. Since the
monopole displacement falls off as inverse distance squared,
the mass dipole field, being the gradient of the monopole, falls
off as the inverse distance to the third power, in contrast to the
long-range inverse-distance dependence of the Oseen flow.

IV. DISCRETE-PARTICLE CALCULATION
OF TENSOR ELECTROPHORESIS

A. Representation of body

We now discuss how we can apply the Stokeslet method
described above to electrophoresis. We first form a Stokeslet
object made of many Stokeslets positioned to conform to the

shape of the body, as in Sec. II. We represent the given charge
density profile over the body by assigning discrete charges to
these Stokeslets. We must have enough Stokeslets so that the
shape and charge of the object are properly resolved, though
the Stokeslets can be as dilute as we like if they are numerous
enough, as discussed in Sec. II.

B. Representation of screening charge

We also need to represent the diffuse charge in the fluid
that screens the object. In the small Debye length limit, this
charge falls off exponentially, with screening length equal to
λD . We instead represent the screening charge as a shell of
charged Stokeslets. For simplicity we create one screening
Stokeslet for each of the charged body Stokeslets, displaced
from its counterpart at a distance λD normal to the surface, as
illustrated in Fig. 2(c). The static screening charge distributes
itself so as to minimize the electrostatic energy. Accordingly,
we determine the charge qγ on each screening Stokeslet
γ by minimizing the electrostatic energy of the system in
the presence of the fixed body charges. This minimization
necessarily removes exterior multipole fields.

C. Forces on a Stokeslet or charge

The aim of our method is to account for all the forces on the
fluid arising from an applied electric field E0. This includes
forces both from the body and from the screening charge. We
first distinguish the forces that produce motion, proportional
to E0, from those that do not.

1. Forces in the absence of applied field

In the absence of applied fields, the system is in equilibrium,
with no flow and no drag forces. The strong electric field
in the screening layer is balanced by osmotic pressure that
maintains the separation λD . These strong fields are presumed
to be indefinitely larger than the small electrophoretic field E0.
Thus the static charge profiles are presumed to be disturbed
by E0 to a negligible degree. Likewise, these charge profiles
are presumed to be disturbed negligibly by the flow resulting
from E0.

2. Forces linear in applied field

When the field E0 is applied, other forces arise in proportion
to it. As we have seen, the depolarization field arises so that
the net electric field is tangent to the surface. The velocity field
and drag forces are also proportional to E0.

Part of the external field acts on the body charges. We need
not account for these individually; since the body is rigid, the
only forces that affect its motion are the net force and torque
on the body. These we determine below.

Each screening charge qγ transmits to the fluid a drag
force gγ equal to the net nondrag force acting on it, shown
in Fig. 2(c). This net force includes the electrostatic force
qγ E(rγ ). It also includes an equilibrium force that maintains
the screening layer at fixed separation from the body, forcing
a Stokeslet at rγ to have a velocity normal to the surface equal
to the body’s: n̂ · Uγ = n̂ · (V + � × rγ ). The corresponding
constraint force also acts only normal to the surface. As
with the body Stokeslets, the full drag force on the fluid is
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proportional to the velocity of the adjacent fluid v(rγ ) relative
to that of the Stokeslet itself Uγ :

gγ = −�[v(rγ ) − Uγ ]. (14)

However, unlike the body Stokeslets, only part of the velocity
Uγ is constrained: viz. the normal component Uγ · n̂. The
tangential part of gγ , denoted T gγ , is given by the electric
force. Thus,

T (rγ )gγ = T (rγ )qγ E(rγ ) (15)

n̂(rγ ) · gγ = −�[n̂(rγ ) · v(rγ ) − n̂(rγ ) · U(rγ )]

= −�[n̂(rγ ) · v(rγ ) − n̂(rγ ) · (V + � × rγ )].

