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We present a mode-coupling theory (MCT) for the slow dynamics of two-dimensional spherical active
Brownian particles (ABPs). The ABPs are characterized by a self-propulsion velocity v0 and by their translational
and rotational diffusion coefficients Dt and Dr , respectively. Based on the integration-through-transients
formalism, the theory requires as input only the equilibrium static structure factors of the passive system (where
v0 = 0). It predicts a nontrivial idealized-glass-transition diagram in the three-dimensional parameter space of
density, self-propulsion velocity, and rotational diffusivity that arise because at high densities, the persistence
length of active swimming �p = v0/Dr interferes with the interaction length �c set by the caging of particles.
While the low-density dynamics of ABPs is characterized by a single Péclet number Pe = v2

0/DrDt , close to
the glass transition the dynamics is found to depend on Pe and �p separately. At fixed density, increasing the
self-propulsion velocity causes structural relaxation to speed up, while decreasing the persistence length slows
down the relaxation. The active-MCT glass is a nonergodic state that is qualitatively different from the passive
glass. In it, correlations of initial density fluctuations never fully decay, but also an infinite memory of initial
orientational fluctuations is retained in the positions.
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I. INTRODUCTION

The collective dynamics of self-propelled particles and the
related behavior of dense suspensions of microswimmers have
received an increasing amount of attention in the past few
years. The physical principles of this dynamics are relevant
for many biophysical questions. For example, mechanisms at
work in wound healing (tissue repair) have been likened to the
collective dynamics found in model microswimmer systems
[1–6]. The collective dynamics of cells, bacteria colonies, or
that found in the cell cytoskeleton show slow dynamics. It
can be associated with the slow dynamics that arises from
crowding effects at high densities and from the approach to a
glass or jamming transition [7–13].

Colloidal self-propelled particles provide paradigmatic
model systems to study the qualitative effects of swimming and
generic features of a broad class of intrinsically nonequilibrium
matter. In experiment, suspensions of self-phoretic Brownian
particles are a good realization of this model. Half-capped
Janus particles offer a surface-mediated mechanism to convert
energy provided by light fields or chemical fuel into directed
motion, superimposed on the Brownian translational and
rotational diffusion of passive colloids [14–19].

One of the simplest theoretical models in this context is
that of active Brownian particles (ABPs) [20,21]. These are
orientable colloidal particles that undergo passive translational
and rotational Brownian motion and in addition an active
drift along a body-fixed orientation axis due to intrinsic
self-propulsion forces. In two spatial dimensions, particles
are described by their positions �ri and orientation angles θi

with respect to a fixed direction in space. Here i = 1, . . . N

labels the particles. The equations of motion read, in the case
of spherically symmetric interaction forces,

d�ri = �Fi/ζdt +
√

2Dtd �Wi + v0�o(θi)dt, (1a)

dθi =
√

2DrdWθi
, (1b)

where �o(θ ) = (cos θ, sin θ )T is the orientation vector. We will
abbreviate �oi = �o(θi). The elements of dW are independent
Wiener processes and the �Fi are the interaction forces. The
friction coefficient ζ = 1/βDt is taken to obey the fluctuation-
dissipation theorem for the translational Brownian motion
of the passive-particle system, with inverse temperature β.
The key parameters characterizing the dynamics of a single
spherical ABP are Dt , Dr , and v0, the translational short-
time diffusion coefficient, the rotational diffusion coefficient,
and the self-propulsion velocity, respectively. Although for
a passive colloid Dr and Dt are coupled due to the hydro-
dynamics of the solvent, for spherical ABPs it makes sense
to treat Dr as an independent model parameter. Different self-
propulsion mechanisms impose different persistence effects on
the orientation that can be captured by varying the persistence
time 1/Dr [22].

We focus on spherical ABPs with strongly repulsive
interactions. The steric interactions are modeled by the
equilibrium structure of a hard-sphere suspension and we
ignore hydrodynamic interactions between the particles. At
high densities, such systems (with suitable size polydispersity)
are known from simulation to form glasses [23–25], as do
related active-particle models [6,21,26–30].

The ABP model is a clean and therefore paradigmatic
model where nonequilibrium forces couple the rotational to the
translational degrees of freedom. Theoretical treatments of the
collective dynamics so far proceed by various approximations
that amount to coarse graining or integrating out the rotational
degrees of freedom with various levels of accuracy. In this
paper, we develop a theory to describe the glass transition and
the dynamics in its vicinity, which resolves both positional-
density and orientational fluctuations and thus takes the
coupling in Eqs. (1) seriously, as one should do, so we argue,
at high densities. Furthermore, the theory that we present here
can be evaluated using as input quantities only the well-known
structure functions of the passive-equilibrium high-density
system.
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At low and moderate densities the ABP model has been
extensively studied (see, e.g., Refs. [31–47]). An effective-
diffusion limit can be performed at large time scales Drt � 1
to map the dynamics of the dilute system onto Brownian
motion with an effective-diffusion coefficient Deff = Dt +
Dact = Dt (1 + Pe/2), where Pe = v2

0/DrDt defines the rele-
vant Péclet number and Dact = v2

0/2Dr is an activity-induced
diffusivity. Accounting for this enhancement of diffusivity,
many properties of dilute ABP suspensions and their phase
behavior can be explained [39,41,48,49]. The mapping, how-
ever, requires that all relevant length scales in the problem
are large compared to the persistence length (or swim length)
�p = v0/Dr and that one probes the system on length scales
larger than that [42,43,47].

The high-density dynamics of ABPs is less well explored.
To describe glassy behavior of active systems, theories of the
glass transition have been extended from the passive near-
equilibrium case to include self-propulsion [29,46,50–55],
using different models and various approximations. One par-
ticular reference point for the passive Brownian system is the
mode-coupling theory of the glass transition (MCT), both in
three dimensions (3D) [56,57] and in 2D [58]. Mode-coupling
theory has been extended to deal with spherical ABPs in the
effective-diffusion limit [51]. In this limit, the equations of
motion (1) can be formally reduced to eliminate the orientation
angles θi as explicit variables, in a procedure akin to the well-
known reduction of the phase-space Langevin equation to the
configuration-space Brownian dynamics. One obtains d�ri =
�Fi/ζ + √

2Deffd �Wi . From the fact that ζ �= 1/βDeff, Farage
and Brader [51] obtained an activity-dependent prefactor in the
MCT memory kernel. This MCT approach was later extended
to mixtures of active and passive particles [59]. Activity enters
this theory only through the Péclet number Pe. It predicts a
shift of the glass transition to higher densities, in qualitative
agreement with simulation results.

However, the approach to a glass transition implies transient
caging of particles on a length scale �c ∼ 0.1σ (where σ is a
typical particle size), over increasingly long times. It is not
evident that the effective-diffusion approach remains valid as
the condition �c < �p is easily violated for typical swim speeds
used in simulation and experiment. This calls for a theoretical
treatment that starts directly from Eq. (1), rather than from a
further reduced description of the dynamics.

Besides the ABPs, another well-studied model of active
glasses is that of active Ornstein-Uhlenbeck particles (AOUPs)
[27–30,52,60,61]. Here particles are described by their po-
sitions and an activity vector that represents the swimming
direction and evolves according to an Ornstein-Uhlenbeck
process providing colored noise for the evolution of the
positions. In the athermal reference case, passive Brownian
motion is neglected, so particles only move due to activity.
The model thus belongs to a class where activity is modeled as
leading to a persistent random walk of the particles [62–64]. A
theoretical treatment based on MCT was established [52] under
the simplifying assumption that the particle positions evolve on
a time scale larger than the time scale governing the evolution
of the activity vector. This is not unlike the effective-diffusion
approximation made in previous studies of high-density ABP
systems. In similar spirit, a MCT for the thermal AOUP model
was derived recently using a quasiequilibrium approximation

[65]. These theories require as input from simulation not
only the nonequilibrium static structure factors, but also
information on the velocity correlations that needs to be
obtained from computer simulation. (For a more recent MCT
based on a separate treatment of correlation and response
functions, see Ref. [55].) Predictions of the athermal AOUP
MCT of Ref. [52] have been tested in computer simulation
[61]. The relaxation times close to the glass transition were
found to depend nonmonotonically on the persistence time of
the active motion [29]. This appears to be different for ABPs,
since present simulation results do not show a nonmonotonic
change of relaxation times with changing 1/Dr [23]. Thus the
connection among different models of active colloidal systems
remains to be studied in more detail.

