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We develop an extended classical density-functional theory to describe clustering of imidazolium-based cations
into linear chains, driven by π -π stacking. We find that the associating system displays a similar short-ranged
structure to the completely dissociated fluid. We also construct a restricted primitive model for associating ionic
species in an RTIL+solvent mixture. The double-layer formed in these systems exhibits strong overscreening by
the cation chains, as expected. Significantly enhanced capacitance is also observed for the case where counterions
are the associating species. The established density-functional method can be also used to describe polydisperse
polyelectrolyte models.
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I. INTRODUCTION

Room-temperature ionic liquids (RTILs) are often thought
to display association of oppositely charged ions to form ion
pairs as a natural consequence of strong electrostatic corre-
lations. In recent work, we used classical density-functional
theory (DFT) to investigate the role played by ion pairing
and neutral clusters on the properties of RTILs at electrified
interfaces [1,2]. However, there is also mounting evidence that
like-charged ions may also associate, e.g., the occurrence of
π -π stacking of imidazolium cations has been implicated in
NMR measurements [3–5] and also in recent ab initio calcula-
tions [6]. The physical π -π interaction between the ionic liquid
and multiwall carbon nanotubes has been investigated with
Raman spectroscopy [7] and single-crystal x-ray structure of a
palladium(II) coordination complex [8]. This π -π stacking
can minimize the expansion of metal-ligand bonds within
complexes, which optimizes the performance of light-emitting
electrochemical cells [9]. Better analyte transport properties
of ionic liquid micelles are also attributed to π -π as well as
hydrophobic interactions [10].

Theoretical studies using ab initio molecular dynamics
(MD) simulations have uncovered characteristic conforma-
tions of neighboring imidazolium cations which are stacked
directly on top of each other [11]. The presence of anions at
the periphery helps to stabilize the π -π stacking conformation
[12]. It was found that the thiocyanate (SCN) anion was
particularly effective at stabilizing π -π stacked 1-ethyl-3-
methylimidazolium cations due to their small size hydrogen
bonding ability [13]. Pair distributions obtained from MD
simulations indicate that the center-to-center distance between
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stacked imidazolium cations is typically around 0.4 nm [14].
In aqueous solutions, the stacked structure is enhanced by
the hydrophobic effect and further facilitated by the screening
of charge repulsions by the solvent. Mele et al. [15] have
studied cation–cation distances in neat imidazolium-based
RTILs using nuclear magnetic resonance (NMR) spectroscopy.
Nuclear Overhauser effect (NOE) contacts between π -π
stacked cations, obtained by two-dimensional (2D) NMR,
suggests that like-charged interactions are also adequately
screened in pure RTILs, which is not surprising, given the very
short Debye length in these fluids. Furthermore, various motifs
of ion pairs and clusters were explored as stable structures
in simulations of RTILs which included associated cations
formed from π -π stacking [16]. It is therefore of interest
to extend our previous DFT studies to include the effect of
association between cations.

Density-functional theory has been used for many years to
predict the hard-sphere structure at surfaces for simple and
complex fluids [17–19] and more recently for RTILs [20,21].
Over time, DFT has become an accurate and complementary
tool, along with molecular simulations for interfacial systems
under external potentials [22–26]. The development of analytic
methods for dealing with ideal clusters has obviated the need
to use simulations, such as Monte Carlo (MC), in order to
enumerate configurations within a self-consistent field [27,28]
allowing instead numerical solutions on a spatial grid (at least
for simple geometries).

In our approach, the cluster population in the bulk fluid with
which the nonuniform fluid is in equilibrium is set a priori.
In contrast to the spherical or globular-shaped clusters that
we have dealt with in previous work [1,2], it is expected that
π -π stacking of cations will lead to linear chains of associated
molecules instead. Hence, they resemble a living linear poly-
electrolyte, wherein cationic “monomers” can freely associate
or dissociate from the chain (while Coulombic repulsions are

2470-0045/2017/96(6)/062609(15) 062609-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.062609


KE MA, JAN FORSMAN, AND CLIFFORD E. WOODWARD PHYSICAL REVIEW E 96, 062609 (2017)

FIG. 1. Coarse-grained model of (a) cation [C4MIM+] and
(b) anion [BF −

4 ]. Black spheres represent positively charged beads
while white spheres represent neutral beads on the cation. Red spheres
represent negatively charged beads on the anion.

presumably screened by accompanying molecular anions).
The molecular-weight distribution of the cationic polymer
is expected to be exponential, provided there is sufficient
screening of the intramolecular charge. While this model for
imidazolium-based RTILs remains speculative, it is of interest
to explore its properties, even from an academic point of view.
For example, the asymmetry induced by different molecular
architectures of anions and cations in RTILs in general will be
enhanced by the presence of cation association. Furthermore,
it has been shown in previous work [29] that equilibrium
polymers can undergo adsorption transitions in the presence of
sufficiently attractive surfaces. This phenomenon may lead to
interesting electrodic properties in RTILs which display cation
association.

A classical DFT theory that describes the reversible
association of monomers into linear chains has been developed
by Woodward and Forsman and applied to a number of
problems [30]. The theory is a subset of a more general DFT
approach to polydisperse polymers whose molecular weight
profile is given by the well-known Schultz–Flory distribution.
The lowest order Schultz–Flory distribution is exponential
and describes the living polymer case. Below, we describe
a DFT treatment of associating linear chains of cations,
assuming a relatively complex multibranched architecture for
the imidazolium cation. We also consider a much simpler
restricted primitive model for the RTIL. These ions are
assumed to be immersed in an implicit solvent, with a given
dielectric constant. We continue to use the term polymer, or
oligomer, as an “analog” for the associating complex of the
RTIL model. This system focuses on RTIL solution in the
presence of charged electrodes, wherein we find an enhanced
surface adsorption of the cationic polymer, giving rise to novel
properties of the ionic liquid at an electrode.

