
PHYSICAL REVIEW E 96, 062502 (2017)

Topology effects on nonaffine behavior of semiflexible fiber networks

H. Hatami-Marbini* and V. Shriyan
Department of Mechanical & Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA

(Received 12 July 2017; published 20 December 2017)

Filamentous semiflexible networks define the mechanical and physical properties of many materials such
as cytoskeleton. In the absence of a distinct unit cell, the Mikado fiber network model is commonly used
algorithm for representing the microstructure of these networks in numerical models. Nevertheless, certain types
of filamentous structures such as collagenous tissues, at early stages of their development, are assembled by
growth of individual fibers from random nucleation sites. In this work, we develop a computational model to
investigate the mechanical response of such networks by characterizing their nonaffine behavior. We show that
the deformation of these networks is nonaffine at all length scales. Furthermore, similar to Mikado networks,
the degree of nonaffinity in these structures decreases with increasing the probing length scale, the network
fiber density, and/or the bending stiffness of constituting filaments. Nevertheless, despite the lower coordination
number of these networks, their deformation field is more affine than that of the Mikado networks with the same
fiber density and fiber mechanical properties.
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I. INTRODUCTION

A network of random semiflexible filaments constitutes
the primary building block of different biological and non-
biological materials [1–3]. For instance, paper, felt, and
similar nonwoven materials are composed of a network of
entangled filaments [4,5]. Furthermore, properties of many soft
tissues are governed by a complex and intertwined network
of collagen and elastin fibers. Cytoskeleton is a network of
interlinking fibers, which helps cells maintain their shape and
perform important activities such as migration and division
[6–8]. In semiflexible random fiber networks, the bending
stiffness of filaments is large enough to prevent them from
folding into a random coil because of their configurational
entropy. This notable feature leads to unique mechanical
properties, not seen in flexible polymer networks, such as strain
stiffening and negative normal stress [9–11].

Unlike rubbers and flexible networks, affine models [12]
cannot accurately describe the deformation of semiflexible net-
works. Affine models assume that filaments stretch and rotate
as if they are attached to a homogenous continuum and follow
the applied macroscopic deformation. However, it is well
known that the behavior of random semiflexible filamentous
networks, like many other disordered structures, is nonaffine;
i.e., there exist fluctuations from affine displacement. Because
of these fluctuations, the overall response of these systems is
much softer than what the affine approximation gives. In recent
decades, extensive computational efforts have been devoted to
better understand the nonaffine response of semiflexible fiber
networks and to determine conditions under which an affine
model may be used to predict their mechanical fields [13–19].

Nonaffine deformation of disordered discrete systems can
be characterized by nonaffine correlation functions, commonly
referred to as nonaffinity measures [20]. There are several
nonaffinity measures in the literature. For example, Langer
and Liu [21] and Tanguy et al. [22] characterized the nonaffine
response of foams and polydisperse Lennard-Jones beads by
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measuring the mean squared average of displacement fluctu-
ations. This measure has also been used to characterize the
nonaffine response of random filamentous networks [15,23].
Despite the simplicity of this measure in implementation and
formulation, it is not capable of characterizing the effects of
the probing length scale on nonaffine behavior of random
structures. In order to circumvent this disadvantage, Head et al.
[15] used the scalar measure 〈(θ − θ af)

2〉r which calculates the
change of angle θ , made by a vector connecting two arbitrary
cross-links at a distance r , due to the applied far field and
its corresponding affine estimate, θ af . Furthermore, Hatami-
Marbini and Picu [16] introduced a strain-based nonaffinity
measure based on the local displacement gradient field at
various probing length scales. The above studies have shown
that the degree of nonaffine response of random semiflexible
fiber networks, when subjected to small far-field deformation,
primarily depends on their fiber density and flexibility of their
constituting filaments. Other important conclusions regarding
the behavior of filamentous networks have been drawn from
the above and similar studies [1–3]. However, the network
microstructure has been represented by a two-dimensional
(2D) Mikado model in most of these studies.