The MCT of spherical ABPs that we develop in the
following treats both the positional and orientational degrees of
freedom on equal footing. This avoids the reduction to a near-
equilibrium or an effective-diffusion description and allows us
to study the qualitative effects of self-propulsion of various
persistence lengths in the high-density regime. In particular,
it allows us to study the limits Dr → 0 and Dr → ∞ as
interesting reference cases [66] that provide valuable insight
into the mechanisms by which swimming modifies the caging
dynamics. Our approach is based on the integration-through-
transients (ITT) formalism as a formal approach to deal with
the self-propulsion force as an arbitrarily strong perturbation of
the passive-equilibrium dynamics. Within ITT, the only input
required for MCT is the passive-equilibrium static structure
factor S(q), allowing us to construct [in conjunction with a
suitable liquid-state theory for S(q)] a parameter-free (albeit
approximate) theory of ABPs.

The paper is organized as follows. In Sec. II we derive
the MCT for two-dimensional spherical ABPs, including
rotational degrees of freedom. Section III shows numerical
results for the dynamical density correlation functions close to
the glass transition. Section IV is devoted to a discussion of the
dependence of the glass-transition point on activity. Section V
summarizes.

II. MODE-COUPLING THEORY

The statistical information of the dynamics of a system
composed of N spherical ABPs is encoded in the Smolu-
chowski equation for the configuration-space distribution
function p(�,t), i.e., the probability density that corresponds
to the Markov process described by the stochastic differential
equations (1). Here � = (�r,�θ ) = (�r1, . . . ,�rN ,θ1, . . . ,θN )
labels points in configuration space. There holds ∂tp(�,t) =
	(�)p(�,t) with the Smoluchowski operator (in two spatial
dimensions)

	 =
N∑

j=1

Dt
�∇j · ( �∇j − β �Fj ) + Dr∂

2
θj

− v0 �∇j · �o(θj )

= 	eq(Dt,Dr ) + δ	(v0), (2)

where δ	(v0) = −v0
∑

j
�∇j · �o(θj ) is the term that represents

the active motion. The interaction forces are assumed to
follow from a spherically symmetric interaction potential
�Fj = −�∇jU (�r ).
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Equation (2) for v0=0 describes the passive Brownian
system. It admits the equilibrium solution peq(�r ) ∝
exp[−βU (�r )]. The ITT formalism expresses averages of
observables in the nonequilibrium system through historical
integrals involving transient correlation functions, i.e., cor-
relation functions that contain the full nonequilibrium time
evolution but are taken with the equilibrium distribution
function. The starting point of ITT is the identity exp[	 t] =
1 + ∫ t

0 dt ′ exp[	 t ′] 	. Using this identity to rewrite p(t) =
exp[	 t]p(0), and assuming that for t = 0 the system starts in
equilibrium, one gets a generalized Green-Kubo formula for
any observable A. For the special case of the spherical ABP
system,

〈A〉t = 〈A〉eq − βv0

∫ t

0
dt ′

〈
N∑

j=1

�oj · �Fje
	† t ′A

〉
eq

. (3)

For example, the density-dependent collective swim speed of
ABPs, a quantity that enters coarse-grained descriptions of
the phase behavior, can be expressed in the form of Eq. (3)
[67]. The desire to evaluate expressions like this prompts the
development of a theory of transient correlation functions. In
the following, we will drop the subscript “eq” and implicitly
perform all averages over the equilibrium distribution.

The collective motion of the particles is described by the
local density fluctuations �(�r,θ ) = ∑N

j=1 δ(�r − �rj )δ(θ − θj )
and their Fourier transform

δ�l(�q ) =
N∑

j=1

ei �q·�rj eilθj /
√

N, (4)

with integer angular indices l = −∞, . . . ,∞. We assume the
system to remain in a homogeneous, translationally invariant,
and isotropic state. Then the equilibrium static structure factor
matrix depends on the wave vector only through q = |�q |,

Sll′ (q) = 〈δ�∗
l (�q )δ�l′(�q )〉. (5)

Also the two-point density correlation functions are diagonal
in wave-vector space under these conditions. Since the
interaction potential is spherically symmetric, the matrix S(q)
takes the simple form

Sll′ (q) = δll′ (1 + δl0(Sq − 1)), (6)

i.e., it is the unit matrix with its (00) element replaced by Sq ,
the usual static structure factor of the equilibrium system of
spherical particles.

The time-dependent transient density correlation functions
are defined as

Sll′ (�q,t) = 〈δ�∗
l (�q )e	† t δ�l′ (�q )〉. (7)

Here the adjoint (or backward) Smoluchowski operator pro-
vides the temporal evolution

	† =
N∑

j=1

Dt ( �∇j + β �Fj ) · �∇j + Dr∂
2
θj

+ v0�oj · �∇j . (8)

We use the convention that this operator acts on everything
to its right, but not on the distribution function itself. There
S(�q,0) = S(q) holds. The normalized correlator is defined by
�(�q,t) = S(�q,t) · S−1(q).

The correlation functions are defined in a specific laboratory
frame of reference, with respect to which particle orientations
are measured. For this reason, the correlation functions depend
a priori on the direction of the wave vector �q. However, simple
transformation rules hold to transform the correlators to a
rotated reference frame. Consider a rotation around an angle
α, �r �→ �r ′ = D(α) · �r and θ �→ θ ′ = θ + α, with D · DT = 1
a rotation matrix. This changes δ�l(�q ) �→ δ�l(�q ′) exp[ilα],
where �q ′ = D · �q. The transformation is thus given by a uni-
tary representation u(α) of the orientation group SO(1), given
by ull′ = exp[−ilα]δll′ . [There holds u(α) · u(β) = u(α + β),
u(α)u†(α) = 1, u(0) = 1, and u(α + 2π ) = u(α), as well as
det u = 1.] One easily shows that the Smoluchowski operator
itself is invariant under rotation 	(�) = 	′(�′), separately
in all its terms. To see this, recall �∂ ′ · �o(θ ′) = (D−1 · �∂) ·
�o(θ + α) = �∂ · D · �o(θ + α) = �∂ · �o(θ ). Under rotation, the
equilibrium distribution function remains invariant and thus
one obtains the transformation rule

S(�q,t) �→ u(α) · S(�q ′,t) · u†(α). (9)

We will make use of this relation to restrict the discussion of the
correlation functions to wave vectors aligned with a particular
spatial direction, chosen by �q = q�ey . Note that Eq. (9)
confirms that S00(q,t) is in fact invariant under rotations.

An equation of motion for S(�q,t) can be derived using the
Mori-Zwanzig projection operator formalism. Observe that
the equilibrium average equips the space of observables with a
scalar product 〈δA|δB〉 ≡ 〈δA∗δB〉. With this, one introduces
the projection operator onto density fluctuations

P =
∑
l1l2

δ�l1
(�q )〉S−1

l1l2
(q)〈δ�∗

l2
(�q ) (10)

and sets Q = 1 − P . One now writes ∂t exp[	† t] =
	†(P +Q) exp[	† t] and rewrites the second term using the
Dyson decomposition

e	† t = e	† Q t +
∫ t

0
dt ′e	† Q(t−t ′) 	† P e	† t ′ (11)

to obtain

∂t S(�q,t) = −ω(�q ) · S−1(q) · S(�q,t)

+
∫ t

0
dt ′ K (�q,t − t ′) · S−1(q) · S(�q,t ′), (12)

where ω(�q ) generalizes the collective diffusion matrix

ωll′ (�q ) = −〈δ�∗
l (�q ) 	† δ�l′(�q )〉

= (q2Dt + l2Dr )δll′ − iqv0

2
e−i(l−l′)ϑq Sll(q)δ|l−l′ |,1,

(13)

writing �q = q(cos ϑq, sin ϑq)T . The memory kernel K (�q,t) is
given by

Kll′(�q,t) = 〈δ�∗
l (�q ) 	† Q eQ	† Q t Q	† δ�l′ (�q )〉. (14)

It describes the renormalization of the diffusion matrix due to
many-body interactions.

For small density ρ = N/V → 0 (where V is the system
volume), the memory kernel in Eq. (12) vanishes. Also, the
distinction between transient and stationary density correlation
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functions can be dropped. The formal solution S(�q,t) =
exp[−ω(�q )t] then agrees with the exact solution of the
Smoluchowski equation in terms of spheroidal wave functions
in 3D (which reduce to Mathieu functions in 2D) [47].

The slowing down of the dynamics close to a glass transition
is driven by slow positional-density fluctuations. This suggests
the splitting of the time-evolution operator 	 = 	T (Dt,v0) +
	R(Dr ). The matrix elements of the translational and ro-
tational parts will be written as ω(�q ) = ωT (�q ) + ωR(�q ),
i.e., ωR,ll′ (�q ) = l2Drδll′ . Correspondingly, we decompose
the memory kernel into four contributions K (t) = K T T (t) +
K T R(t) + KRT (t) + KRR(t), given by replacing the operators
	† appearing to the right and to the left of the reduced
propagator in Eq. (14) by their decompositions.