(16)

These equations for gγ can be simplified further. We have
noted that the role of the normal force n̂ · gγ is to satisfy a
constraint: the screening charge cloud must remain at a fixed
distance from the body. The force on the Stokeslet is supplied
by the osmotic force on the nearby body. If the component of
another force (e.g., the E field) would violate the constraint,
the osmotic force cancels this component. There is an equal
and opposite force on the body nearby. This pair of constraint
forces is an internal action-reaction pair and can have no
impact on the total force or torque. This constraint force may
thus be ignored just as we ignored the constraint forces that
maintain the body’s shape. We may thus eliminate the normal
component of gγ in Eq. (16).

D. Self-consistent drag forces

As with sedimentation, each Stokeslet force f α must
be consistent with its motion relative to the fluid: f α =
−�(v(rα) − Uα). The fluid velocity v includes contributions
from the body Stokeslets as in Eq. (3). It also includes
a contribution from the screening charge Stokeslets, viz.∑

γ G(r − rγ )gγ . Having dropped the constraint force n̂ · gγ

as justified above, the self-consistency equations for the body
forces f α and screening forces gγ become

f α = −�

⎛
⎝∑

β �=α

G(rα − rβ) f β +
∑

γ

G(rα − rγ )gγ

− V − � × rα

⎞
⎠

gγ = T (rγ )qγ E(rγ ). (17)

As with Eq. (3), these equations determine the drag forces
f and g for any assumed E0 and velocities V and �. However,
it does not determine V and � themselves. It also makes no
reference to the electric forces on the body. Nevertheless, we
may determine V and � by calculating the net force on the
fluid, i.e., the sum of the Stokes drag forces f and g. As noted
in Sec. III C, this sum must vanish. This requirement imposes a
linear constraint on V and �. The drag forces must also exert
no torque on the fluid. This requirement imposes a second
constraint on V and �. Taken together, these constraints
determine the V and � for the given imposed E0, and thence
the mobility matrices A and T.

V. NUMERICAL IMPLEMENTATION

We implemented the procedure above for a sphere with vari-
ous distributions of charge in order to assess its validity and fea-
sibility. In this section we provide the specifics of our calcula-
tion not covered above. Our aim was to do all the calculations in
a way that would be equally feasible for an asymmetric shape.
We describe how the Stokeslets are positioned, how the coun-
tercharge magnitudes are determined, how the net electric field
E(r) is determined, and how the self-consistency equations are
solved.

A. Distributing body Stokeslets, countercharge Stokeslets

We first need to specify how we arrange the Stokeslets to
represent our object and its screening layer. We chose two
levels of refinement, one with 499 body Stokeslets and one
with 1999. In both cases the Stokeslets were distributed on a
sphere according to the spiral points algorithm of Rakhmanov,
Evguenii, Saff, and Zhou [29,30]. We determined that the
1999-Stokeslet sphere behaved like a hydrodynamically solid
sphere to good accuracy as shown in the next section. We
then assigned a charge magnitude to each Stokeslet so that
our object had the desired surface charge density profile. Once
we had distributed our body Stokeslets, we placed a screening
charge Stokeslet a distance λD (the Debye length) from each
body charge normal to the object’s surface, giving us a shell
of screening Stokeslets. The magnitudes of these screening
charges are determined next.

B. Screening charge distribution

As mentioned before, the screening charge acts to cancel
the equilibrium electric field of the object. Therefore, we
vary the screening charge magnitudes qγ while keeping their
positions fixed so as to minimize their electrostatic energy
in the presence of the body charges, effectively treating the
screening layer as a grounded conducting shell. Thus we
may determine the charge state by requiring that the total
electrostatic potential at each charge γ vanish, i.e., for each γ :

∑
β �=γ

qβ

|rγ − rβ | + Cqγ + �(rγ ) = 0, (18)

where qβ are the screening charge magnitudes, rβ are their
positions (held fixed), and �(r) is the electrostatic potential at
r due to the body charges. We include a nonzero self-potential
contribution Cqγ to the potential at rγ due to the charge qγ it-
self. This self-potential is present for any smooth charge distri-
bution approximated by discrete charges; it becomes negligible
compared to the first term in the limit of many small charges,
but including it gives greater accuracy for a finite number of
charges. We choose C by a simple empirical criterion [31].