Mikado networks are generated by depositing filaments of
constant length with random orientations into a square domain
[14–16]. Two-dimensional fiber networks can alternatively be
constructed by growing filaments from randomly positioned
seed points in a square domain and stopping their growth when
they reach each other or the domain boundary [24]. Despite the
popularity of the Mikado model, this alternative model seems
more appropriate for representing certain types of filamen-
tous structures such as collagenous tissues. These biological
structures, especially at their initial stages of development, are
assembled by growth of their individual fibers from nucleation
sites [24–26]. The main objective of this work is to investigate
whether there exist any notable differences in the mechanical
response of 2D Mikado polymer networks from that of 2D
models created by this alternative approach.

The above random networks have different coordination
numbers. The coordination number z of a polymer network sig-
nificantly influences its mechanical properties and is defined
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FIG. 1. Example of random fiber networks generated by different algortihms: (a) Type I networks are constructured by growing straight
lines from randomly positioned seed points. (b) Type II networks (Mikado networks) are generated by depositing straight lines in a domain.
There are three line segments at each intersection point of a type I network and four line segments at each cross-link of a type II (Mikado)
network.

as the number of neighboring fibers at cross-links. In 2D
networks, which are composed of filaments with no bending
stiffness, the required coordination number for mechanical
stability is at least 4 (Maxwell central-force isostatic thresh-
old). Mikado networks have a coordination number of z = 4
because no more than two fibers cross exactly at the same
location. However, z = 3 for the networks that are generated
using the alternative algorithm. Thus, these networks are below
Maxwell central-force isostatic threshold and are expected to
show more nonaffine deformation.

Here, we develop a computational model for the mechanical
response of 2D fiber networks generated using Mikado and
fiber growing algorithms. We use a scalar and a strain-based
nonaffinity measure to characterize the effects of network mi-
crostructure on displacement and strain distribution at different
length scales. Although two network types exhibit qualitatively
similar behavior, we observe significant differences. In both
types of networks, we find that strain-based nonaffinity
components decay with probing length scale following a
power law. Moreover, we show that the nonaffinity is inversely
proportional to the network fiber density. Nevertheless, we
observe that the nonaffinity is unexpectedly more pronounced
in Mikado networks, which have a larger coordination number.
The density and energy distribution inside both types of
random fiber networks are studied to explain and provide
insight into this observation.

II. MODEL

The networks are constructed by growing straight cylindri-
cal fibers with radius R from randomly distributed nucleation
sites in a domain. Specifically, following a uniform deposition
of seed points into a square domain of size W , straight
filaments are grown with a constant growth rate from each
point. The growth of a filament stops when it reaches the
edges of the square domain or if it reaches another filament. A
rigid permanent cross-link is considered between intersecting

filaments [16]. We will refer to these networks as type I
networks in this work. A representative network is shown in
Fig. 1(a).

We also create Mikado fiber networks by depositing straight
cylindrical filaments of constant length L0 in a square domain
[16]. The location of the center and orientation of fibers
are uniformly distributed over allowable ranges and rigid
connections are assumed when two fibers cross. We refer to
Mikado networks as type II networks in the present study.
Unlike type I networks, dangling ends will be created in these
networks. The dangling ends will be ignored in the analysis
since they do not have any contribution to the total energy of
the structure. Another important difference is that, unlike type
I networks, which always form a percolated structure, a critical
fiber density is required for type II networks to acquire rigidity
[14,15]. Figure 1(b) shows a typical type II fiber network.

Both network types are loaded by a displacement-imposed
boundary condition; i.e., the displacements are prescribed
on the boundaries of the simulation domain [15,16]. Only
small strain uniaxial loadings are considered and the energy
minimization technique is used to obtain the solution. The
mechanical response of fibers is determined by a bending
modulus κ and a stretching modulus μ. The ratio of the
bending and stretching modulus of the fibers represents their
flexibility and is denoted by lb = √

κ/μ. The total energy of the
system is given by the sum of the Hamiltonian of all individual
filaments, i.e.,

Hi = 1

2

∫
μ

(
∂l

∂s

)2

+ κ

(
∂φ

∂s

)2

ds, i = 1 · · · Nf , (1)

where s is the arc length of a filament, �l/�s is its extensional
deformation, and φ is the angle of the tangent of the filament.
The first and second terms in Eq. (1) represent the energy
stored in a filament due to stretching and bending deformation,
respectively.