Since in our model of spherical ABPs the rotational degrees
of freedom never slow down, all contributions to the memory
kernel involving 	

†
R vanish and K (t) = K T T (t) holds. This

is explicitly checked by noting that 	
†
R is self-adjoint with

respect to the Boltzmann-weighted scalar product and that
	

†
R δ�∗

l (�q ) = −Drl
2δ�∗

l (�q ). Since K (t) evolves explicitly in
the subspace orthogonal to the one-point density fluctuations,
the contributions arising from 	

†
R vanish in the present case.

To describe the slow dynamics arising from a coupling of
translational modes, we follow the standard procedure of MCT
and rewrite the diffusion kernel K T T (t) in terms of a friction
kernel. To do so, we introduce a further projector

P ′ = −
∑
l1l2

δ�l1
(�q )〉ω−1

T ,l1l2
(�q )〈δ�∗

l2
(�q ) 	

†
T . (15)

We now decompose the propagator that appears in Eq. (14)
according to

eQ	
†
T Q t = eQ	

†
T Q′ Q t +

∫ t

0
dt ′eQ	

†
T Q(t−t ′)

× Q	
†
T P ′ Q eQ	

†
T Q′ Q t ′ . (16)

This results in

K T T (�q,t) = M(�q,t) −
∫ t

0
K T T (�q,t − t ′) · ω−1

T (�q ) · M(�q,t ′),

(17)

where we have defined the friction memory kernel

Mll′ (�q,t) = 〈δ�∗
l (�q ) 	

†
T Q eQ	

†
T Q′ Q t Q	

†
T δ�l′(�q )〉. (18)

Note that M(�q,t) and K T T (�q,t) only differ in their time
evolution. In the context of passive Brownian particles, the
operator appearing in the exponential of Eq. (18) is also
referred to as the one-particle irreducible Smoluchowski
operator [68].

Equations (12) and (17) can be combined to a time-
evolution equation for the density correlation functions that
is a suitable starting point for approximations of the slow
dynamics arising from the slow evolution of positional-density
fluctuations,

ω−1
T (�q ) · ∂t S(�q,t) + [S−1(q) + ω−1

T (�q ) · ωR] · S(�q,t)

+
∫ t

0
dt ′m(�q,t − t ′) · [∂t ′ S(�q,t ′) + ωR · S(�q,t ′)] = 0.

(19a)

Here we have used that ωR · S−1(q) = ωR for the spherical
ABP system we consider and abbreviated

m(�q,t) = ω−1
T (�q ) · M(�q,t) · ω−1

T (�q ). (19b)

Equations (19) are the starting point of mode-coupling approx-
imations for glassy dynamics. Setting v0 = 0, the matrices all
become diagonal (since 	

†
T does not mix translational and

rotational degrees of freedom in this case) and one recovers
for S00(q,t) the standard Mori-Zwanzig equation used to derive
MCT for Brownian spherical particles.

Rotational diffusion appears in Eqs. (19) in the form of a
hopping term in the MCT language, viz., the last term under
the integral in Eq. (19a). This term causes a considerable
complication in the analysis of the MCT equation of motion,
but it has a clear physical significance: By construction of the
spherical ABP model, rotation remains unhindered even in the
dense system and even in the glass and therefore the associated
density fluctuations for l �= 0 need to decay (exponentially) on
a time scale 1/l2Dr . The last term in Eq. (19a) ensures this.

The original MCT only contains a convolution of the
memory kernel with the time derivative of the density
correlation function, viz., the first term under the integral in
Eq. (19a). In this form the equations allow for an ideal glass
transition: There exist solutions with a nonzero long-time limit
limt→∞ S(�q,t) = F(�q ) �= 0. Note that, despite the hopping
term, Eq. (19) still allows for an ideal glass transition for all
transient density correlation functions Sll′ (�q,t) with l = 0. This
is a feature that is qualitatively different from previous MCT
treatments (even of driven systems), where either no hopping
term is present or the (phenomenological) inclusion of hopping
causes all correlators to decay. It is a feature of standard
MCT that all density-relaxation modes are strongly coupled
and governed by the same scaling relations asymptotically. In
the present theory, this coupling is broken with regard to the
indices l by the appearance of a singular hopping matrix ωR .

The MCT approximation now consists of two intertwined
steps. First the fluctuating forces Q	

†
T δ�l(�q ) that appear in

M(�q,t) are replaced by their overlap with density-fluctuation
pairs. Using the shorthand notation δ�1 ≡ δ�l1

(�q1), one intro-
duces the pair-density projector

P2 =
∑

1,2,1′,2′
δ�1δ�2〉χ121′2′ 〈δ�∗

1′δ�
∗
2′ (20)

with a suitable normalization matrix χ . Second, the resulting
dynamical four-point correlation functions that involve the
reduced dynamics are replaced by the product of two-point
correlation functions propagated by the full dynamics,

〈δ�∗
1δ�

∗
2e

Q	
†
T Q′ Q t δ�1′δ�2′ 〉

≈ 〈δ�∗
1e

	† t δ�1′ 〉〈δ�∗
2e

	† t δ�2′ 〉 + {1′ ↔ 2′} (21)

together with a consistent approximation of χ . For a detailed
derivation of the MCT expression for the memory kernel, we
refer to Appendix A. One gets

mll′(�q,t) ≈ ρ

2

∫
d2k

(2π )2

∑
l1l2l

′
1l

′
2

V†
ll1l2

(�q,�k, �p )

× Sl1l
′
1
(�k,t)Sl2l

′
2
( �p,t)Vl′l′1l

′
2
(�q,�k, �p ), (22)
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with coupling coefficients (vertices) V†
ll1l2

(�q,�k, �p ) = ∑
m

[ω−1
T (�q )]lmW†

ml1l2
(�q,�k, �p ) and Vll1l2 (�q,�k, �p ) = ∑

m(ω−1
T )

lm(�q )Wml1l2 (�q,�k, �p ). These are given in terms of the
equilibrium static structure, viz.,

W†
ll1l2

(�q,�k, �p ) = Dtδl,l1+l2 (�q · �kcl1l1 (k) + �q · �pcl2l2 (p))

+ iv0

2ρ
δ|l−l1−l2|,1Sl1l1 (q)[ke−i(l−l1−l2)ϑk

× S̃l1,l−l2 (k) + pe−i(l−l1−l2)ϑp S̃l2,l−l1 (p)

− qe−i(l−l1−l2)ϑq ], (23)

where we have defined S̃ll′(k) = S−1
ll (k)Sl′l′ (k). Here c00(q)

is the direct correlation function defined by S(q) = 1/[1 −
ρc(q)] and all other elements of cll′ (q) vanish. The vertex W
is the same as in equilibrium,

Wll1l2 (�q,�k, �p ) = Dtδl,l1+l2 (�q · �kcl1l1 (k) + �q · �pcl2l2 (p)). (24)

It differs from W† because the time-evolution operator 	† is
not self-adjoint with respect to the scalar product defined by
the equilibrium averages.

For v0 = 0, these equations reduce to the equilibrium MCT
expressions. In particular, in this case V = V† no longer
explicitly depends on Dt . In the active case v0 �= 0 one readily
checks that the explicit dependence on Dt still cancels in the
memory kernel if the self-propulsion velocity is expressed in
terms of a Péclet number Pet = v0σ/Dt , where σ is a typical
particle diameter. There is no dependence on Dr in the memory
kernel and therefore the Péclet number Pe = v2

0/DtDr does
not assume the natural role in determining the MCT dynamics
that it has for the low-density system.

The MCT approximation preserves the transformation
properties of the correlation functions under rotation (9).
In fact, the same transformation law is required for all the
quantities that appear in the Mori-Zwanzig equation (12)
or (19a). In particular, ω(�q ) �→ u(α) · ω(�q ′) · u†(α) is easily
checked. For the MCT vertices, a straightforward calculation
showsW†

ll1l2
(�q,�k, �p ) �→ W†

l′l′1l
′
2
(�q ′,�k ′, �p ′)ull′(α)u†

l′1l1
(α)u†

l′2l2
(α)

and equivalently for Wll1l2 (�q,�k, �p ), i.e., all terms that appear
in the MCT expression for m(�q,t) transform like tensors.

The fact that the MCT approximation preserves the trans-
formation properties of the correlation functions under rotation
allows us to pick a coordinate system where �q is aligned
along a coordinate axis, say, �q = q�ey . By using the unitary
transformation property, all correlation functions entering the
MCT memory kernel can be rewritten in terms of those
evaluated with �q aligned along the same axis. This allows
to reduce the numerical calculation to wave vectors along a
single spatial axis.