II. DENSITY-FUNCTIONAL THEORY FOR AN RTIL
WITH LINEARLY ASSOCIATING CATIONS

A. Coarse-grained model

Here we use a simple coarse-grained model for 1-alkyl-3-
methyl imidazolium tetrafluroborate RTILs with the general
formula [CnMIM+][BF−

4 ] [1]. The case, n = 4, 1-butyl-3-
methyl imidazolium tetrafluroborate, is depicted in Fig. 1. In
our model, both cation and anion species consist of tangentially

FIG. 2. Schematic representation of the three stacked imida-
zolium cations in the left. On the right is the model of associating
cation chain of length L = 3; the central bead on each cation becomes
the repeating π bead and is bonded to another at a fixed distance of σ .

connected hard spheres with equal diameters, where each
sphere can roll over the surface of their bonded neighbors.
A sphere diameter of σ = 2.4 Å, is used, which is consistent
with the actual molecular volumes of both anions and cations.
The imidazolium ring is modeled as a five bead star, where
each sphere in the star carries a partial charge of +0.2e. The
methyl groups are modeled as neutral spheres. A star of five
beads (each carrying charge of −0.2e) is used to model [BF−

4 ].
The electrostatic interaction between charges is screened by a
relative dielectric constant, εr , which accounts for electronic
and intramolecular polarizability. A value of εr = 2.3 is used,
which is typical for hydrocarbon groups. Finally, all beads are
also assumed to interact via a long-range attractive component
that has a Lennard–Jones (LJ) form,

�att(r) = −4εLJ

(
σ

r

)6

. (1)

We used εLJ/kB = 100 K, where kB is Boltzmann’s constant
and σ = 2.4 Å is the same as the hard-sphere diameter of the
beads.

B. Free-energy functional

Using this coarse-grained model, we include π -π stacking
between cations using a similar device to what was used in our
modeling of clusters [1,2]. That is, the reversibly associating
fluid is treated as a collection of different species determined
by a chemical potential, which implicitly contains a free energy
of association. The association between two cations is modeled
as a rigid bond of length σ between the central beads of the
charged star on each of the cations. The central bead is labeled 3
in Fig. 1(a). This gives rise to intermolecular “bonding” which
is essentially identical in form to the intramolecular bonding.
We note here that π -π stacking will generally give rise to an
internal “stiffness” in the system, which will not be accurately
reflected in the current model. We note, however, that stiffness
effects are possible to include within the density-functional
treatment but will not be considered here. Previous work has
shown that predictions that follow from the density-functional
theory applied to molecular clusters are qualitatively (and
even quantitatively) independent of the bonding description
between associating species, provided they are sensible [1,2].
The π -π association will give a distribution of cationic chains,
with different lengths L. A sequence of three such associated
cations is depicted in Fig. 2. While there is good experimental
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evidence for π -π association, the expected average sizes of the
short polymers or oligomers is still largely unknown. Thus the
average length, 〈L〉b, of the clusters in the bulk solution will be
treated as a variable in the following analysis. The free-energy
density functional will include these linear chains and can be
written as

� = F id[{N (α)(Rα)}] + Fhs[ns(r)]

+Fdisp[ns(r)] + Fcorr[nc(r),na(r)]

+F el
surf[nc(r),na(r)] + F

disp
surf [ns(r)]

−
∑

α

(μα + qα�D)
∫

Nα(Rα)dRα, (2)

where μα is the species chemical potential and �D is the
Donnan potential, which maintains electroneutrality in the
system, in which all quantities can be categorized into ideal
term and excess free-energy terms [1,2]. The different terms
appearing in the functional will be described below. Here
the superscript α enumerates all species present, i.e., anions
(α = a), as well as the cationic chains of different length L

(α = {cL; L = 1,2, . . . ,∞}). The superscript α is also used to
label the coordinates of the complex species, e.g., quantity,
RcL

, represents the site coordinates of the beads in a cation
chain of length L.

With this nomenclature, the ideal term of the free energy is
given by

βF id[{N (α)(Rα)}]
=

∑
α=a,{cL;L=1,∞}

∫
N (α)(Rα)(ln[N (α)(Rα)] − 1)dRα

+
∑

α

∫
N (α)(Rα)βV

(α)
B (Rα) dRα. (3)

Here V
(α)
B (Rα) is the bonding function and will include a com-

bination of intra- and intermolecular rigid bonds, depending
on the species. The probability distribution of cation chain
lengths in the bulk, denoted by F (L), is determined by the
chemical potential μcL . This is a function of the strength of
the π -π stacking interaction and we expect it to lead to an
exponential form for F (L). For the moment, however, we will
just assume a general representation, to obtain

βμcL = ln[φpF (L)], (4)

where φp is the average bulk density of the cationic living poly-
mers, formed by their association (including single cations).
Note that φp is not equal to the total bulk density of cations,
which is instead given by n

(c)
b = ∑∞

L=1 φpLF (L) = φp〈L〉b,
where 〈L〉b is the average length of the associated chains in
the bulk.

The collective site densities are denoted as {nβ(r); β =
c,a,n}, which correspond to the sum over site densities of
the same type, e.g., positive (c), negative (a), and neutral (n)
beads, respectively. Hence we have

nβ(r) =
∑

α

∑
i(β)

n
(α)
i (r), (5)

where the nomenclature of the sum over i implies that we sum
over all sites of type β in the species α. The specific site i

density in the species α is given by

n
(α)
i (r) =

∫
δ(r − ri)N

(α)(Rα) dRα, (6)

where δ(r) is the Dirac δ function. The total site density is
given by ns(r) = nc(r) + na(r) + nn(r).

The excess free-energy terms (beyond the ideal contribu-
tion) are assumed to depend only on the site densities. The
quantity Fhs[n̄s(r)], accounts for the entropy arising from the
hard-sphere interaction between all beads [23]. This term is
derived from the generalized Flory-dimer (GF-D) equation of
state [23], which is assumed to be a functional of the weighted
bead density n̄s(r) [17],

n̄s(r) = 3

4πσ 3

∫
|r−r ′ |<σ

ns(r′) dr′. (7)

The nonelectrostatic attractive interactions between beads is
obtained as an integral over the truncated LJ potential, �att(r),
which was described earlier, Eq. (1),

Fdisp[ns(r)] = 1

2

∫∫
|r−r′|)�σ

ns(r)ns(r′)�att(|r − r′|) dr dr′.

(8)

The electrostatic interactions between charged sites are ob-
tained using a correlation kernel, which extends the mean-field
approach, inherent to the Poisson-Boltzmann approximation

Fcorr ≈ 1

2

∫∫ ∑
β=a,c

∑
β ′=a,c

nβ(r)nβ ′(r′)Kcorr
ββ ′ (|r − r′|) dr dr′

= F el
like + F el

unlike, (9)

where nβ(r) is the total density of sites carrying a charge of
type β = (a,c). The algebraic form of the overall correlation
kernels, Kcorr

ββ ′ , depends on whether one is treating like or unlike
Coulombic interactions. In the case of like charges, we have

F el
like = 1

2

∫∫ ∑
β=a,c

nβ(r)nβ(r′)Hβ(|r − r′|)