Once the solution of the system is obtained, the amount
of nonaffinity in the behavior of the fiber networks is
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characterized using a scalar nonaffinity measure γ and a
length-scale-dependent nonaffinity measure Hi [15,16]. The
scalar nonaffinity measure γ is easy to calculate and measure
in experiments. It is given by

γ = 1

ε2
appliedW

2
〈(�u)2〉, (2)

where εapplied is the applied uniform far-field strain, �u =
ui − uaffine

i , ui is displacement vector of the ith cross-link,
superscript “affine” denotes the affine estimate of the displace-
ment vector, and angle brackets represent averaging �u over
all cross-linking points in the fiber network. The length-scale-
dependent strain-based nonaffinity measure Hi(r) is defined as

Hi(r) = 1

ε2
applied

〈(
εi − εaffine

i

)2〉
r
, i = 1,2,3, (3)

where, ε1, ε2, and ε3 are the respective uniaxial, normal, and
shear strains, and r is the probing length scale. A method
similar to tensometry is used to obtain the strain components
εi at different length scales. Briefly, the strain is calculated on
scale r by selecting triplets of cross-links defining triangles
of area ∼r2 with shapes close to equilateral triangles. From
nodal displacement of a triangle, the normal strains along its
sides are first computed. Then the entire strain tensor over the
area covered by the triangular domain is obtained from these
normal strains. This local strain tensor denotes the average
strain tensor of the underlying discrete deformation field over a
length scale r proportional to the square root of the area of the
respective triangle. In order to carry out the required averaging
in Eq. (3), a large number of triangles is defined by randomly
selecting three random cross-links, and the strain tensors are
binned and averaged according to the size of the triangles.

The following parameters define the overall mechanical
behavior of fiber networks. The structure of a network is
represented by the normalized fiber density ρ, which is defined
as the total length of the filaments multiplied by R divided by
the area of the simulation domain. Since the orientation of
individual fibers has uniform distribution, ρ fully defines their
microstructure. In this work, the fiber density is varied from
0.005 to 0.05. Furthermore, the parameter lb is assumed to be
5 × 10−5 unless otherwise mentioned. Finally, based on our
previous results [16], the system size W is taken large in order
to minimize finite-size effects. Nevertheless, no finite-size
analysis is done in this work. Thus the findings, especially
for dense networks, may involve some size effects; smaller
simulation domains are used for dense systems because of the
computational time constraint [27].

III. RESULTS

In Fig. 2, the length-scale-dependent nonaffinity measure
is used to characterize the nonaffine behavior of type I fiber
networks with ρ ∼ 0.01, subjected to the uniform uniaxial
strain field. It is observed that all three components of the
nonaffinity measure are length scale dependent i.e., as the scale
of observation becomes smaller, the amount of nonaffinity
increases. Furthermore, the nonaffinity measure components
follow a power-law scaling with the probing length scale. The
scaling exponent is 1.74 ± 0.08. The results shown in Fig. 1
are very similar to previous studies on Mikado fiber networks

FIG. 2. The components of the strain-based nonaffinity measure,
Eq. (3), as a function of normalized probing length scale for a type I
fiber network with a fiber density ρ = 0.01 and when it is subjected
to a uniaxial strain.

(type II networks) [16]. In particular, although nonaffinity
decreases with increasing probing length scale, it is always
nonzero. Thus, the deformation of type I networks, similar to
that of type II networks, is always nonaffine and there exists
no characteristic length scale separating affine and nonaffine
deformation.

The effect of fiber density on nonaffine response of both
fiber network types is shown in Fig. 3 by plotting the scalar
nonaffinity measure defined in Eq. (2). For both types of fiber
networks, the nonaffinity becomes more pronounced as the
fiber density decreases. This agrees with previous work on
type II networks [14–16]. Figure 3 shows that, at constant
fiber density, type I networks deform more affinely than type II

FIG. 3. The variation of the scalar nonaffinity measure γ as a
function of fiber density for both network types. The nonaffinity
measure of type II networks is always larger than that of type
I networks. Furthermore, the absolute nonaffinity difference is
inversely proportional to the fiber density (inset).
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FIG. 4. The first component of the strain-based nonaffinity
measure H1 as a function of normalized probing length scale for
type I and type II networks with fiber density of 0.01. At a given
fiber density, L0/W affects the architecture of type II networks by
changing the values of L0/lc.

networks. However, the absolute difference between the two
decreases with increasing the fiber density following a power
law with the exponent of about 1.4.