The MCT equations have been solved numerically on a
grid of 128 wave numbers equally spaced up to |�q | � Q with
Qσ = 50. For numerical stability, the first five grid points are
dropped in the calculation of the memory kernel. In angular
indices, we use a cutoff |l| � L, with L = 1. Some results
have been checked with L = 2 and the effects on �00(�q,t)
were minor. The presence of the hopping term with its singular
structure (imposed by ωR,00 = 0) poses a numerical problem
at long times. We have developed an extension of the standard

algorithm that is usually employed to solve MCT equations,
which we outline in Appendix B.

To determine the MCT vertex, the equilibrium static struc-
ture factor is needed. In odd dimensions, the Percus-Yevick
approximation provides a reasonably accurate analytical ex-
pression. However, in even dimensions, no such analytical
solution is known. We use the Baus-Colot expression for S(q)
that is known to be close to simulation data [69].

We fix units of length and time by the particle diameter
σ = 1 and the translational free-diffusion time σ 2/Dt = 1.
Densities are reported as packing fractions φ = (π/4)ρσ 2.
With the chosen parameters, we obtain a glass transition in
the passive hard-disk system at a critical packing fraction
φc ≈ 0.7208(1). This is slightly different from the value
φc ≈ 0.697 that was reported from earlier MCT calculations
[58]. In comparison to this work, we have improved the
numerical evaluation of the wave-vector integrals appearing
in the MCT memory kernel; see Appendix B for details.

III. DYNAMICS

Exemplary MCT results for the density correlation func-
tions �00(�q,t) are shown in Fig. 1. A wave number qσ = 8
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FIG. 1. Transient density correlation functions �00(q,t) of a hard-
disk ABP system within MCT, at wave number qσ = 8 and for Dr =
1: (a) functions at constant packing fraction φ = 0.721 above the
passive glass transition, for increasing v0 (right to left) as labeled, and
(b) functions at constant self-propulsion velocity v0, for increasing
packing fraction (left to right).
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in the vicinity of the main peak of the equilibrium S(q) was
chosen. The density correlation functions show the qualitative
features expected for dense colloidal suspensions nearing
dynamical arrest: After an initial relaxation, a plateau emerges
at high densities that extends over an increasingly large
intermediate-time window as the density is increased. The
final relaxation from this plateau to zero is termed structural
relaxation and its characteristic time increases strongly with
increasing density. At the highest densities shown, structural
relaxation becomes ineffective and is not seen over the full
time window accessible to the numerical solution scheme.
Hence, limt→∞ S00(�q,t) = F00(�q ) > 0. This nonzero positive
nonergodicity parameter signals the appearance of an ideal
glass.

With increasing self-propulsion velocity v0, the dynamics
speeds up, as shown in Fig. 1(a). Self-propulsion renders
the particle motion more vivid and this opposes the slow
dynamics. This result is also qualitatively consistent with
earlier Brownian-dynamics (BD) simulation studies of three-
dimensional ABPs [23]. (Note that, there, stationary-state
nonequilibrium correlation functions were reported, while the
central objects of our MCT are the transient nonequilibrium,
equilibrium-averaged correlation functions.)

For small enough self-propulsion velocity, the glass remains
stable at sufficiently high density. This is exemplified by
Fig. 1(b), where curves for constant v0 = 0.5Dt/σ are shown.
At the highest packing fractions shown, no sign of structural
relaxation can be seen in the numerical results over the time
window covered in the figure.

Hence, for small enough but finite v0 MCT predicts an ideal
active glass. As Fig. 1(b) demonstrates, the signature of the
transition to this active glass is qualitatively as for the passive
ideal glass: With increasing density at fixed v0, structural
relaxation dramatically slows down until it completely arrests
at the transition density φc. Further increasing the density
causes the nonergodicity parameter to increase. The ideal glass
transition is discontinuous in the sense that the long-time limit
of the density correlation functions jumps from zero in the
liquid (φ < φc) to a finite value at φc.

These results suggest that there is a line of ideal glass tran-
sitions (φc,vc

0) in the density–self-propulsion plane. This line
shifts to increasing density with increasing v0. Qualitatively,
this result was derived in earlier extensions of MCT that do not
account for orientational degrees of freedom explicitly [51].

With the present approach, the influence of the rotational
diffusion coefficient on the dynamics can be studied. Figure 2
exemplifies the effects of increasing Dr on the dynamics at
fixed self-propulsion velocity. Keeping the other parameters
fixed, an increase in Dr leads to a slowing down of the
structural-relaxation dynamics. Qualitatively, this is expected
from the argument that faster reorientation of the individual
particles causes the self-propulsion to be less effective in
melting nearest-neighbor cages, since for the latter process
a certain persistence of the self-propulsion force in a specific
direction needs to be maintained. In other words, a decrease
in persistence time 1/Dr causes the system to be less active
in the regime of structural relaxation. The slowing down
with increasing Dr (i.e., decreasing persistence time) is more
pronounced at higher densities: While at φ = 0.7 the final
relaxation of the curves shown in Fig. 2 spreads out by about a
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FIG. 2. Density correlation functions �00(�q,t) for packing frac-
tions φ = 0.7, 0.713, 0.718, and 0.729 (groups of lines from left
to right) for qσ = 8 and self-propulsion velocity v0 = 3Dt/σ for
different values of the rotational diffusion coefficient Dr = 1/1000,
1, and 10 (dashed, solid, and dotted lines). The inset provides a
close-up of the φ = 0.729 curves.

factor 2, the same change in Dr causes the structural-relaxation
time to change by a factor of about 10 at φ = 0.718.

The structural relaxation dynamics of the weakly active
system shows the same qualitative features as they are known
from the passive system. In particular, the structural relaxation
process can be well described by a stretched-exponential
function in time for the cases shown in Figs. 1 and 2. It is
known from the passive system that density fluctuations with
wavelengths comparable to the particle size govern the slow
dynamics.

For the active system, the persistence of self-propulsion
sets another length scale �p = v0/Dr . This suggests that we
should discuss the effect of density fluctuations on length
scales much larger than, comparable to, and much smaller
than the persistence length. Let us introduce a rescaled wave
number q̃ = q�p/2π . The low-density dynamics of ABPs
exhibits three distinct regimes [47]. For q̃ � 1, one probes
the dynamics on length scales large compared to �p and
hence one sees diffusive relaxation with a diffusion coefficient
Deff(Pe). For small length scales, probed by q̃ � 1, the initial
Brownian passive diffusion of the ABP is seen and the density
correlators decay diffusively, with diffusion coefficient Dt .
Activity causes an intermediate regime q̃ ≈ 1 to appear, where
the persistent swimming motion affects the relaxation of
density fluctuations. Over the length scales probed in this
regime, particles swim in a fixed direction and cause density
fluctuations to decay in a damped-oscillatory fashion, leading
to pronounced undershoots in the final relaxation.

The influence of high-density interactions on this single-
particle picture is examined in Fig. 3. Here state points close
to the glass transition were chosen and to make a connection
to the low-density theory, different activities along a cut with
constant Péclet number Pe = 32 are shown. Figures 3(a)–3(f)
correspond to increasing self-propulsion velocity [from
Figs. 3(a) to 3(f)] and at fixed Pe, these correspond to
decreasing persistence lengths. Essentially, the low-density
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FIG. 3. Wave-number dependence of the transient density corre-
lation functions �00(q,t) for packing fraction φ = 0.719 just below
the passive glass transition and different velocities as labeled, keeping
the Péclet number Pe = v2

0/DrDt = 32 fixed. The values are (a)
(v0,Dr ) = (8,2), (b) (v0,Dr ) = (12,4.5), (c) (v0,Dr ) = (20,12.5),
(d) (v0,Dr ) = (48,64), (e) (v0,Dr ) = (80,200), and (f) (v0,Dr ) =
(160,800). Wave numbers q̃ = q�p/2π are given in units of the
persistence length �p = v0/Dr and increase from right to left (in
the top part of the curves): (a) �p = 4, (b) �p = 2.67, (c) �p = 1.6,
(d) �p = 0.75, (e) �p = 0.4, and (f) �p = 0.2. Correlators are shown
as functions of rescaled time t/τrot with the time scale set by the
orientational diffusion τr = 1/Dr .

scenario is recovered for the case �p < σ , i.e., for large
self-propulsion velocity. There structural arrest is effectively
destroyed by active driving and the correlation functions decay
on a time scale τrot = 1/Dr , showing oscillations around q̃ ≈ 1
[cf. Figs. 3(e) and 3(f)].

For large persistence length �p � σ , Figs. 3(a) and 3(b)
demonstrate that the low-density scenario is absent. Here all
correlation functions decay without oscillations. This result
can be interpreted as showing that once the interparticle
length scale becomes smaller than �p, density fluctuations can
no longer be translated by persistent motion; they relax by
the combination of diffusion and activity-modified structural
interactions. Coincidentally, for the �p � σ cases shown in
Fig. 3, the intermediate-time plateau of structural relaxation
begins to emerge at large q̃ (corresponding to intermediate
qσ ).