C. Depolarization field

The total external field E(r) (applied plus depolarization)
can be found analytically for highly symmetric cases. For an
insulating sphere of radius R [18], this field is given by

E(r) =
(

1 + R3

2r3

)
E0 − 3R3

2r3
(E0 · r̂)r̂. (19)
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TABLE I. Sedimentation mobilities of spheres. Predicted mo-
bility is given by 1/(6πηR). As the number of Stokeslets N is
increased, the error in the mobility decreases, indicating that using
more Stokeslets gives more accurate results.

N a Predicted Mobility Measured Mobility Error

499 0.03 1/(6π ) = 0.05305 0.05395 1.7%
1999 0.015 0.05305 0.05351 0.9%

This is the external field that all charged Stokeslets
experience.

Finding the depolarization field for arbitrary shapes be-
comes difficult analytically, as one must solve the Laplace
equation with a Neumann boundary condition at the object’s
surface. We outline an alternative computational approach in
Appendix B that fits naturally with the Stokeslet hydrodynam-
ics described above. However, our results in Sec. VI simply
use Eq. (19) for the depolarization field and do not test this
method.

D. Velocity and angular velocity

Now the quantities for Eq. (17) are known, so we can
determine the drag forces f for any given applied field E0

and velocities V and �. However, as described in Sec. IV D,
Eq. (17) does not explicitly determine the velocities. We
therefore find the drag forces in terms of V and �. We
then impose the condition of zero net force by expressing∑

α f α + ∑
γ gγ using the right-hand side of Eq. (17) and

setting this total equal to zero, thus giving three linear
constraints on V and �. We also impose the condition of zero
net torque by expressing

∑
α f α × rα + ∑

γ gγ × rγ , again
using the right-hand side of Eq. (17), and setting this total
equal to zero, thus giving three further constraints on V and �.
These six constraints together determine V and �, as desired,
and thence the Stokeslet forces. Now the fluid velocity v(r) is
simply the sum of the stokes velocities for each Stokeslet, i.e.,

v(r) =
∑

α

G(r − rα) f α +
∑

γ

G(r − rγ )gγ . (20)

VI. RESULTS

We now demonstrate that our Stokeslet method reproduces
all of the characteristics of electrophoresis described above. As
mentioned before, we find that a sphere made up of a single
layer of 1999 Stokeslets moves at the correct speed when a
constant force is applied (as in sedimentation) as shown in
Table I, and that the flow in the interior moves with the object,

FIG. 3. Comparison of the velocity field from a sedimenting
1999-Stokeslet sphere (upper data set in red) and a uniformly charged
electrophoretic sphere with λD = 3% of the sphere radius (lower data
set in blue), using the methods of Section V (sphere and Stokeslets
are shown to scale). Vertical velocity of the fluid uz, normalized by
the calculated body speed vobs, is plotted versus horizontal distance x

from the center. For the sedimenting case, the fluid within the sphere
is moving with the object to within a 1% tolerance (horizontal red
line) for x < 1. For x > 1 the velocity falls off as 1/r as shown in
the log-log inset plot, and agrees well with theoretical predictions
[32] (dashed line). The speed of the sphere implies a Stokes drag
coefficient about 1% smaller than the theoretical value for a sphere
(upper red line). For electrophoresis, the fluid near the center moves
somewhat faster than the sphere. External flow varies as k/r3 as
expected for mass dipole flow. The expected value of k is 1/2 [17],
indicated by the dashed line. The external velocity field matches that
expected for a solid sphere moving at the observed velocity to within
1%. This observed velocity in turn agrees with the predicted velocity
(lower blue line) to 11%, cf. Table III.

as shown in Fig. 3. We also find that a uniformly charged
Stokeslet sphere with a surrounding Stokeslet screening layer
in electrophoresis (as described in the previous section) moves
in the direction of the applied field with approximately the
proper electrophoretic mobility, as shown in Table II. Further-
more, we see that the sedimentation flow falls off as 1/r , like
a force monopole, while the electrophoresis flow falls off as
1/r3, like a mass dipole, shown in Fig. 3. We also compute the
mobility tensors for various nonuniformly charged Stokeslet
spheres, and see that they agree with the known values to
within less than 4% (Table III). Discrepancies from theoretical
predictions decrease as numerical approximations improve, as
we now discuss.