×�el
ββ(|r − r′|) dr dr′, (10)

where �el
ββ ′(|r − r′|) is the Coulomb potential between a pair

of charged sites of type β and β ′, i.e.,

�el
ββ ′ (r) = 1

4πε0εr

zβzβ ′

r
, (11)

where zβ is the charge of site β, ε0 is the permittivity of
vacuum, and εr is the relative permittivity (as mentioned
earlier, we use εr = 2.3). The function Hβ(|r − r′|) describes
an exponential “Coulomb hole,”

Hβ(r) = 1 − e−λβr . (12)

The parameter λβ is determined such that the “Coulomb hole”
describes self-exclusion over the whole space. That is,

nb
β

∫
{Hβ(|r|) − 1} dr = −1, (13)
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where nb
β is the bulk density of the site β. This gives

λβ =
√

2

sβ

(14)

with

sβ =
[

3

4πnb
β

]1/3

. (15)

For unlike–charge interactions between anions and cations,

F el
unlike = 1

2

∫∫ ∑
β �=β ′=a,c

nβ(r)nβ ′ (r′)(|r − r′| − d)

×�el
ββ ′ (|r − r′|)drdr′, (16)

where the Heaviside function is defined as (x) = 1 for x > 0
and (x) = 0 for x � 0. The parameter d = χσ mimics the
enhanced correlation between oppositely charged species (not
in the same cluster) and provides the only adjusted parameter
in the model. It is fitted to give the correct bulk ion density for
the particular RTIL at a given pressure and temperature.

Finally, �(Rα) is the external potential acting on the species
α. In the systems studied here, this will be due to charged planar
surfaces, modeling electrodes. We will assume the surfaces are
smooth planes represented as infinite half-spaces of Lennard–
Jones particles, which interact with all fluid molecules. Thus,
the total dispersion energy due to each bead interacting with
the surface is given by

F
disp
surf =

∫ ∞

0
ωLJ(z)ns(z) dz, (17)

where ns(z) is the total averaged site density, which is a
function of the perpendicular distance to the surface, z. ωLJ(z)
is obtained by integrating the 12-6 LJ potential over the whole
surface,

ωLJ(z) = 4πεLJρsσ
2

[
1

5

(
σ

z

)10

− 1

2

(
σ

z

)4
]
. (18)

For simplicity, we use the same strength and range of
interaction as the dispersion force between beads, see Eq. (1).
The surfaces are charged and hence will interact with charged
sites in the fluid molecules. We make the simple choice that
the relative dielectric constant, εr , is constant throughout all
space (including within the surfaces), so image effects are not
considered. Thus the electrostatic interaction between the fluid
and surface is simply given by

F el
surf =

∫∫ ∑
β=a,c

nβ(r)
1

4πε0εr

zβ�(ρ)

|r − ρ| drdρ, (19)

where �(ρ) is the surface charge density and ρ is a two-
dimensional surface vector.

C. Solving for the site densities

The minimization of the free-energy functional, leads to
explicit expressions for the oligomeric distributions N (α)(Rα).
We will focus here on the cationic chains as these present
the more difficult calculation. The determination of the anion

FIG. 3. Diagrams of bonds and vertices with circle for neutral,
square for positive, and diamond for negative beads in the model.
Vertices stand for local excess chemical potential factors. The solid
line represents the rigid bond between neighboring beads. Color in
a vertex means integrating the vertex’s coordinate over all space. An
example is given of integrating a positive bead with a bond end at r.

bead densities follows from the analysis presented below in a
reasonably straightforward way.

For a chain of L associated cations, minimization of the
free energy gives

N (cL)(RcL

) = φpF (L) exp

⎧⎨
⎩−βV

(cL)
B

(
RcL)

+
∑

j

[
λ(cL),b − λ

(cL)
j (rj )

]⎫⎬⎭. (20)

We recall that the intermolecular association linking the
cations is implicitly contained in the bonding potential,

V
(cL)
B (RcL

). Thus, the Boltzmann factor containing the bonding
term will give rise to a product of Dirac δ functions, which
reflects the topology of the cationic chain, i.e.,

exp
[−βV

(cL)
B

(
RcL)] =

∏
〈i,j〉

δ(|ri − rj | − σ )

4πσ 2
, (21)

where 〈i,j 〉 represent all bonded pairs (both intra- and
intermolecular) in the cluster.

Each specific site j on the species cL carries an excess

chemical potential λ
(cL),b
j − λ

(cL)
j (r), where

λ
(cL)
j (r) = δβF ex

δn
(cL)
j (r)

(22)

with F ex the sum of all the excess free-energy terms, beyond

the ideal contribution, and n
(cL)
j (r) are the site densities

from Eq. (6). Equations (20)–(22) need to be solved self-

consistently, as the λ
(cL)
j (r) themselves are functionals of the

site densities.
The evaluation of the site densities can be facilitated using

diagrammatic methods. We define a set of vertices and bonds,
as shown in Fig. 3. The open symbols in the shapes of circle,
square, and diamond, correspond to the neutral, cationic, and
anionic factors, respectively, containing the corresponding
excess chemical potential terms (as indicated). In defining
these we note that, with the form of the free-energy functional
used here, the excess chemical potential λ

(α)
j (r) is independent

of species type α and depends only on the site type of j . That
is, λ

(α)
j (r) = λβ(r) if the site j is of type β, as defined earlier.

062609-4



THEORETICAL STUDY OF THE EFFECT OF π+-π+ . . . PHYSICAL REVIEW E 96, 062609 (2017)

FIG. 4. Diagrams for the recursive process of generating branch
end segment distribution, c(c2,r) from c(c1,r). Example of the
complementary end segment distribution c′(c2,r) for [C2MIM+].

Equation (22) can then be written as

λβ(r) = δβF ex

δnβ(r)
, (23)

where nβ(r) is the collective density of sites of type β, as
defined earlier. The bulk values of these excess chemical
potentials are denoted as λb

β . The solid line in Fig. 3
represents the normalized Dirac δ function, describing the
freely rotating rigid bond between sites. Graphs consisting
of vertices connected by bonds represent the product of the
associated functions. Color in a vertex indicates integrating
that site over all space, as shown in Fig. 3.

The sites of the cationic and anionic molecules are denoted
as (c1,c2 . . . ) and (a1,a2 . . . ); see Fig. 4 for examples of
the site numbering of [C2MIM+]. In that figure we have also
given a few examples of so-called segment densities. These
correspond to graphs of a connected subset of colored vertices
(corresponding to the molecular sites on individual anion and
cation species) with a dangling bond. It is useful to define two
classes of these segment densities. One we will call branch
segment densities denoted as c(i,r). These contain only one
terminal site of the molecule (a site with only a single incident
bond) and a dangling rigid bond attached at site i. The other
class we will call complementary segment densities, denoted
as c′(i,r). These are also connected graphs of colored vertices
at least one of which is a branching site, i.e., a site with more
than two adjacent bonds (e.g., c3 on the cation is a branching
site) and a dangling bond attached at site i. If a molecule has a
single branching site, then the vertices in the molecule which
are not included in the complementary graph can be connected
and colored to make a branch segment distribution. Examples
of c(c2,r) and c′(c2,r) are given in Fig. 4.