The appearance of oscillatory relaxation in the density
correlation functions of a Brownian system is a clear signature
of nonequilibrium dynamics. Recall that the equilibrium
Smoluchowski operator 	eq is negative semidefinite, i.e., it has
nonpositive real eigenvalues only. As a result, the equilibrium
autocorrelation functions are completely monotonic functions:
They can be written as superpositions of purely relaxing
exponential functions with positive weights. This is a feature
that is preserved under the MCT approximation [70,71]. The
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FIG. 4. Matrix elements of the transient density correlation
matrix �(�q,t) at fixed packing fraction φ = 0.721 and rotational
diffusion Dr = 1Dt/σ

2 for increasing v0 (as indicated by arrows).
The inset provides a close-up of the off-diagonal components.

ITT approach we employ here allows us to account for the
change in the spectral properties of 	 that are induced by
active motion and are not captured by the effective-diffusion
approximations of earlier theories [51,65]. Note that similar
nonequilibrium signatures were seen in the relaxation patterns
of sufficiently strongly sheared systems [72] and of a driven
probe particle in a passive suspension [73].

To highlight the dynamics of the reorientational degrees of
freedom, we show in Fig. 4 the matrix elements of �ll′ (�q,t)
for |l| � 1. Only positive l and l′ are shown for simplicity
and the case l = l′ = 0 is repeated from above for reference.
The (ll′) = (11) correlator reflects the decay of orientational
order. It decays on the time scale τrot = 1/Dr , with a final
exponential relaxation. This is expected since in the spherical
ABP model, rotation is not influenced by the packing of
particles. Note that the decay of �11(�q,t) is not that of a single
exponential; even at low densities and without self-propulsion,
�11(�q,t) ∼ exp[−q2Dtt] exp[−Drt]. In general, the (ll′) =
(11) correlator inherits a signature of the translational motion
for t � τrot, which is cut off by an exponential decay at t ∼ τrot.

The off-diagonal elements (ll′) = (01) and (10) of the
transient density correlation function behave differently from
each other. In equilibrium, the matrix of correlation functions
needs to be symmetric (as is the case, for example, in
the MCT developed for Newtonian nonspherical particles
[74–77]). This symmetry is lost in the present theory for
the transient (nonstationary) correlation functions because the
time-evolution operator is not self-adjoint with respect to the
equilibrium-weighted scalar product.

The off-diagonal elements vanish with v0 → 0, as expected
from the structure of the Smoluchowski equation for spherical
ABPs. Interestingly, the correlation function �01(�q,t) shows
nontrivial slow dynamics that is coupled to the slow dynamics
of the positional-density correlator �00(�q,t). In particular, it
displays structural relaxation that slows down beyond the time
scale τr over which orientational order decays. The correlation
function �10(�q,t) instead decays on the reorientational time
scale τrot.
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FIG. 5. Structural relaxation times τ (φ,v0,Dr ) as a function of
packing fraction φ for fixed v0 = 2Dt/σ and different Dr (as labeled
by the different symbols). Hexagons connected by a dashed line
correspond to the passive system.

This observation can be rationalized by the peculiar struc-
ture of the equations of motion of spherical ABPs: Orientations
influence the slow dynamics of the positions, but not vice
versa. Thus, the evolution of positional-density fluctuations
| exp[	† t]δ�0(�q )〉 will not be detectable in the subspace
spanned by the orientations 〈δ�1(�q )| for times t � τrot. On
the other hand, the impact of the time-evolved initial polar
order | exp[	† t]δ�1(�q )〉 on the positional-density fluctuations
of the system 〈δ�0(�q )| persists until the time of overall struc-
tural relaxation, hence S01(�q,t) = 〈δ�0(�q )| exp[	† t]δ�1(�q )〉
decays as slow as S00(�q,t).

The usual quantification of the slow dynamics is in terms
of the structural relaxation time τ . Following the operational
definition used in many studies of glassy dynamics, we define τ

as the time where the density-correlation function has decayed
to 1% of its initial value �00(�q,τ ) = 0.01.

Results for τ (φ) for a fixed self-propulsion velocity are
shown in Fig. 5. As anticipated from the discussion above, the
structural relaxation time strongly increases with increasing
packing fraction, in a power-law fashion that is the hallmark
of the approach to the MCT glass transition. At fixed v0,
increasing Dr increases the structural relaxation time. For
Dr → ∞, the τ -vs-φ curve corresponding to the passive
system is approached.

The data shown in Fig. 5 agree qualitatively with corre-
sponding three-dimensional results from BD simulations [23].
Again, similar results have been discussed for the AOUP
system [61] and glassy tissue models [6], although some
features of the dynamics may be quite different from those in
ABPs. This is not unexpected, because the fact that structural
relaxation times slow down as a power law upon approaching
an MCT glass transition is deeply rooted in the structure of the
theory and thus is a very robust prediction. In particular, also
the approach to the glass transition at fixed packing fraction
but decreasing v0 yields a power-law increase in the structural
relaxation time.

The influence of the persistence time 1/Dr on the structural
relaxation is further elucidated by discussing τ (1/Dr ) at fixed
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FIG. 6. Structural relaxation times τ as a function of the per-
sistence time 1/Dr for fixed self-propulsion velocities v0 (different
symbols as labeled) at packing fraction φ = 0.719.

self-propulsion velocity. The MCT results are shown in Fig. 6
and can be readily compared with results for the AOUP model
of Ref. [29]. There a nonmonotonic behavior was observed,
i.e., the relaxation time τ first decreased with increasing
1/Dr and then increased with further increasing 1/Dr . For
the ABP model, we obtain only an initial decrease of τ with
increasing 1/Dr , from the value corresponding to the passive
system to a smaller value that becomes independent of Dr

in the limit 1/Dr → ∞. That the initial decrease is seen
similarly in both models is due to the fact that in both cases,
passive Brownian motion is approached for 1/Dr → 0. Note,
however, that in the AOUP model (which does not include
thermal diffusion), the activity itself generates this Brownian
motion, while in the case of ABPs, activity becomes ineffective
compared to the translational diffusivity. One can rationalize
the different behavior at large 1/Dr in a similar vein: Recall
that in the AOUP model, activity is the sole driving force
beyond particle interactions and thus the infinitely persistent
motion is quite different from the one encountered in the
ABPs. Thus, infinitely persistent AOUPs can block themselves
(inhibiting structural relaxation), while a finite translational
diffusion coefficient Dt in ABPs will cause such blocking to
be ineffective.

The structural relaxation time depends on the wave number
of the density fluctuations. The q dependence of τ is shown for
a fixed density and various self-propulsion velocities in Fig. 7.
Both of the slow relaxation times for (ll′) = (00) and (01) are
shown. Here the definition �0l′ (�q,τ ) = 10−6 has been used to
account for the small magnitude of �01(�q,t). From the passive
case, it is known that τ (q) is an oscillating decaying function of
q, with oscillations in phase with those of the equilibrium static
structure factor S(q). This typical signature of glassy dynamics
is visible in Fig. 7 also for the active system. Increasing self-
propulsion velocity shifts the relaxation times to shorter values,
essentially by the same amount for all q for the range of
v0 shown. This emphasizes that the active enhancement of
structural relaxation in this case is a collective effect. Note that
here �p > σ , i.e., the results are for the regime in Fig. 3 where
density fluctuations cannot be shifted by persistent motion.
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FIG. 7. Structural relaxation times τ (φ,v0,Dr ) as a function of
wave number q for fixed Dr = 1Dt/σ

2 and various v0 as indicated
(increasing v0 from top to bottom). Solid lines are extracted from
the positional-density correlator �00(�q,t) and dashed lines from the
orientational correlator �01(�q,t).

The relaxation times of the (ll′) = (01) correlator (dashed
lines in Fig. 7) show the same qualitative behavior as those of
the (ll′) = (00) correlator. Approaching the glass transition, all
slow relaxation modes that are relevant within MCT become
strongly coupled, so one expects the approach to a common
scaling behavior. This can indeed be seen for v0 = 4Dt/σ

and v0 = 2Dt/σ in the figure. For the larger v0 = 8Dt/σ ,
the τ -versus-q curves corresponding to the two correlators
(l′ = 0 and l′ = 1) become identical at large q. At the same
time, the oscillations in q become slightly less pronounced.
This indicates that the dynamics on short length scales and
for strong self-propulsion loses its collective character and
becomes more incoherent.