TABLE II. Electrophoretic mobilities of uniformly charged spheres, where total surface charge is 1. The nominal penetration depth ξe is
defined in Appendix A. In the second row, the reduced size of the Stokeslets is compensated by an increased number of Stokeslets, so that the
penetration depth ξe decreases. The result is a reduced error in the mobility.

N a λD φs ξe Predicted Mobility [33] Measured Mobility Error

499 0.03 0.06 0.45 0.07 4.309 × 10−3 4.736 × 10−3 10%
1999 0.015 0.06 0.45 0.03 4.309 × 10−3 4.455 × 10−3 3.4%
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TABLE III. Reduced electrophoretic mobilities [Eqs. (9), (10)]
for spheres with different charge distributions. The “capped” distribu-
tion has positive uniform charge density on the northern hemisphere,
and negative charge density of the same magnitude on the southern
hemisphere. The “dipolar” distribution has charge density that varies
as cos θ , where θ is the polar angle. The “striped” distribution has
negative uniform charge density on a stripe around the equator, and
positive uniform charge density of the same magnitude everywhere
else. The stripe spans π/3 < θ < 2π/3, so that the sphere has no net
charge. Finally, the “quadrupolar” distribution has charge density that
varies as 3 cos2 θ − 1. Predicted mobilities are for λD → 0 in contrast
to Table II. Measured mobilities were for N = 1999 and a = 0.015.
The mobilities reported for the capped and dipolar spheres are T̃yx (so
these spheres may rotate), while the mobilities reported for striped and
quadrupolar spheres are Ãxx and Ãzz (so these spheres may translate
obliquely to the applied field). Unreported elements of Ã and T̃ are
predicted to be 0 and measured to be much smaller than those shown.

Charge
distribution λD

Predicted
Eqs. (9) - (13) Measured Error

Uniform
0.03 Ã = 1 1.053 5.3%
0.06 Ã = 1 0.933 6.7%

Capped

0.03 T̃yx = 1.125 1.1621 3.3%

Dipolar

0.03 T̃yx = 1.299 1.3419 3.3%

Striped

0.03
Ãxx = 0.1875

Ãzz = -0.375
0.189

-0.3697
0.8%
1.4%

Quadrupolar

0.03
Ãxx = 0.2236

Ãzz = -0.4472
0.2221
-0.4444

0.7%
0.6%

A. Error versus number of Stokeslets

The theory treats a solid sphere with uniform charge in
the limit of small Debye screening length. Our numerical

FIG. 4. Effect of number of Stokeslets on sedimentation flow,
plotted as in Fig. 3. Inset indicates the number of Stokeslets for each
data set. The lower data set in blue corresponds to 499 Stokeslets,
while the upper data set in green corresponds to 1999. When more
Stokeslets are used to represent a rigid body, better agreement with
theory is obtained, as shown in Table I. Furthermore, the transition
from the interior to the exterior is sharper for 1999 Stokeslets than
for 499, as the sphere blocks the flow better with more Stokeslets.
The solid black line corresponds to the flow profile of a perfect hard
sphere.

method approaches this limit when the number of Stokeslets
is large and the screening charge is close to the sphere. We see
that the flow inside the sphere is strongly suppressed, both in
sedimentation and electrophoresis, again shown in Fig. 3. We
also find that as we increase the number of Stokeslets from
499 to 1999, the error in the calculated velocity of the object
decreases, both in sedimentation (Table I) and electrophoresis
(Table II). In addition, we get better hydrodynamic screening
with more Stokeslets, shown in Figs. 4 and 5. When we
increase the size of our Stokeslets, as in Fig. 6, we see that our
Stokeslet sphere becomes more opaque, and the flow inside
the sphere matches its speed. We also can change the Debye
length λD , and see that the flow inside the sphere matches
its velocity when λD/R is small (Fig. 7). However, in cases
where the Stokeslet size is larger than either the Debye length
or average Stokeslet spacing b, there are Stokeslets that are
overlapping, which is geometrically unphysical.