The advantage of defining branch segment distributions is
that they can be obtained recursively along each branching
chain, which saves the numerical effort for molecules with
long branches. For example, we have

c(c1,r) = eλb
n

4πσ 2

∫
e−λn(r)δ(|r′ − r| − σ ) dr′. (24)

The function c(c2,r) is then generated from c(c1,r), as
illustrated in Fig. 4, according to the recursion formula

c(c2,r) = eλb
c

4πσ 2

∫
c(c1,r′)e−λc(r′)δ(|r′ − r| − σ ) dr′. (25)

FIG. 5. Diagram for normalized site density of bead c2 on
cation [C2MIM+]. End segment distribution c(c1,r) and c′(c3,r)
are combined.

On the other hand, complementary segment distributions are
more complex and must be constructed (usually by inspection)
from a collection of branch segment distributions. For exam-
ple, the complementary graph c′(c3,r) can be obtained from
branch segment distributions as follows:

c′(c3,r) = eλb
c

4πσ 2

∫
e−λc(r′)c(c4,r′)c(c7,r′)

× c(c8,r′)δ(|r′ − r| − σ ) dr′. (26)

Any site density for free cations and anions can always be
obtained using a product of a site vertex and adjacent branch
and complementary segment distributions. For example, the
graph in Fig. 5 represents the normalized site density,

n
(c)
c2 (r)/n

(c)
b = eλb

c−λc(r)c(c1,r)c′(c3,r), (27)

where n
(c)
b is the bulk density of free cations. The density

contribution due to all other sites on free cations and anions
can be calculated in a similar fashion.

In principle, obtaining the contribution to a particular
site density from a chain of associated cations of given
length L could proceed by direct evaluation of Eqs. (6) and
(20). However, solving for each chain length one by one is
impractical, given that there are essentially an infinite number
of different lengths. It is possible to simplify the calculation
given that we need only to find the total site densities of
particular type (β = a,c,n), which involves summing over
all chain lengths. The form of Eq. (20) implies that this
sum corresponds to averaging over the distribution F (L).
Fortunately, it is possible to solve this problem, which we
will demonstrate in the Appendix sections for the case of
[C4[MIM+] cation association. We will use the site numbering
as suggested in Fig. 1.

III. RESULTS: STRUCTURAL PROFILES

Using this distribution we solve the DFT for the case of a
pure RTIL between two charged planar surfaces, allowing for
cation association. We chose 〈L〉b = 5, which corresponds to a
rather strong π -π interaction. Consistent with the established
[C4MIM+][BF−

4 ] model [1], the bulk ionic density (either
anions or cations) is given by nbσ

3 = 0.04475 and the inverse

surface charge density was as = −320 Å
2
/e. In this study,

we will compare the structural profiles of the π -π associating
ionic liquid with the fluid where we assume association does
not occur.
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FIG. 6. Density profiles from the DFT for [C4MIM+][BF−
4 ] between two oppositely charged surfaces (left surface at −320 Å

2
/e while

right surface at +320 Å
2
/e), (a) density profiles of positive, negative, neutral beads and their sum in the associating cation system;

(b) comparison of associating cation system with nonassociating cation system near negative surface in the left.

In Fig. 6(a), we show the density profiles for the associating
fluid in the presence of the two oppositely charged surfaces.
This system approximates a negatively charged electrode pore,
immersed in the ionic liquid. It is in this situation that we may
have expected to see a large effect due to the association of
cations, driven by the negative surface charge. However, we
find that the density profile of the associating cations does not
significantly differ from that of the nonassociating ionic liquid,
as is shown in Fig. 6(b). In fact, if anything, the (associating)
cation density is slightly lower at the surfaces, compared with
the nonassociating case, presumably due to depletion effects
on the effective cationic polymer chains. This minor effect
notwithstanding, the overall results are remarkably similar to
what was seen in our study of ion pairs and neutral clusters
formed by RTILs, which were also shown to be in excellent
agreement with Monte Carlo simulations of the identical model
[1]. In both cases, it seems that the fluid tends to compensate
for the presence of associated species, to give very similar
density profiles no matter what clustering is present. That is,
in the dense, neat ionic liquid, close association of particles is
present in any case due to strong electrostatic correlations. So
additional correlations, say via a π -π association mechanism,
has little additional affect on the overall structure. Variations
in density profiles are also constrained by electroneutrality,
whereby the response of the fluid to an applied surface charge
has to satisfy the requirement of zero net charge in the overall
system.

IV. RTIL + SOLVENT MIXTURES: A RESTRICTED
PRIMITIVE MODEL WITH CATION ASSOCIATION

While it is possible to explore more of the parameter space
of the neat ionic liquid, it was apparent to us that the qualitative
findings for the structural profiles would be more or less similar
to what we have already observed, according to the discussion
above. Instead, we expected that a more dramatic effect
due to ion association would be apparent in RTIL solutions,
wherein the overall ionic liquid concentration is relatively low.
Hence, instead of a pure RTIL, we turned our attention to
an RTIL+solvent mixture. The inclusion of a solvent can be

instrumental in promoting stronger cation–cation attractions
via, say, hydrophobic interactions (for aqueous solvents)
while keeping charge–charge repulsion screened with a large
dielectric constant. Dilute solutions of RTILs have been
known to undergo surface phase transitions under certain
circumstances, driven by strong interactions within RTILs
[31]. For example, huge increases in capacitance have been
observed in RTIL solutions wherein the ionic liquid component
condenses on the surface of an electrode in a wetting transition
[31]. This gives rise to large fluctuations in the component
fractions of the solution near the charged surface. Similar
behavior is seen in RTIL solutions in contact with porous
media. In this case, capillary condensation can cause large
changes in the differential capacitance [31]. The presence
of charged equilibrium chains arising from associative π -π
stacking may allow the system to undergo an adsorption
transition at the surface of electrodes, similarly to what is seen
in neutral polymers at sufficiently attractive surfaces [29].