In order to investigate possible differences between two
network types, we create Mikado fiber networks with similar
fiber density as type I networks shown in Fig. 2. Figure 4
compares the first component of the length-scale-dependent
nonaffinity measure in these two types of networks (the other
nonaffinity components behave similarly). This figure shows
that, at the constant normalized fiber density, the behavior
of Mikado networks is more nonaffine compared to the
behavior of type I networks. Both network types at each
fiber density have similar parameter lb and segment length
distribution. Furthermore, the average orientation of their
fibers as measured by the orientation tensor is similar. The
orientation tensor is given by


 = 1∑
i li

∑
i

li

(
ci

2 cisi

sici si
2

)
, (4)

where ci and si are the cosine and sine of the angle that
a filament with length li makes with a reference axis. It is
seen that 
11 ∼ 
22 ∼ 0.5 and 
12 ∼ 0; i.e., both type I
and II networks are isotropic. Thus the connectivity of
the structures (characterized by coordination number) and
relative arrangement of the fibers (measured by fiber density
distribution) could be why their behavior is different.

Type I networks considered in the present study form a
connected network independent of their fiber density. Never-
theless, fibers in type II (Mikado) networks form disconnected
small clusters of filaments when the fiber density is low. With
increasing fiber density, these clusters join together and a
percolated network is formed. It is known that these networks
acquire geometric percolation at a critical fiber density, which
is proportional to L0/lc ∼ 6. Note that lc is mean segment
length and is proportional to fiber density [15,28]. Previous
work has shown that the mechanical response of Mikado
networks, which are created using a constant initial fiber

FIG. 5. The variation of the scalar nonaffinity measure γ as a
function of parameter lb (filament flexibility) for both network types.
The nonaffinity measure of type II (Mikado) networks is always larger
than that of type I networks.

length L0, is a function of lc. At a given fiber density and
depending on the values of L0/W , type II networks with
different values of L0/lc can be obtained. In order to ensure
that the observation in Fig. 4 is not an artifact of the variation
in L0/lc, we create Mikado networks with different L0/lc ∼ 9,
30, and 44 while keeping the fiber density constant in all of
them. These networks show almost similar response and their
deformation is more nonaffine than that of type I networks.
These Mikado fiber networks behave similarly because at low
values of lb, the fiber continuity is lost and individual fiber
segments of a filament deform independently from each other.
However, it is noted that the behavior of these networks will
become a function of L0/lc with increasing lb as discussed in
previous studies [15,16].

The effect of fiber flexibility (parameter lb) on the scalar
nonaffinity measure for both types of network at a fiber density
of 0.01 is shown in Fig. 5. As the ratio of bending stiffness and
stretching stiffness of the filaments increases, their behavior
becomes more affine in both network types. Furthermore,
the behavior of type II networks (Mikado networks) is
more nonaffine compared to the response of type I fiber
networks.

The connectivity of the fibers in these two network types
is different from each other. In type II networks, because
most likely two fibers will cross at the any cross-link, the
coordination number is 4. As stated before, dangling ends
are formed in Mikado networks, which will be removed in
numerical simulations since they do not contribute to the total
energy of the system. The omission of these dangling ends
reduces slightly the overall coordination of type II networks.
However, the coordination number of type I networks at all
cross-links is 3. Considering the critical Maxwell coordina-
tion number (connectivity) for two-dimensional central-force
networks, type II networks are close to the isostatic point
(z = 4) while type I networks are well below (z = 3). Thus,
the finite bending stiffness of filaments and rigid cross-links
between these filaments are required to ensure the stability of
both network types.
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FIG. 6. Comparison of fiber density distribution maps: (a) Type
I networks, (b) type II networks with L0/lc ∼ 9, (c) type II networks
with L0/lc ∼ 30, and (d) type II networks with L0/lc ∼ 44. It is seen
that fiber networks generated by growing straight lines from seed
points have a more uniform density distribution compared with those
generated using the Mikado algorithm.

It is well-documented that with decrease of isostaticity, the
behavior of fiber networks becomes bending dominated and
subsequently more nonaffine. With regard of this statement, the
results shown in Figs. 4 and 5 seem counterintuitive. In other
words, it is expected that the nonaffinity is more pronounced
in type I networks since they have a lower connectivity.
In order to further investigate the origin of this significant
difference in the behavior of these two network types, we
characterize the distribution of fibers inside the domain. For
this purpose, we discretize the networks by overlaying a
regular grid of square elements. In each square of the grid,
we calculate the total length of fibers and divide it by the
total length of fibers inside the simulation box. This grid will
yield a map of fiber length distribution which is plotted in
Fig. 6.