B. Scaling of computer effort vs number of Stokeslets N

The calculations above require computing a matrix M of
dimensions 3N × 3N and then solving the linear equation
(17). For very large N , the latter step must dominate the
computer effort; it is expected to grow faster than quadratically
in N [34]. However, for the N values of our study, the
computer time was always dominated by the time to compute
the matrix M, quadratic in N . Considering Eq. (17) alone,
the required time was not significantly improved when the
real M was replaced by a random, symmetric M. Specifically,
for N = 1999 the random matrix calculation was 1.5 times
faster than for the Stokeslet system (on a a 2.6 GHz quad-core
MacBook Pro with 16 GB of RAM, using PYTHON 2.7.6).
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FIG. 5. Effect of number of Stokeslets on the electrophoretic flow,
plotted as in Fig. 4 (λD = 6% of R in both cases). The data set in blue
with a smooth transition at x/R ≈ 1 corresponds to 499 Stokeslets,
while the remaining curve in green corresponds to 1999. When more
Stokeslets are used to represent a rigid body, better agreement with
theory is obtained, as shown in Table II. Furthermore, the transition
from the interior to the exterior is sharper for 1999 Stokeslets than
for 499, as the sphere blocks the flow better with more Stokeslets.
The solid black line corresponds to the flow profile of a perfect hard
sphere with zero electrostatic screening length.

Decreasing the number of Stokeslets to 499 resulted in a factor
18 decrease in computer time. The computer time needed for
the other cases calculated was consistent with these times.

FIG. 6. Effect of Stokeslet size a on the electrophoretic flow,
plotted as in Fig. 4, for N = 1999 and λD = 0.03. The a = 0.0001
data set is the light (green) data of smallest magnitude. The a = 0.001
and 0.015 sets are the successively higher downward sloping data on
the left side of the plot. Finally, the a = 0.03 and a = 0.1 sets marked
b < 2a are the upward sloping data. The more negative of these (black
points) is the a = 0.1 set. For very small a, the fluid inside the sphere
moves much slower than the sphere itself. As a increases, the interior
flow matches better with the sphere velocity, so the sphere becomes
more hydrodynamically opaque. However, when a is greater than half
the nearest-neighbor distance between Stokeslets b or λD , Stokeslets
begin to overlap, and the flow becomes unphysical.

FIG. 7. Effect of electrostatic screening length λD on the elec-
trophoretic flow, plotted as in Fig. 4, for N = 1999 and a = 0.015.
The top and bottom data sets on the left correspond to λD = 0.005
and 0.01, respectively. The (black) points with the smooth linear
transition at x/R ≈ 1 correspond to λD = 0.1, while the remaining
points correspond to λD = 0.03. When a < λD � R, the interior
flow matches well with the sphere velocity. However, when λD < a,
the object and screening charge Stokeslet layers begin to overlap, and
the flow becomes unphysical.

C. Observed flow around multipolar charges

As described before, we can compute the flow field around
our sphere for any charge distribution. We find that the flow
around a sphere with a quadrupolar surface charge density falls
off as 1/r3, consistent with a force quadrupole. Furthermore,
we compute the stream lines around a quadrupolar sphere,
shown in Fig. 8.