In an effort to simplify the calculations, we explored a
model with reduced complexity, as the qualitative physics
should not be too different provided the basic features of
an ionic liquid solution are retained. To this end we note
that a solution of an ionic liquid in fact differs little from
that of a standard electrolyte, apart from the already-described
molecular anisotropy. However, the latter should not affect too
greatly the nature of the surface adsorption transition when
π -π association is present. Furthermore, while distributed
charges were necessary in the model of Fig. 1 (in order
to prevent crystallization), such is not the case for a dilute
solution. These considerations prompted us to implement
the simple restricted primitive model (RPM) as a model for
the RTIL in the following adsorption studies, augmented
by an additional π -π interaction potential, allowing cation
association. In the RPM, anions and cations are modelled as
simple charged hard spheres, both with the same diameter σ ,
while the solvent is treated implicitly so that its presence is
only felt via the relative dielectric constant.

As the solvent is treated implicitly, the free-energy func-
tional for the RTIL+solvent mixture has essentially the same
structure as given in Eq. (2) above. A significant simplification
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FIG. 7. Structural profiles of polydisperse and separate solute near an attractive surface at (a) εwlj = 0.5kT and (b) εwlj = 2.0kT .

ensues from the fact that the monomers in the cationic chains
no longer consist of branched oligomeric structures. The
presence of the solvent does affect the steric term in the free-
energy functional through the incompressibility assumption.
We will assume that the solvent asserts itself in the spirit of
a Bragg–Williams mixture, so that at every point the sum of
the solvent and RTIL densities is fixed at some value, say n0.
However, in order to admit fluid structure, we use a “nonlocal”
incompressibility assumption by coarse graining the RTIL
contribution to the density. This has the effect of introducing
a steric correlation term to the free-energy functional, which
has the form

Fhs[ns(r)] = kT

∫
[n0 − n̄s(r)](ln[n0 − n̄s(r)] − 1) dr, (28)

where ns(r) is the sum of cation and anion site densities,

ns(r) = nc(r) + na(r), (29)

and we have used the volume coarse graining [32],

n̄s(r) = 3

4πσ 3

∫
|r−r ′ |<σ

ns(r′)dr ′. (30)

This notwithstanding the calculation of site densities
follows the same procedures as outlined earlier, though now
the polymeric structure of the cation chains has the simple
form of a linear chain of tangential spheres [22]. In all cases
considered below, the overall solution density was fixed at
n0σ

3 = 0.7 and the temperature was 294 K.

A. Adsorption transition of neutral systems

We begin our study by considering the RPM solution
adjacent to a neutral surface but where the charges on the
anion and cation species have been “switched off.” The bulk
ion density was set equal to nbσ

3 = ρb = 0.01, and the average
cation “polymerization” was given by 〈L〉b = 5. This system
is interesting, as it is known that, in the case of ideal monomers
self-assembling into linear chains, an adsorption transition will
occur at attractive surfaces, as the attractive surface energy
approaches a critical value. Of course, our fluid species have

a finite size, and it is known that the surface transition is
suppressed when steric interactions are introduced between
monomers. This notwithstanding, a sudden increase in the
excess adsorption can occur at attractive enough surfaces,
which is an echo of the adsorption transition in the ideal
system. Instead of a sharp transition, the surface adsorption
displays an inflection point corresponding to what can be
referred to as a “soft” transition.

Instead of the full LJ surfaces considered earlier, here we
model the surface as a hard wall plus a LJ attraction. The latter
is translated so that particles at z = σ/2 are at the potential
minimum. Thus we have

ωwlj (z) = 2πεwlj

[
2

45

(
σ

z + �z

)9

− 1

3

(
σ

z + �z

)3]
, (31)

where �z = 0.358σ . The attraction strength is εwlj .
In Fig. 7, we plot the density profiles of the associating

(polydisperse) solute (the neutral “cation”) and nonassociating
(separate) solute (the neutral “anion”) for a weak and a strong
surface interaction. Qualitatively very different behavior is
observed. At the smaller attractive potential εwlj = 0.5kT , the
adsorption of the polydisperse solute is actually lower than
that of separate solute, as illustrated in Fig. 7(a). This can be
attributed to the lower configurational entropy of the living
polymers at the surfaces, leading to a depletion which cannot
be overcome by a weak surface attraction.

At εwlj = 2.0kT , however, the adsorption of the polydis-
perse chains dominates over that of the nonassociating separate
solute [Fig. 7(b)]. As illustrated in Fig. 8(a), the adsorption of
the polydisperse solute grows significantly with εwlj , due to
cooperative adsorption of the bonded spheres. In contrast, the
separate solute adsorption displays steady moderate growth
with surface attraction. Eventually the adsorption by the
polydisperse solute reaches a limit as determined by the
incompressibility constraint.

Defining the excess adsorption ex as

ex =
∫ ∞

0
[n(z) − nb]σ 2 dz, (32)
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FIG. 8. Site density profiles of (a) polydisperse and (b) separate solute near a series of attractive surfaces. In the direction perpendicular to
the paper, surface adsorption strength ranging from εwlj = 0.5kT to εwlj = 3.0kT . The color gradient helps distinguish the different levels of
adsorption density in each system.

we investigated how ex was influenced by the degree of
polymerization in the bulk, 〈L〉b, in Fig. 9(a). We found that
the rapid increase in adsorption occurs at an earlier value of
the adsorption strength when 〈L〉b is larger. This observation
is consistent with the behavior of the ideal system of “living”
polymers, where the adsorption transition occurs at a critical
adsorption strength, which scales approximately as βεcrit

wlj ≈
βε0

wlj + 1/〈L〉2
b. Here ε0

wlj is the surface strength that gives
essentially zero excess adsorption. In addition to influencing
the onset of the “soft” transition, we find that, at higher 〈L〉b,
the excess adsorption is consistently stronger, although this

effect is rather weak in going from 〈L〉b = 5 to 〈L〉b = 8. Of
course, in the limit 〈L〉b = 1 the system becomes identical to
a fluid of nonassociating ions.

The adsorption is magnified by reducing the bulk density
of both solutes. As shown in Fig. 9(b), adsorption growth
becomes much sharper at lower bulk density. This result is
a reflection of the fact that the system becomes more ideal
(reduced steric effect) as the bulk solute density is reduced.
As expected, steric effects will eventually dominate at large
adsorption strengths, and the excess adsorption approaches a
constant.

FIG. 9. Excess adsorption as a function of εwlj for polydisperse and separate species (a) at the same bulk concentration ρb = 0.01, but
various degree of polymerization 〈L〉b = 2,5,8 in bulk; (b) at the same degree of polymerization 〈L〉b = 5 but various bulk solute concentrations
ρb = 0.001,0.01,0.1.

062609-8



THEORETICAL STUDY OF THE EFFECT OF π+-π+ . . . PHYSICAL REVIEW E 96, 062609 (2017)

FIG. 10. Structural profiles of polydisperse cation and separate anion near a neutral attractive surface at (a) εwlj = 0.5kT and (b) εwlj =
2.0kT .