IV. GLASS TRANSITION

The ideal glass transition is signaled by the appearance of
a nonzero nonergodicity parameter F(�q ) = limt→∞ S(�q,t) �=
0. In the standard MCT, one derives a separate algebraic
equation for F(�q ) from the long-time behavior of the equations
of motion. This assumes that the solutions S(�q,t) are slowly
varying functions such that the time derivatives of the
correlation functions become arbitrarily small at long times.
The same procedure applies here in the case Dr = 0, where
ωR = 0. Then one arrives at

F(�q ) + m(�q ) · [F(�q ) − S(q)] = 0, (25)

where we use the shorthand m(�q ) ≡ limt→∞ m(�q,t).
Equation (25) is a nonlinear implicit equation for F(�q ), since
m(�q ) is a bilinear functional of these matrices. Generically,
there appear bifurcation points where the physically relevant
solution of Eq. (25) changes from the liquidlike F(�q ) = 0
to some glasslike F(�q ) �= 0. These bifurcations indicate
idealized glass-transition points [56]. Note that Eq. (25) is
an algebraic equation that can be evaluated without solving
the time-dependent MCT equations.
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FIG. 8. Active-glass-transition lines obtained from power-law fits
to the structural relaxation times τ (φ) obtained from the transient
density correlators �00(�q,t). Symbols correspond to different choices
for Dr as labeled (increasing from bottom to top). Lines are fits with
vc

0 = A(Dr )
√

φc − φc
0, where φc

0 is the glass-transition point of the
passive system.

The presence of the term ωR �= 0 complicates the determi-
nation of the t → ∞ limit of S(�q,t). From a Laplace transform
of Eq. (19), one finds that the long-time limits need to obey

m(�q ) · ωR · F(�q ) = 0, (26a)

together with

F(�q ) + m(�q ) · [F(�q ) − S(q) + ωR S0(�q )] = 0, (26b)

where ωR S0(�q ) ≡ ∫ ∞
0 dt ωR · S(�q,t) is the integral over the

decaying matrix elements of the correlator. Here we have
assumed that the ultimate relaxation to the long-time value
is faster than algebraic, motivated by the presence of exponen-
tially decaying l �= 0 modes. Unlike Eq. (25), Eq. (26b) is no
longer an equation that involves only the long-time limits of
the correlators and their memory kernels; through ωR S0(�q ),
details on the full time evolution enter. Still, bifurcation
points in Eq. (26b) should signal idealized glass transitions,
and the asymptotic analysis of the MCT equations close to
these transition points proceeds in analogy to the passive
case [56]. However, with our current algorithm we found the
numerical evaluation of the bifurcation points of Eq. (26b) to
be too unstable, because they depend sensitively on a precise
evaluation of ωR S0(�q ).

We have therefore determined tentative glass-transition
points from extrapolations of the τ -vs-φ curves using the
expected asymptotic MCT power laws τ ∼ |φ − φc|−γ . All
three parameters (amplitude, exponent, and critical point) in
this asymptotic formula were allowed to depend on the model
parameters v0 and Dr . The results for various fixed Dr are
shown in Fig. 8 as glass-transition lines in the (φ,v0) plane.
The transition lines depend on both v0 and Dr explicitly and
we did not observe a collapse of the curves when either Pe or
�p was kept fixed.

Qualitatively, these extrapolations confirm the observations
made above: Increasing self-propulsion speed shifts the glass
transition to higher densities and increasing the rotational
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FIG. 9. Critical packing fraction φc(v0,Dr ) as a function of
persistence length �p = v0/Dr for various self-propulsion speeds v0

as labeled.

diffusion coefficient shifts the transition to larger v0. In
particular, as Dr → ∞, the glass-transition lines approach
a vertical line in the (φ,v0) plane, i.e., become independent
of v0 and identical to the passive φc. The functional form
of the vc

0(φc) curves in the window that is shown in Fig. 8
is well described by a square-root law. In other words, the
self-propulsion velocity causes a quadratic enhancement in
the glass-transition density. This might be expected based on
the symmetry argument that the dynamics of the system should
not change under the transformation v0 �→ −v0.

Figure 9 demonstrates the role of the persistence length
in changing the glass transition. Here the transition points φc

obtained by power-law extrapolations are shown for various
fixed v0 as functions of �p. In agreement with the discussion
above, the curves for different v0 separate at large �p. At fixed
persistence length, stronger self-propulsion is more effective
in shifting the glass transition to higher densities. As �p ap-
proaches zero, the glass-transition point of the passive system
is recovered for all v0. Interestingly, the point where the activity
dependence of the glass transition starts being significant is
close to the point where �p ≈ �c ≈ 0.1σ , i.e., the cage size.

For large �p, the extrapolated values of the critical den-
sity φc approach Dr -independent limiting values. A proper
analysis of this regime is difficult due to the fact that the
limits t → ∞ and τr → ∞ do not commute. We have checked
that our fits include at least some points where τ > τr for
the values shown in Fig. 9, but for v0/Dr � 104 numerical
instabilities make it impossible to rule out a crossover from one
apparent divergence seen for observation times up to t ∼ τr

to another one at even larger times. The φc shown in Fig. 9
certainly correspond to the experimentally relevant effective
glass-transition point.

Figure 10 summarizes the estimated glass-transition points
of the MCT transition of active hard disks as a critical surface
in the parameter space spanned by (1/φ, log10(1/Dr ),v0). This
choice is motivated by a recent study of self-propelled cells
in a Voronoi fluid model by Bi et al. [6]. In this model, a
self-adhesion parameter p plays the role of an inverse density.
In Ref. [6], an active-glass diagram was conjectured that
includes two limiting shapes for Dr → 0 and Dr → ∞ with a

φ−1 −
lo
g 10

(D
r
)

v0
Glass

Fluid

FIG. 10. MCT glass-transition surface for hard-disk ABPs, as
estimated from power-law fits of the structural relaxation time. The
gray shaded area below the surface is the glassy region.

crossover between them around Dr = 1. The numerical results
shown in Fig. 10 are in good agreement with the conjecture by
Bi et al. [6] over the range of Dr shown. A glass-transition
surface emerges that extends from a limiting line in the
(v0,1/φ) plane at Dr = 0. This is the glass transition given
by the bifurcation points of Eq. (25). The transition surface
bends upward to higher v0 as Dr increases beyond Dr ≈ 0.01.
From the discussion above, one expects the glass-transition
surface to bend over to a vertical plane as Dr → ∞ (i.e., to
the right of Fig. 10). This aspect is somewhat different from
what was suggested in Ref. [6] for the self-propelled Voronoi
fluid. Note that the dependence on Dr is quite unexpected
from the traditional MCT viewpoint, since it is a parameter that
characterizes the short-time motion of the particles and usually
such parameters drop from the equations that determine the
MCT transition points [56]. The reappearance of Dr through
the extra term ωR S0(�q ) in Eq. (26b) indicates that the active-
glass transition within MCT is quite different from the MCT
transitions that have been studied so far.

To characterize the glassy structure, we show in Fig. 11(a)
the nonergodicity parameters of the positional-density correla-
tion functions F00(�q ) for different v0 at fixed packing fraction.
The passive case v0 = 0 is included for reference; it shows
the known features of F00(�q ): The nonergodicity parameters
oscillate in phase with the static structure factor. They are most
pronounced around qσ ≈ 7, indicating that the glass is stiffest
with respect to density fluctuations of wavelengths comparable
to the particle size.

Increasing v0, the nonergodicity parameters decrease for all
q. Thus, active driving renders the glass mechanically softer
at fixed density. The effect, however, is minor: For most q, the
values for v0 = 5Dt/σ are less than 10% smaller compared
to the passive case. The decrease in mechanical stiffness of
the glass with increasing activity might be counterintuitive:
With increasing Péclet number Pe, the effective pressure of
the system according to its low-density description increases
[78]. Such an increase in pressure might, by analogy to the
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FIG. 11. (a) Nonergodicity parameters F00(�q )= limt→∞ �00(�q,t)
of the transient density correlation functions, obtained from Eqs. (26).
Curves from top to bottom correspond to increasing self-propulsion
velocity (as labeled) at fixed packing fraction φ = 0.727 and Dr =
1Dt/σ

2. (b) Nonergodicity parameters F01(�q ) of the orientation-
translation coupling.

passive system, be expected to cause an increase in mechanical
stiffness. This shows that active forces act quite differently
from thermodynamic ones at the glass transition.