D. Mobilities

Finally, we compare the known electrophoretic mobilities
for several charge distributions against those obtained by
our Stokeslet method. The objects studied are pictured in
Table III. We considered only charge distributions with
monopolar, dipolar, or quadrupolar charge distributions,
since [17] higher multipoles give vanishing mobility. We
compared pure dipole and quadrupole charge distributions to
step-function distributions with the same symmetry in order
to gauge the effect of abrupt changes in charge density on our
numerical accuracy. Table III reports our results in terms of
the normalized tensors Ã and T̃. We chose an electrostatic
screening length λD to be .03 R and a Stokeslet radius a of
.015 corresponding to a realistic internal flow as shown in
Fig. 6. In all the cases studied, the mobilities proved to be
well within less than 4% of the expected values. The lowest
accuracy was found for the dipolar charge distributions. The
pure dipole and its step-function counterparts showed virtually
the same accuracy; the same was true for the quadrupoles. The
quadrupoles are characterized by two mobilities, Ãxx and Ãzz.

VII. DISCUSSION

A. Limitations

The foregoing section shows that the Stokeslet method can
reproduce the known behavior of spheres with monopolar,
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FIG. 8. Streamlines for the quadrupolar sphere of Table III tilted
45◦ to the right under an applied field in the z direction. The sphere
and its surface charge are shown at scale. The streamlines indicate
only the direction of the flow, not its magnitude.

dipolar, or quadrupolar charge distributions to a few percent
accuracy using a conceptually simple, numerically practical
calculation. This study also reveals limitations of the Stokeslet
method. Being based on discrete charges, the method is
only useful insofar as the true flow around the object can
be represented by means of Stokeslets. This means that the
Stokeslets must be dilute, yet numerous. They must be dilute
because they only represent the flow accurately at distances
substantially greater than the Stokeslet radius a. Thus the
distance b between neighboring Stokeslets must be much
greater than a. They must be numerous because with too few
Stokeslets, the fluid moves through the ensemble of Stokeslets,
not around them. Such Stokeslets would not represent the solid,
hydrodynamically opaque objects we wish to describe.

We explained in Sec. II that the desired hydrodynamic
opacity can be achieved with a dilute set of Stokeslets. We
noted that the external flow past a set of fixed Stokeslets at a
given concentration dies out exponentially with depth into the
body with a decay length ξ given in Appendix A. It remains
to judge whether our Stokeslet bodies are opaque enough to
predict electrophoretic properties. In electrophoresis, the flow
occurs primarily between the body and the screening charge
layer, at a distance of the order of the electrostatic screening
length λD from the surface. To represent flow accurately at this
scale, the penetration depth ξ must evidently be sufficiently
smaller than λD .

To assess how well this criterion is met, we must estimate
ξ for our Stokeslet spheres. Empirically, we may make this
estimate by examining the flow around the sedimenting sphere
of Fig. 4. For the coarser sphere with N = 499 the velocity
crosses over from a constant value near r = 0 to a decaying
function for r > R over a transition region of width of about
R/10. This suggests a penetration depth of order R/10. This

length evidently decreases as N increases, as the figure shows.
This length agrees well with the analytical estimate ξe found
in Appendix A. The area fraction φs for this case is 0.45; the
corresponding nominal penetration depth ξe ≡ a/φs 
 0.07.
The other case shown in Fig. 4 has ξe 
 0.03. Any transition
region for this curve is too narrow to see.

The agreement with predictions improves when ξe de-
creases, even when the area fraction φs remains constant,
as shown in Table II. Conversely, we showed that when the
Stokeslets are larger than the screening length or if they
overlap, the resulting flow patterns show characteristic signs
of being unphysical.

An important simplification in our scheme was to treat the
screening charge layer as a shell spaced one screening length
λD from the body. The mobility depends only on the flow at
distances much larger than λD . Thus the form of the screening
charge decay over distances of O(λD) is not expected to be
important. This assumption is consistent with the boundary-
layer treatment of Anderson [35,36].

The calculations reported in Sec. VI support this assumption
at the few-percent level. We did not seek more precise confir-
mation for two reasons. The first reason involves the intended
purpose of this method. The purpose is to explore the effect of
shape and charge distribution on the motion of actual colloidal
objects. For this purpose it suffices to have a reliable, semi-
quantitative knowledge of the electrophoretic tensor; a few-
percent accuracy is sufficient for this level of understanding.