B. Suppressed adsorption of charged systems

Our aim is to investigate if strong adsorption at electrodes,
due to associating cations, will influence the electrical prop-
erties of dilute solutions of RTILs, so we now investigate the
effect of charging up the solute species. In the following cal-
culations we will adopt the bulk parameters nbσ

3 = 0.01 and
〈L〉b = 5, which gave rise to good adsorption characteristics
in the neutral RPM model. The solvent was chosen to mimic
water and had a relative dielectric constant, εr = 80.

For charged solutes, electrostatic interactions are expected
to play an important role, as charge separation is no longer pos-
sible to any great degree. Therefore, large excesses of cations
on neutral surfaces, driven by cooperative adsorption, will be
accompanied by essentially matching anion adsorption. This
electroneutrality constraint is manifested in the free-energy
functional via the mean-field expression for the electrostatic
interactions, i.e., F MF

elec[nc(r),na(r′)] given by

F MF
elec[nc(r),na(r′)]

=
∑

α=a,c

∑
β=a,c

zαzβe2

4πεrε0

∫∫
nα(r)nβ(r′)

|r − r′| dr dr′. (33)

For the time being, we will ignore the correlation contribu-
tions due to the excess free-energy terms beyond the mean-field
contribution These correlation terms are approximated using
the mean spherical approximation [33,34], as embodied in the
functional F MSA

elec [nc(r),na(r)],

F MSA
elec [nc(r),na(r)]

= F MF
elec[nc(r),na(r)] − 1

2

∑
α=a,c

∑
β=a,c

∫∫
nα(r)nβ(r′)

×�Celec
αβ (|r − r′|) dr dr′, (34)

in which the excess direct correlation function �Celec
αβ (r) is

derived in Ref. [34]. This correlated functional is expected to

be better suited for a dilute fluid, as it is based on a rigorous
second-order expansion of the free-energy functional [34,35].

Neglecting the F MSA
elec term amounts to a Poisson–

Boltzmann treatment of an electrolyte solution with π -π
associating cations.

Using the surface adsorption potential in Eq. (31), we
computed the density profiles and excess adsorption of this
electrostatically coupled system at a neutral surface. The
density profiles at high and low adsorption strength are given
in Fig. 10. At low surface attraction, the adsorption of the
nonassociating anions is stronger than the associating cations
due to entropic depletion, although the differences are smaller
compared with the neutral fluid. As the surface attraction
grows, the cation adsorption also increases. Unlike the neutral
fluid, however, the growth of the cation density peak is impeded
by the need for accompanying anions to maintain a degree of
electroneutrality so as to ensure the free-energy penalty for
charge separation is not too high. As anions do not possess the
cooperative adsorption of the cations, the overall adsorption
of both species is significantly damped. The similarity in the
density profiles of anions and cations in this case vindicate
the neglect of the F MSA

elec correlation contribution to the free
energy. This is because the integration of the direct correlation
function over locally similar but oppositely charged density
profiles gives a small contribution to the excess chemical
potential.

The behavior described above is also reflected in the excess
adsorption curve, shown in Fig. 11, where, in contrast to the
neutral fluid, the adsorption of anions and cations is identical.
This occurs because the adsorption of both charged species
requires charge neutrality, as the infinitely planar system
cannot support a net adsorbed charge. We also see in Fig. 11
that a rapid increase in adsorption takes place at a higher
adsorption strength for the charged fluid, in comparison with
the neutral system. The adsorption of the cations (and anions)
also saturates at roughly half the value in the neutral system.
This is due to the fact that the total adsorption of fluid particles
is dominated by steric effects, to which both anions and cations
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FIG. 11. Near a neutral surface, excess adsorption curve as a
function of εwlj for polydisperse and separate species in both neutral
[parameters from Fig. 9(a)] and charged systems. Bulk parameters
are 〈L〉b = 5 and ρb = 0.01.

contribute roughly equally in the charged fluid. In contrast,
adsorption is mainly due to the associating species in the
neutral case.

C. Adsorption transition induced by surface charges:
Mean-field and correlated systems

We now consider the case of the associating RPM elec-
trolyte adjacent to a charged electrode. The expected charge
separation in this system makes it necessary to include electro-
static correlations via the F MSA

elec functional. The importance of
the electrostatic correlation term is explicitly demonstrated
below. Our aim is to investigate if a negatively charged
electrode will cause a significant increase in surface adsorption
of associating cations, compared with anions against positively

charged electrodes. In this case, we expect this to lead to an
asymmetric differential capacitance, which is larger at negative
potential. As the electrode potential varies, studies have found
that the differential capacitance of double layer is influenced
by various factors, such as the structural asymmetry in ion
shapes [36] and charge concentration [37]. Meanwhile, mixing
composition of ionic liquids opens up new paths of improving
electrochemical performance [38].

Similarly to the concept of surface binding energy [39],
our DFT calculation has adjusted the attraction from the
surface for a systemic comparison between associating and
nonassociating species. We chose a LJ attraction strength of
εwlj = 2.0kBT . In other words, the attraction is set slightly
higher than the point at which adsorption begins to rapidly
increase in the neutral fluid, Fig. 9(a).

We begin by assessing the importance of electrostatic
correlations in describing the RTIL response to a negatively
charged electrode. We did this by solving the DFT both
with and without the F MSA

elec functional in the free energy.

We chose a fairly high surface charge density of −20 Å
2
/e

to emphasize the effects of these correlations. As shown in
Fig. 12, the correlated system shows a much larger adsorption
of cations adjacent to the negative electrode, compared with the
mean-field system. Indeed, surface overcharging is apparent in
the correlated solution, as suggested by the alternating layers
of counterions and coions, which is not seen in the mean-
field solution. This confirms our assertion that a correlated
functional is especially important where stronger than usual
cation adsorption is induced by π -π stacking.

In Fig. 13, we show typical adsorption profiles of the
RTIL against both positive and negative surfaces at a lower

absolute surface charge density of 80 Å
2
/e. In both calcula-

tions, electrostatic correlations are included in the functional.
Figure 13(a) shows a significantly higher adsorption of
polydisperse cation against the negative surface than anions
against the positive surface, Fig. 13(b). Interestingly, the large
cation peak in Fig. 13(a) also attracts a higher anion adsorption

FIG. 12. Density profiles of associating cations and separate anions near a negatively charged surface at −20 Å
2
/e (a) mean-field system

and (b) correlated system.
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FIG. 13. Density profiles of associating cations and separate anions near (a) negative surface at −80 Å
2
/e and (b) positive surface at

+80 Å
2
/e.

close to the surface, as driven by the electrostatic and steric
correlations.