There is an interesting observation regarding the off-
diagonal components of F(�q ): While Fl0(�q ) = 0 for all l �= 0,
due to the presence of the hopping term proportional to l2Dr ,
the MCT equations admit solutions where F0l(�q ) �= 0 for all
l. In particular, F01(�q ) �= 0, as shown in Fig. 11(b). For the
reference frame chosen in our discussion, the values of F01(�q )
are negative and real; this is consistent with the notion that there
persists an anticorrelation between density fluctuations along
the y direction and initial orientational fluctuations along the
x direction. Note that the sign and real valuedness of F01(�q )
are not invariant under rotations of the coordinate system.
Apart from this, the F01(�q ) show behavior that is qualitatively
similar to the one seen in F00(�q ): Oscillations are dictated by
those in the equilibrium static structure factor and the strongest
contribution comes from nearest-neighbor cage distances. In
other words, the active glass keeps infinite memory not only in
the translational degrees of freedom, but also in the coupling
of orientations to translations, driven by fluctuations on the
particle length scale. Loosely speaking, an initial orientation
fluctuation leaves its fingerprint in the positions in the glass,
while of course an initial density fluctuation does not affect
the later orientation fluctuations.
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FIG. 12. Density correlator �0,0(q,t) for qσ = 8 (solid lines) as a
function of time for a packing fraction φ = 0.727 > φc and different
velocities as labeled, for the case Dr = 1/1000Dt/σ

2. The dashed
and dotted lines correspond to the nonergodicity parameters at finite
and zero rotational diffusion, Eqs. (26b) and (25), respectively.

The nonergodicity parameters discussed above are the
values attained by the transient density correlation functions
for large times, i.e., Dtt/σ

2 � 1 and in particular Drt � 1.
In the case of strongly persistent motion Dr � Dt/σ

2, an
intermediate time window opens where σ 2/Dt � t � 1/Dr ,
i.e., for times large compared to the free diffusion time, but
small compared to the time scale of reorientations. The effect
of this additional time window is highlighted by Fig. 12: The
density correlation functions approach a plateau in this regime
that is given by the Dr = 0 glass transition (25). At Drt = 1,
an exponential crossover is seen from this plateau to a plateau
given by the augmented equation for Dr �= 0, Eq. (26b). This
plateau depends on Dr , even if the MCT memory kernel does
not, because in Eq. (26b) there appears an integral over the
full correlator. Note that this radically changes the scaling
laws known from standard MCT: In the passive case, the
final plateau in the ideal glass is approached by a slow power
law, the MCT critical law t−a (with a nontrivial exponent
0 < a < 1/2). In the present case, this critical decay is only
seen in the approach to the first plateau. Hence the small-Dr

case displays the crossover from the standard MCT glass to an
active glass governed by details of the short-time motion. The
ABPs with small rotational diffusivity could thus serve as an
interesting model system to study the differences between two
kinds of glasses.
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V. CONCLUSION

We have developed a mode-coupling theory of the glass
transition of active Brownian particles for the special case of
spherically symmetric steric interactions. In contrast to prior
approaches, we treat both the translational and reorientational
degrees of freedom of the ABP model explicitly in the theory.
This allows us to cover the full parameter range of self-
propulsion velocities v0 and persistence lengths �p = v0/Dr .
With a typical particle size σ , these parameters correspond
to the dimensionless swim Péclet number Pet = v0σ/Dt

and the reorientation Péclet number Per = v0σ/Deff = σ/�p

introduced earlier [39].
While at low densities the activity-induced dynamics is

controlled by a single Péclet number only, Pe = Pet /Per =
v2

0/DrDt , we show that the high-density dynamics depends
on both Pet and Per separately. This arises because transient
caging of particles imposes the average cage size �c as an
additional length scale that interferes with the persistence
length. Our results suggest the extension of studies of ABPs
with various rotational relaxation times in order to explore the
relation between the caging length and the persistence length
in more detail.

Activity shifts the glass transition once the persistence
length of swimming exceeds the cage size �p � �c. The
ABP MCT predicts a surface of idealized glass transitions
in the parameter space spanned by the packing fraction, the
persistence length, and the self-propulsion velocity (φ,�p,v0).
This surface does not collapse onto a single line in the (φ,Pe)
plane as predicted by theories that start from a coarse-grained
description of the orientational degrees of freedom. Genuine
nonequilibrium features can arise once �p ≈ �c, as seen, e.g., in
the nonmonotonic decay of density fluctuations that indicates
the joint effect of diffusive relaxation and persistent active
motion. Our results may thus be taken as an indication that
the mapping of the glassy dynamics of ABPs onto that of a
near-equilibrium system should proceed with care.

The effects of active driving on the glassy dynamics are
intuitive: Self-propulsion enhances structural relaxation, but
only if it is persistent enough. Above a critical packing fraction
φc(v0,Dr ), structural relaxation by the MCT mechanism
becomes ineffective, and for densities above φc, a glassy state
is reached. The features of this glass transition are in agreement
with earlier simulation studies of the three-dimensional analog
of the hard-disk ABP model [23]. Qualitatively, the predicted
ABP MCT glass transition also matches the one that was
estimated from earlier simulations of a self-propelled Voronoi
fluid model [6]; this extends a qualitative analogy found in the
passive case [79].

That the glass transition persists under finite activity is not a
priori clear. A different scenario arises, for example, for shear-
driven passive colloidal suspensions where MCT predicts the
glass transition to vanish for arbitrarily weak driving [80].
This emphasizes that there are qualitatively different ways of
driving a dense system out of equilibrium. Note, however, that
according to our numerical results, the glass transition surface
is a smooth surface around v0 = 0; in particular, any small
activity just at the passive glass transition will destroy the
glass. This holds even in the case Dr = 0, i.e., if each particle

maintains its randomly chosen initial propulsion direction
forever. Compare this with the application of MCT to active
microrheology of passive suspensions, i.e., the case of a single
persistently driven particle in a bath of passive ones [73]: There
it was found that a finite force threshold needs to be overcome
to delocalize the driven particle. This threshold was associated
with the strength of nearest-neighbor cages. It appears that
collective driving of all particles allows one to collectively
break such cages so that the force required to do so by a single
particle approaches zero.

In the glass, density-density correlation functions S00(�q,t)
do not decay to zero, but to a finite long-time limit. This finite
nonergodicity parameter quantifies the overlap of an initial
positional-density fluctuation after infinitely long propagation
with the positional-density fluctuations themselves. Similarly,
a nonzero long-time limit emerges for S0l(�q,t): Also the in-
finitely long propagated orientational fluctuations are required
to determine the statistics of positional fluctuations in the glass.
In this sense, the active glass keeps a memory of both initial
positions and initial orientations.

The passive glass according to MCT is characterized by
quantities that do not depend on the parameters determining
the short-time motion; for a passive Brownian hard-sphere
system, the short-time diffusivities Dt and Dr are irrelevant in
the glass. This is no longer true for the active glass: Here the
equation that determines the MCT glass transition depends on
the integral of the correlation function and thus on the details
of short-time diffusion in principle. In this sense, the active
glass is qualitatively different from the passive one. Loosely
speaking, while one can think of the passive glass as being
determined by static long-time limits, the active glass is much
more akin to a nonequilibrium dynamical balance.

Our ABP MCT is based on the integration-through-
transients formalism and thus focuses on the calculation of
so-called transient correlation functions that are formed with
the full nonequilibrium dynamics but averaged using the
equilibrium Boltzmann weight. These correlation functions
are natural starting points for the calculation of nonequilibrium
averages of, in principle, arbitrary observables within ITT.
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APPENDIX A: DERIVATION OF THE MCT VERTEX

We briefly summarize the MCT approximation to the
memory kernel. For convenience, we introduce the shorthand
notation (�q1,l1) ≡ 1.

After inserting the projector P2 onto the two-point density
fluctuations (20) to both sides of the reduced time-evolution

062608-12



MODE-COUPLING THEORY FOR ACTIVE BROWNIAN . . . PHYSICAL REVIEW E 96, 062608 (2017)

operator that appears in the memory kernel (18), one gets

mll′(�q,t) ≈
∑

1,2,3,4
1′,2′,3′,4′

〈δ�∗
l (�q ) 	

†
T Q δ�1δ�2〉χ121′2′

× 〈δ�∗
1′δ�

∗
2′e

Q	
†
T Q′ Q t δ�3′δ�4′ 〉

×χ3′4′34〈δ�∗
3δ�

∗
4 Q	

†
T δ�l′(�q )〉. (A1)

In the following, summation over repeated inner indices will
be implied.

The next approximation consists of two intertwined steps,
as outlined in the main text: factorization of the four-point
correlation functions and replacement of the projected dynam-
ics with the full one. (Either step performed alone will give
undesirable results.) Consistent with the factorization (21), the
normalization of P2 is chosen as χ121′2′ ≈ (1/2)S−1

11′ S
−1
22′ .

The expressions to the left and to the right of the dynamical
four-point function in Eq. (A1) define the vertices W† and
W . Their evaluation is straightforward, but there appears a
static three-point density correlation function. In the absence
of a well-established expression, we use the convolution
approximation to express this three-point average in terms
of the static structure factors

〈δ�∗
1δ�2δ�3〉 ≈ δ�q1,�q2+�q3δl1,l2+l3 S1 S2 S3/

√
N. (A2)

This is the two-dimensional analog of the approximation used
in previous MCT for nonspherical molecules in 3D [76].