The second reason for our limited accuracy is the numerical
properties of the method. Though the method is conceptually
simple and general, its convergence properties are not favor-
able for precision work. As noted in Sec. VI, determining the
tensor mobilities requires solving a 3N × 3N matrix equation,
where N is the number of Stokeslets. The matrix consists
of the long-range Oseen couplings between Stokeslets α and
β; it is not sparse. Thus, computing the matrix and solving
the resulting system involve at least O((3N )2) operations.
These calculations largely implement the cancellation of the
Oseen flow around the object, thus it may well be necessary to
increase the machine precision of the matrix elements if great
accuracy is required.

B. Motion of countercharge

In real electrophoresis the screening charge is constantly
moving. It diffuses in and out of the screening layer even with
no applied field. During electrophoresis it also advects around
the colloidal body, spending only a limited time near any given
body charge. Thus our method appears paradoxical: we neglect
all of this motion and consider only the initial motion of the
screening charge from an assumed equilibrium state.

This neglect is harmless for two reasons. First, we aim
only to determine the motion to lowest (linear) order in the
applied field [37]. Thus the charge distribution is arbitrarily
close to equilibrium. Second, the resulting flow is quasistatic
creeping flow, in which the charge distribution at a given
moment is sufficient to determine velocities at that moment.
Our prescription determines these velocities given the equilib-
rium charge distribution. The unperturbed thermodynamics
guarantees that the system retains this equilibrium charge
distribution to arbitrary accuracy.
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C. Generalization to nonspherical shapes

Now that the method has been shown to be accurate for
the known case of spheres, the way is cleared to generalize
it to its intended use to treat asymmetric objects. Indeed,
such objects should be tested in order to demonstrate fully
the validity of our method. This generalization raises issues
that did not arise for spheres. For concreteness we consider
the case of a triaxial ellipsoid. Here one must first consider
how to place the Stokeslets. One obvious method is to place
them on a sphere and then stretch the three Cartesian axes to
form the desired ellipsoid. However, this method leads to an
uneven distribution of Stokeslets over the surface, thus giving
very little penetration in some regions while giving too much
penetration in others.

A second issue is determining the screening charge distribu-
tion. We addressed this issue in Sec. IV B. As it happens, once
the positions of the screening charges have been determined,
their magnitudes can be found exactly as was done for spheres:
one simply minimizes the electrostatic energy.

Finally one must determine the total electric field E(r)
around the body. As mentioned in Sec. V C, this is not
easily feasible for arbitrary shapes. However, one can use
a numerical method similar to what we use to determine
the screening charge magnitudes, which we describe in
Appendix B.

VIII. CONCLUSION

We anticipate a wealth of new phenomena when we apply
the method above to asymmetric objects. The qualitative
tensorial behavior is known from our prior study of sedi-
mentation [5,38,39]. However, electrophoresis is much more
experimentally convenient. Further, the tensorial response is
likely more rich and informative than in sedimentation. For
example, the charge distribution on an object is amenable
to control by convenient environmental factors such as pH.
In addition, electrophoresis is likely easier to interpret than
sedimentation response. This is because the flow around an
object in electrophoretic motion falls off rapidly with distance,
as noted above. Thus, effects of hydrodynamic interaction are
much reduced in the electrophoretic case. We have begun to
explore cases of asymmetric objects that show the potential
for the striking behaviors anticipated in Refs. [4,38]
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APPENDIX A: REPRESENTING SOLID BODIES AS
STOKESLET OBJECTS

Here we clarify the criterion for accurately representing
a solid body in a fluid as a layer of many small Stokeslet
spheres distributed over its surface. We wish to show that the
Stokeslets may approximate the solid object arbitrarily well
while covering an arbitrarily small fraction of the surface. We
consider an object of nominal size R with N Stokeslets of
radius a over its surface. Thus the area per Stokeslet is of
order R2/N , and the area fraction φs is of order (a/R)2N .