In order to investigate how the electrode properties were
influenced by cation association, we calculated the potential at
a single electrode surface as a function of the surface charge
density. For the purpose of a comprehensive comparison, we
also considered an equivalent system where the cations are
nonassociating.

In both sets of calculations we compared the DFT results
for mean-field and correlated treatments of the electrostatic
interactions. The results in Fig. 14 show that for both asso-
ciating and nonassociating systems, the correlated functional
gives smaller absolute surface potentials for a given charge
density. For positive surface charges, the curves coincide
for both associating and nonassociating systems (for both
treatments at the mean-field and correlated level). This is
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FIG. 14. Surface electrical potential as a function of surface
charge density. Both mean-field and correlated cases are calculated
for associating and nonassociating system.

because the nonassociating anions are responsible for the
surface screening, while the cations, whether associating or
not, play little role in this. In contrast, the potential curve is
consistently lower in the associating system at negative surface
charge density. Clearly, the associating cations are significantly
more effective at screening the electrodes than the individual
anions.

This is more apparent in the differential capacitance (DC)
curves in Fig. 15, where we see enhanced capacitance at
negative surface potentials due to cation association. This
result indicates that asymmetry in the DC may not only
be driven by different molecular architecture in anions and
cations, but also specific interactions (such as π -π stacking)
accompanying dispersion interactions to the surface may play
a role in amplifying these effects.
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FIG. 15. Differential capacitance as a function of surface poten-
tial derived from data in Fig. 14.
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V. CONCLUSIONS

In contrast to the study of cation–anion association into
neutral pairs and higher-order clusters [1,2], we describe here
the effect of a clustering of imidazolium-based cations, due
to π -π stacking. We have generalized the density-functional
theory of polydisperse polymers to the case where the asso-
ciating monomers possess the multiple-branch architecture of
RTILs. Such a theory will have wider applications in other
polydisperse polymers and polyelectrolytes containing more
complex intramolecular structure. The resulting structural
profiles of the pure RTIL fluid remained very similar to that
of the nonassociating RTILs model. Indeed, we found that
adsorption to negatively charged electrodes by cations may be
slightly weaker if they can also associate, due to polymer
depletion effects. Subsequent work in the RTIL+solvent
system shows that this will be especially the case if the surface
has only a weak attraction to the monomers.

We explored RTIL+solvent mixtures using the restricted
primitive model for the ionic liquid component in order to
simplify our analysis. If the RTIL component is attracted to
the surface via dispersion forces, then we find that in neutral
systems (where the fluid charges are artificially set to zero) the
excess adsorption of the solute grows rapidly with increasing
surface adsorption strength beyond a critical value. This result
echoes the sharp transition seen in ideal associating fluids at
adsorbing surfaces.

When the charges are switched back on, however, elec-
troneutrality dampens this “soft” transition, as the associating
ions will need to be accompanied by counterions. This
notwithstanding, we find that cation association does lead to
a significantly enhanced differential capacitance at negative
surface potentials, compared to positive potentials. This effect
may be further amplified by a stronger dispersion attraction to
the surfaces, which will be investigated in future work.
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APPENDIX A: TURNING THE CATION MOLECULE
INTO A SINGLE SITE MONOMER

In this Appendix section as well as two following sections,
we present a complete picture the theoretical solution of
site densities for the multibranched, polydisperse cation. In
accordance with the model in Fig. 1, each cation molecule in
a π -π associated chain of [C4MIM+] cations can be treated
as a single site monomer, which we refer to as the π bead
for convenience. The π bead has the same coordinate as the
central bead in the charged star (c3) of the cationic molecule
but carries excess chemical potential contributions from all the
branches of the cation molecule that emerge from c3. Hence,
the π bead becomes an “effective” particle which replaces a
cation. Considering the branches attached to c3, the effective
chemical potential for the π bead can be defined as

λπ (r) = λc(r) + ln[c(c2,r)c(c4,r)c(c9,r)c(c10,r)], (A1)

where λc(r) is the “bare” excess chemical potential of the c3
bead (which is the same as that for all positively charged beads)

FIG. 16. (a) Diagrams representing the multibranch cation as a
single π bead denoted by a pentagon. The solid line stemming from
π bead represents the rigid bond of length σ . (b) Diagram for the
normalized site density of the third π bead on a chain of five π beads,
nπ (3; 5 : r)/(φpF (5)).

and we have used the branch end segment distributions of the
rest of the cation molecule. We now obtain the end segment
distribution functions, cπ (k,r), of a linear chain of π beads of
length k. For example, we have, using cπ (0,r) = 1,

cπ (1,r) = eλb
π

4πσ 2

∫
e−λπ (r′)cπ (0,r)δ(|r′ − r| − σ ) dr′,

(A2)

which is given by the diagram in Fig. 16(a), where we have
let the vertex of the π bead be represented by a pentagon. The
quantity, λb

π , is the chemical potential of the π bead in the bulk,
which is equal to λb

c . The recursion formula for end segment
distributions is then

cπ (i + 1,r) = eλb
π

4πσ 2

∫
e−λπ (r′)cπ (i,r′)δ(|r′ − r| − σ ) dr′.

(A3)

These end segment distributions can be used to generate the site
densities of the π bead. For example, the normalized density
of the c3 site due to the third cation of a chain of five associated
cations is given by the diagram in Fig. 16(b), which in explicit
terms is

nπ (3; 5 : r)/[φpF (5)] = eλb
π −λπ (r)cπ (2,r)2

, (A4)

where φpF (5) gives the bulk density of cation chains of length
L = 5 and nπ (i; L : r) denotes the density of the c3 site due to
the ith cation in a chain of L associated cations. The general
formula for the c3 site density is given by

nπ (i; L : r) = φpF (L)eλb
π−λπ (r)cπ (i − 1,r)cπ (L − i,r).

(A5)

APPENDIX B: OBTAINING THE TOTAL c3 SITE DENSITY

The total density of the c3 site at any point in space is
the same as the total π density, summed over all sites and
the different lengths of π -π associated chains of cations. It is
given by

nπ (r) =
∞∑

L=1

L∑
i=1

nπ (i; L : r). (B1)
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Substituting Eq. (A5) into Eq. (B1) gives the following:

nπ (r) =
∞∑

L=1

L∑
i=1

φpF (L)eλb
π−λπ (r)cπ (i − 1,r)cπ (L − i,r).