The contribution arising from the equilibrium dynamics to
	

†
T evaluates to a straightforward generalization of the MCT

vertex of passive spherical particles [56,57],

〈δ�∗
1 	†

eq Q δ�2δ�3〉 = − Dt√
N

δ�q1−�q2,�q3 [(�q1 · �q2)Sl1−l2,l3 (q3) + (�q1 · �q3)Sl1−l3,l2 (q2)] + 〈δ�∗
1 	†

eq δ�1′ 〉S−1
1′1′(�q1)〈δ�∗

1′δ�2δ�3〉

≈ − Dt√
N

δ1,2+3[(�q1 · �q2)S33 + (�q1 · �q3)S22 − q2S22S33] = ρDt√
N

δ1,2+3S22S33[(�q1 · �q2)c22 + (�q1 · �q3)c33],

(A3)

where we have used S−1 = 1 − ρc to define the direct correlation function cll′ (q). Note that c00(q) ≡ c(q) is the only nonvanishing
contribution to c(q).

To calculate the contribution that arises from δ	†, first consider

〈δ�∗
1 δ	† δ�2δ�3〉 = v0

2N3/2

∑
jkm

〈e−i �q1·�rj −il1θj

(
eiθk + e−iθk

−ieiθk + ie−iθk

)T

· [i �q2e
i �q2·�rk+il2θk ei �q3·�rm+il3θm + {2 ↔ 3}]

= iv0

2
�q2 ·

(
1 1
−i i

)
·
(〈δ�∗

1δ�2+δ�3〉
〈δ�∗

1δ�2−δ�3〉
)

+ {2 ↔ 3}, (A4)

where δ�2± = δ�l2±1(�q2). The contribution to the vertex thus yields, with Q = 1 − P and setting T = ( 1 1
−i i),

〈δ�∗
1 δ	† Q δ�2δ�3〉 = iv0

2

[
�q2 · T ·

(〈δ�∗
1δ�2+δ�3〉

δ�∗
1δ�2−δ�3〉

)
+ {2 ↔ 3} − �q1 · T ·

(
S11S

−1
1−1−〈δ�∗

1−δ�2δ�3〉
S11S

−1
1+1+〈δ�∗

1+δ�2δ�3〉

)]
. (A5)

With the aid of the convolution approximation this can be written in the form

〈δ�∗
1 δ	† δ�2δ�3〉 ≈ iv0

2
√

N

[
�q2 · T ·

(
S11S2+2+S33δ1−,2+3

S11S2−2−S33δ1+,2+3

)
+ �q3 · T ·

(
S11S22S3+3+δ1−,2+3

S11S22S3−3−δ1+,2+3

)
− �q1 · T ·

(
S11S22S33δ1−,2+3

S11S22S33δ1+,2+3

)]
.

(A6)

Using �q · T = q(e−iϑq ,eiϑq )T , one arrives at the form given in Eq. (23).
The nonequilibrium contribution to the vertex W vanishes. This follows from observing that δ	† δ�1 lies in the subspace

spanned by δ�1+ and δ�1− and hence Q δ	† δ�1 = 0.
The final form of the MCT memory equation given in Eq. (22) follows from replacing, in the thermodynamic limit,

(1/V )
∑

�k �→ [1/(2π )2]
∫

d�k.

APPENDIX B: NUMERICAL ALGORITHM

To solve the ABP MCT time-evolution equations, we extend the standard algorithm used for MCT equations in the passive
case [82]. It is based on the expectation that the solutions become slowly varying functions of time such that for long times, the
derivatives of the correlation functions become small. This allows us to adopt a decimation procedure by which the integration
domain is discretized in blocks (numbered b = 0, . . . ,B − 1) of equidistant time steps (with fixed number per block), starting
with step size h0 and doubling the time step from block to block, hb = h02b. Within each block, the equations can be solved by a
simple backward Euler method. The integration time steps within each block are given by t

(b)
i = ihb and we abbreviate f (ti) ≡ fi .
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Our algorithm applies to equations of the form

∂t S(t) = −A · S(t) −
∫ t

0
dt ′m(t − t ′)

·[∂t ′ S(t ′) + B · S(t ′)], (B1)

with S(0) ≡ S0. This equation can be recast as

∂t S̄(t) = − Ā · S(t) −
∫ t

0
dt ′m(t − t ′) · ∂t ′ S̄(t ′), (B2a)

∂t S(t) = ∂t S̄(t) − B · S(t), (B2b)

with S̄(0) = S0 and Ā = A − B. The introduction of the
auxiliary function S̄(t) is the essential difference from previous
numerical algorithms for MCT equations. The following steps
are standard in this context.

To discretize Eqs. (B2), backward finite differences are
used for the time derivatives ∂t Si = [(3/2)Si − 2Si−1 +
(1/2)Si−2]/hb, assuming that the first few points in each given
block are known. [The latter is ensured in block b = 0 by a
calculation of an appropriate short-time expansion of S(t).]

To deal with the convolution integral in Eq. (B2a), it is
useful to define so-called moments

d S̄i = 1

hb

∫ ti

ti−1

S̄(t)dt, dmi = 1

hb

∫ ti

ti−1

m(t)dt. (B3)

This allows us to approximate∫ t

0
dt ′m(t − t ′) · ∂t ′ S̄(t ′)

≈ mi−ı̄ · S̄ı̄ − mi · S0 +
ı̄∑

k=1

[mi−k+1 − mi−k] · d S̄k

+
i−ı̄∑
k=1

dmk · [S̄i−k+1 − S̄i−k]. (B4)

Here the convolution integral has been split at a time tı̄ roughly
in the middle of the interval ı̄ = �i/2� and the integrand was
assumed to be slowly varying for t � tı̄ .

An essential feature of the MCT approximation is that mi

is a functional of Si . After discretization, Eqs. (B2) are thus
recast as a set of implicit equations

Si = S−1
L ·

[
3

2hb

S̄i + SR

]
, (B5a)

S̄i = S̄−1 · (mi[Si] · M̄ − Ī i), (B5b)

where we have defined auxiliary matrices

SL = 3

2hb

1 + B, (B6a)

SR = 1

hb

[−2(S̄i−1 − Si−1) + 1
2 (S̄i−2 − Si−2)

]
, (B6b)

S̄ = 3

2hb

1 + 3

2hb

Ā · S−1
L + dm1, (B6c)

M̄ = S0 − d S̄1 (B6d)
and abbreviated the convolution sum as

Ī i = 1

hb

[−2S̄i−1 + 1
2 S̄i−2

] + A · S−1
L · SR

+ mi−ı̄ · S̄ı̄ − mi−1 · d S̄1 − dm1 · S̄i−1

+
ı̄∑

k=2

[mi−k+1 − mi−k] · d S̄k

+
i−ı̄∑
k=2

dmk · [S̄i−k+1 − S̄i−k]. (B6e)

This quantity can be evaluated based on function values at grid
points tj with j < i only; Eqs. (B5) are then solved iteratively
to determine S(t) and consequently m(t) and S̄(t) at t = ti .

Once a block b is completed, a decimation procedure
transfers the discretized solutions to the first half of the next
block b + 1. For the correlation functions and the memory
kernel, this is done by simple injection S(b+1)

i ← S(b)
2i . Note

that this keeps S0 ≡ S(0) in all blocks. The moments can
be decimated without further loss of accuracy, dS(b+1)

i ←
[dS(b)

2i−1 + dS(b)
2i ]/2.

Solutions are calculated on a regular wave-number grid.
It is then convenient to rewrite the wave-vector integral that
appears in the MCT memory kernel, in terms of a double
integral in the space of wave numbers. In 2D, this introduces
a singular Jacobian [58]

∫
d2k

(2π )2
δ�q,�k+ �p = 1

(2π )2

∫ ∞

0
dk

∫ q+k

|q−k|
dp

× kp√
4q2k2 − (q2 + k2 − p2)2

. (B7)

To treat this pole without significant loss of precision and
performance, we use a fifth-order open extended Newton-
Cotes formula (as derived in Ref. [83])

∫ qN

q1

f (q)dq = hq

[
55
24f2 − 1

6f3 + 11
8 f4 + · · ·

+ 11
8 fN−3 − 1

6fN−2 + 55
24fN−1

]
, (B8)

where the ellipsis abbreviates terms with unit coefficients and
fi = f (qi) for a set of equidistant integration points qi in the
interval [q1,qN ]. The use of this formula improves the ad hoc
discretization scheme used in previous MCT calculations of
two-dimensional hard disks [58].
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