In Fig. 7, we plot the fiber segment distribution. It is
seen that although both network types have almost the same
segment length distribution, their relative arrangements are
very different from each other. The spatial distribution of fibers
in type I networks is more uniform compared to that of Mikado
fiber networks. The uniformity of fiber density distribution in
networks grown from random seeds allows them to distribute
the load more evenly between filaments and subsequently
create a more homgenous structure in response to the applied
far-field load. On the other hand, the Mikado networks depict
large peaks of density which are connected together by
individual filaments. This feature causes large rotation and
deformation in type II networks and will subsequently render
their elastic field to be more nonaffine.

FIG. 7. The cumulative probability distribution (CDF) and prob-
ability distribution (PDF) of fiber segments for networks shown in
Fig. 6. This plot confirms that both network generation algorithms at
similar fiber density yield random fiber networks with almost the same
segment length probability distribution function. Thus, the difference
in the deformation of these networks should be because of spatial
distribution of fiber segments.

Based on the above discussion, it is expected that most of the
filaments in type I networks contribute mechanically to resist
the external deformation. In order to check this assumption, we
obtain the energy distribution inside the networks by using the
same square grid. Here, the total energy of the fibers that are
inside a square are summed together and divided by the total
energy of the system. Clear force chains appear in both types
of networks, Fig. 8. Nevertheless, the nature of force chains
is very different from each other. This further emphasizes the
significant role of network microstructure on the mechanical
response of random fiber networks.

At this point, a note should be made about the relevance
of investigating the behavior of fibrous materials using 2D
network models. Real biological materials such as cytoskele-
ton and extracellular matrix are three dimensional. However,
because 2D simulations, compared to three-dimensional mod-
els, are much less computationally intensive, 2D models have
been widely used for investigating the mechanical behavior of
these structures [14–19]. In real three-dimensional (3D) fiber
networks, filaments do not generally intersect with each other
and are connected together with cross-links. Thus, the density
and mechanical properties of both the filaments and the cross-
links are required in numerical models. Previous studies have
shown that despite inevitable differences between 2D and 3D
network models, there exist certain similarities. For example,
the mean filament segment length is inversely proportional to
the total fiber length density in both 2D and 3D [3]. Based on
previous studies, we can state that 2D fiber network models
are useful tools for gaining a general idea about the behavior
of real 3D networks. For instance, in a recent study, we
extended the Mikado model to 3D in order to characterize the
differences and similarities between the mechanical behavior
of 2D and 3D network models [29,30]. We found that the
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FIG. 8. Comparison of total filament energy distribution maps:
(a) Type I networks, (b) type II networks with L0/lc ∼ 9, (c) type II
networks with L0/lc ∼ 30, and (d) type II networks with L0/lc ∼ 44.
It is seen that fiber networks generated by growing straight lines from
seed points have a more uniform energy distribution compared with
those generated using the Mikado algorithm.

degree of nonaffinity has a power-law dependence on probing
length scale in both models. Furthermore, we observed that
the amount of nonaffinity increases with decreasing filament
bending stiffness and fiber density in both 2D and 3D networks.
Nevertheless, the degree of nonaffinity was found to be more
significant in 3D than in 2D networks. Future studies are
required to determine the capability of 2D growing networks,
studied here, in representing the behavior of real 3D networks.
Until then, the findings of the present study should be treated
with caution and only as an approximation for the actual
complex behavior of 3D biomaterials.

In conclusion, it is observed that fiber networks which
are grown from random seed points similar to Mikado
fiber networks at all probing length scales show nonaffine
mechanical behavior and their nonaffinity varies as a power
law. The nonaffinity is a function of fiber density and
flexibility of constituting filaments. Nevertheless, despite a
lower coordination number, the nonaffinity in these networks
is smaller than the nonaffinity of Mikado networks at similar
fiber density. The numerical model developed here shows
that Mikado networks have less uniform distribution of fiber
density and total energy. This inherent dispersity results in
more significant nonaffinity.
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