(B2)

It is useful to define the related end segment distributions,
dπ (i,r), given by

dπ (i,r) = e
λb
π −λπ (r)

2 cπ (i − 1,r) (B3)

with

dπ (1,r) = e
λb
π −λπ (r)

2 . (B4)

The recursion formula for these new distributions can be
written as

dπ (i + 1,r) =
∫

dπ (i,r′)T (r,r′) dr′, (B5)

where T (r,r′) is a connectivity kernel defined by

T (r,r′) = eλb
π

4πσ 2
δ(|r − r′| − σ )e− λπ (r)+λπ (r′ )

2 . (B6)

The average density is then given by the following (more
symmetric) equation:

nπ (r) = φp

∞∑
L=1

F (L)
L∑

i=1

dπ (i,r)dπ (L + 1 − i,r). (B7)

We will now introduce a specific form for the chain
length distribution, F (L). As stated earlier, we expect that
the chains of associated cations should display the exponential
distribution of a living polymer in the bulk. This is because
the π -π interaction is essentially constant and acts between
neighboring molecules, while the electrostatic interactions
between the associated cations will be well screened. It is
important to note that this distribution describes the chain
lengths in the bulk fluid. In the case of the nonuniform fluid,
say, near an electrode surface, the local length distribution
will also be influenced by the excess chemical potentials
of the sites in the molecules and will generally not be
exponential. At this point, however, rather than choosing an
exponential for F (L), we will use a slightly more general
functional form that is often used to describe polydispersity in
polymeric systems. This is the well-known Schulz–Flory (SF)
distribution, which describes a wider class of distributions
including the exponential distribution of living polymers. The
SF distribution can be expressed as

F (L) = NLne
− L(n+1)

〈L〉b (B8)

with the normalization constant

N = (n + 1)(n+1)

�(n + 1)〈L〉(n+1)
b

, (B9)

and where 〈L〉b is the average degree of polymerization in the
bulk (where we have ignored the slight difference between
averaging over discrete and continuous L). The quantity n

determines the degree of polydispersity with the distribution
becoming more monodispersed with n going to infinity. The

case n = 0 corresponds to the exponential distribution of the
living polymer system.

Using, k = L + 1, and defining

K = (n + 1)(n+1)

�(n + 1)〈L〉(n+1)
b

e
(n+1)
〈L〉b , (B10)

we substitute Eq. (B8) into Eq. (B7) and get

nπ (r)(φpK)−1 =
∞∑

k=2

k−1∑
i=1

(k − 1)ne−k
(n+1)
〈L〉b dπ (i,r)dπ (k − i,r)

=
∞∑

k=2

k−1∑
i=1

(i − 1 + k − i)ne−i
(n+1)
〈L〉b dπ (i,r)

× e
−(k−i) (n+1)

〈L〉b dπ (k − i,r)

=
n∑

l=2

l∑
m=0

A(l,m,n)
∞∑

k=2

k−1∑
i=1

ime
−i

(n+1)
〈L〉b dπ (i,r)

×(k − i)(n−l)e
−(k−i) (n+1)

〈L〉b dπ (k − i,r), (B11)

where we have used a binomial expansion for the (k − 1)n

leading to the following assignments: A(l,m,n) = nCl ×
lCm(−1)l−m, with nCl = n!

(n−l)!l! .
To simplify Eq. (B11), we define the following transforma-

tion:

d̂π (k,r) =
∞∑
i=1

ike
−i

(n+1)
〈L〉b dπ (i,r). (B12)

Substituting Eq. (B12) into Eq. (B11) means that n(r) can be
rewritten as a sum of product functions as follows:

nπ (r)(φpK)−1 =
n∑

l=2

l∑
m=0

A(l,m,n)d̂π (n − l,r)d̂π (m,r).

(B13)

Our goal now is to solve for the d̂π (k,r) functions. After

multiplying both sides of Eq. (B5) by (i + 1)ke−(i+1) n+1
〈L〉b and

summing over i, we obtain

d̂π (k,r) − e
− n+1

〈L〉b dπ (1,r)

=
∞∑
i=1

(i + 1)ke−(i+1) n+1
〈L〉b

∫
dπ (i,r′)T (r,r′)dr′

= e
− n+1

〈L〉b

k∑
j=0

kCj

∫
d̂π (j,r′)T (r,r′)dr′, (B14)

which finally gives the following recursion relation for
d̂π (k,r):

e
n+1
〈L〉b d̂π (k,r) = dπ (1,r) +

k∑
j=0

kCj

∫
d̂π (j,r′)T (r,r′)dr′.

(B15)
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FIG. 17. Diagram for factoring the normalized site density at c3
into a chain backbone and a single branch term, (a) diagram for
normalized c3 site density in a cation chain, (b) diagram of function
mπ (r), and (c) diagram for branch end segment distribution, c(c4,r).

APPENDIX C: SOLVING SITE DENSITIES FOR THE REST
OF THE BRANCHES

After obtaining the density of the π bead in Eq. (B13),
the next step is to work out densities of the rest beads on
the branches. Without loss of generality, we demonstrate the
process of solving for the site density of bead c4 on the cation.
The density of π beads is equal to the site density of the
c3 bead, as shown in Fig. 17(a). It can be written as the
product of the backbone of associating chain [Fig. 17(b)] and
a single branch on which c4 resides [Fig. 17(c)]. Based on this
interpretation, we can define the function mπ (r) below

nπ (r) = n
(c)
b mπ (r)c(c4,r), (C1)

which implicitly contains contributions from chains of all
lengths L, distributed according to F (L). Note that c(c4,r)
is the usual branch end segment distribution on the cation
and thus the unknown mπ (r) is readily obtained. Figure 18(a)
shows how a complementary end segment distribution can be
constructed from mπ (r). This can then be used to construct
the site densities on the molecular branch containing c4. For

FIG. 18. Diagrams for solving site density of bead c4 by
combining the contributions from (a) mπ (r) diagram and (b) branch
end segment distribution c(5,r). (c) Normalized site density for c4 in
a cation chain.

example, Fig. 18(c) gives the normalized overall site density
for bead c4,

nc4(r)/nb = eλb
c−λc(r)

4πσ 2

∫
mπ (r′)δ(|r − r′| − σ ) dr′c(5,r).

(C2)

Site densities for other beads along the branch can be easily
determined by propagating towards the end of chain.

While we began with the intention of deriving a DFT for as-
sociating ions, the methodology derived above is more general,
allowing us to treat much more complicated systems, such as
branched polyelectrolytes with polydispersity. Furthermore, it
is clear that association or polymerization of the anion moiety
can also be treated in a similar fashion. However, we will
focus for now on the system of π -π associated cations, which
is expected to follow a SF distribution corresponding to n = 0
in Eq. (B8),

F (L) = 1

〈L〉b
e
− L

〈L〉b . (C3)
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