These Stokeslets interact with a moving fluid via their
Oseen tensors, Eq. (1), proportional to a and falling off as 1/r

with distance. As with the Coulomb potential, the cumulative
effect of these Oseen flows grows with system size. Still, if a is
small enough, the perturbation due to these Oseen responses
is negligible. The velocity experienced by a given Stokeslet
is then the external velocity v0. The combined effect of the
resulting Oseen velocities �v in the middle of the object
is of order �v 
 v0a(N/R). Evidently this �v is indeed
negligible compared to v0 provided a <∼ R/N 
 a2/(Rφs).
That is, φs <∼ (a/R). This restriction on φs thus becomes
indefinitely strong as R → ∞. Conversely, for φs much larger
than this threshold, the screening effect of the Stokeslets
becomes strong, as we now discuss.

We consider the Stokeslet concentration needed to block
the external flow within some distance ξ � R from the
surface of the object. For this we may consider stationary
Stokeslets distributed through a shell of finite thickness d

cloaking the object surface [19,40]. Thus the density n of
Stokeslets is of order N/(R2d). Given a velocity v0 on the
outside of the shell, the flow diminishes with depth as the
Stokeslets exert a retarding force. In steady state the drag
force per unit area 6πηnavdx retarding a slab of width dx is
balanced by the difference of viscous stress across the slab:
η(dv/dx|x+dx − dv/dx|x), so that d2v/dx2 = (6πna)v(x).
Evidently the speed v decreases exponentially with depth with
a decay length (6πna)−1/2 called the hydrodynamic screening
length. The Stokeslets retard the external flow within a distance
of the order of this decay length.

We now ask how many Stokeslets per unit area are needed
to confine the external flow to a given depth ξ . Using the
decay length as an estimate of ξ , we infer that ξ is of order
[R2d/(Na)]1/2. We next note that the thickness d need not be
greater than ξ since at depth ξ the flow is presumed sufficiently
weak. Thus taking d 
 ξ , we obtain ξ 
 R2/(Na) 
 a/φs .
Thus any ξ , however small, may be obtained with arbitrarily
dilute Stokeslets (small φs), provided the Stokes radii of the
Stokeslets is sufficiently small. In view of this scaling property,
we define a nominal penetration depth ξe used in the main text
as a/φs .

Section VII compares this ξe with the flow penetration
observed in our Stokeslet spheres. We find that ξe is consistent
with the observed flow near these spheres, even though the
area fraction was not small. As shown above, one could have
attained the same degree of screening with a lower area fraction
at the expense of making the Stokeslets smaller and more
numerous.
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APPENDIX B: METHOD FOR NUMERICALLY
DETERMINING TOTAL ELECTRIC FIELD E(r)

Here we outline a numerical method to determine the
electric field E(r) as modified by an insulating body of
arbitrary shape. As noted in Sec. III A, this field consists
of the applied field E0 plus a depolarization field owing to
depolarization charges on the surface, so as to remove any
normally directed E at the surface. This field depends only on
the shape of the body and is independent of any explicit body
charges. For a sphere it has the simple closed form of Eq. (19).
For general shapes, another method is needed. Packaged
programs to solve Laplace’s equation for the potential with
the needed surface boundary condition are readily available.
However, for our discrete system it is convenient to use a
similar discrete method to determine E. Accordingly, we
assign a depolarization charge Qα to each surface Stokeslet,

on the otherwise neutral body and adjust the Q’s so that

0 = n̂(rα) ·
⎛
⎝E0(rα) + C ′Qα n̂ +

∑
β �=α

Qβ

rα − rβ

|rα − rβ |3

⎞
⎠,

(B1)

where again the term with C ′ accounts for the self-field of
charge Qα at rα . It is normally directed and proportional to
the charge density at rα , i.e., the charge Qα divided by the area
per charge. Once the charges Q have been determined, we may
use Eq. (B1) to find E(r) anywhere. It is simply the quantity
in parentheses with rα replaced by r . Since the needed r’s are
not at the Q sites, we may sum over all β and omit the C ′
term. Preliminary results not reported here indicate that using
Eq. (B1) with Stokeslet objects such as those of Table III is
feasible.
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