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Linking biological and physical aging: Dynamical scaling of multicellular regeneration
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The fight against biological aging (bio-aging) is long-standing, with the focus of intense research aimed
at maintaining high rates of tissue regeneration to promote health and longevity. Nevertheless, there are
overwhelming complexities associated with the quantitative analysis of aging. In this study, we sought to quantify
bio-aging based on physical aging, by mapping instances of multicellular regeneration to the relaxation of physical
systems. An experiment of delayed wound healing assays was devised to obtain delay-dependent healing data. The
experiment confirmed the slowdown of healing events, which fitted dynamical scaling just as relaxation events do
in physical aging. The scaling exponent, which describes the aging rate in physics, is here similarly proposed as an
indicator of the deterioration rate of tissue-regenerative power. Parallel equation-based and cell-based simulations
also revealed that asymmetric cell cycle-regulatory mechanisms under strong growth-inhibitory conditions
predominantly control the critical slowdown of healing analogous to physical criticality. By establishing a
direct link between physical aging and biological aging, we are able to estimate the aging rate of tissues and to
achieve an integrated understanding of bio-aging mechanism which may improve the modulation of regeneration
for clinical use.
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I. INTRODUCTION

Aging prevention has been a focus for humans for decades.
Most mammalian tissues lose the capacity to regenerate with
age, and this deterioration severely affects health and longevity
[1]. Numerous aging studies have attributed this lost capacity
for repair to shortening of telomeres, deterioration of the
extracellular niche, or intrinsically blunted regulation of key
molecules [2–7]. This inconsistency in terms of the probable
causes of aging has made it difficult to pinpoint how and
why the body ages. If we are to generate better antiaging
therapies, an integrated theory of biological aging (bio-aging)
is in demand, despite the tough challenges in the quantification
of aging events and in the clarification of the governing factors.

Unlike the ambiguously defined aging of biological sys-
tems, aging of physical systems has an explicit definition and
has been quantified in diverse complex soft materials from
glasses to cytoskeletons [8–12]. This ubiquitous phenomenon
of losing the relaxation ability over time in multiparticle
systems can be expressed in mathematical equations: e.g.,
for systems prepared in a nonequilibrium state, the relaxation
processes probed at different times feature dynamical scaling,
indicating a slowdown of the system dynamics as if the
system were aging [13,14]. Such physical aging originates
from the ergodicity breaking of the dynamics [15], and this
nonergodicity is a more typical feature of complex living
systems. Recent research suggests that the nonequilibrium
physics of glass or jamming transition is exhibited in confluent
cell layers [16–23]. In this study, we sought to advance this
idea and investigate a more complicated biophenomenon: the
multicellular regeneration. Regeneration is a renewal process
of a structurally damaged multicellular system such as tissues
and organs, and involves not only mechanical but also bio-
chemical processes related to cell cycle, intercellular signaling,
and cell-microenvironment interactions among others [24]. We
define the bio-aging (especially the tissue aging) as the process

of losing the capacity for regeneration and attempt to attain an
integrated theory of it via the mapping between regeneration
and physical relaxation.

Multicellular regeneration can be explored with a wound
healing assay (WHA) [25–27], which is a simple and inexpen-
sive in vitro experiment used for scrutinizing the coordinated
cell proliferation and migration in tissue regeneration or tumor
invasion. In WHAs, “wound healing” refers to the event that
a sheet of cells regenerates to form a confluent monolayer
again after some cells have been removed. Just as relaxation is
the collective response of particles to an external perturbation
in physics, healing is the collective response of cells to an
external damage (the wound) and hence it can be regarded as
an analog of relaxation in biology.

Conventional WHAs require wounds to be performed
immediately after cell starvation to avoid any changes in
cellular conditions that may occur over time. However, our
study focuses on the very poststarvation alterations in cellular
conditions. Thus, we devised a time-delayed WHA (TDWHA),
in which wound creation is delayed for a specific time (defined
as “waiting time”; Fig. 1). With all the other experimental
settings identical, the relation between the waiting time and
the healing event can characterize the endogenous evolution
of the system. In particular, a slowdown of healing with
the increasing waiting time is suggestive of the existence of
bio-aging.

In Sec. II, we introduce the experimental settings and the
results of TDWHAs. Basically, we found that the healing
events as a function of the waiting times exhibit dynamical
scaling just as the relaxations do in physical aging. In
Secs. III and IV, we evaluate the role of multiple factors
such as contact inhibition, cell proliferation, cell migration,
extracellular matrix (ECM), and cell cycle regulation using a
minimal equation-based model in parallel with an agent-based
model. We identified in both models the parameter which
governs the dynamical scaling of healing and also investigated

2470-0045/2017/96(6)/062418(19) 062418-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.062418


YUTING LOU, JUFENG XIA, WEI TANG, AND YU CHEN PHYSICAL REVIEW E 96, 062418 (2017)

FIG. 1. Procedures in wound healing assays (top) and time-
delayed wound healing assays (bottom). In the time-delayed wound
healing assays, all the procedures are conducted as in the original
assays except that the wounding operation is delayed for a specific
time frame.

the corresponding criticality analogous to that in physical
systems. A discussion of the analogy between multicellular
regeneration and physical relaxation as well as its implication
on the modulation of regeneration for clinical practices is
provided in Sec. V. Section VI concludes the whole article.

II. TIME-DELAYED WOUND HEALING ASSAYS

A. Experiment settings

Newly thawed HepG2.2.15 cells were seeded near con-
fluence into six-well plates at an initial density u0, and the
plates of cells were divided into N groups, of which 6–12
samples awaited wounding for an additional period of time
TN = 24 × N (h). After the creation of a 0.25-mm scratch
wound, each group was continuously observed for ∼190 h and
photographed once every 24 h. Two series of experiments were
conducted with different initial seeding densities, u0 = 5 ×
105 cells per mL in experiment I and u0 = 2 × 106 cells per mL
in experiment II. To prevent biases among groups, we chose
the HepG2.2.15 cell line, which features slow cell packing
and low propensity to mutations. The microenvironment and
experimental procedures were kept identical for all groups at
all times for an exclusive examination of the time-dependent
endogenous cellular changes (see Appendix A 1 for material
and methods of the experiment).

B. Experiment results

1. Prewounding cell growth

Figure 2(a) shows the statistics of cell conditions before
wounding in experiments I and II. An increase in the total
cell number along with a decrease in the averaged single-cell
viability can be observed (see Appendix A 2 and Appendix A 3
for the methods); for longer waiting times tw (>72 h), the
cell number and the single cell viability will approach a
steady level, indicating the saturation of cell growth. Growth
saturation in experiment II occurred earlier than in experiment
I because of the higher seeding density. Figure 2(b) shows the
total cell viability immediately before wounding and after the
completion of healing in experiment II. Five groups exhibited
almost the same level of viability before wounding. After

FIG. 2. Cell number and cell viability. (a) Variations in cell
number (black), and average single cell viability (red) during natural
growth before wounding. Cell number was counted with a hemocy-
tometer as is described in Appendix A 2. Average single cell viability
was calculated as the total cell viability divided by the cell number.
Total cell viability was identified from 3-(4, 5-dimethylthiazol-2-yl)-
2, 5-diphenyltetrazolium bromide (MTT) assays (see Appendix A 3),
and all values are the ratio over the initial total cell viability
immediately after starvation (t = 0). (b) Comparison of the total cell
viability immediately before the wounding and after the completion
of healing (in the first three groups only).

complete healing, the viability decreased in groups 1–3 within
5%, which is insignificant in comparison with the standard
errors of 2% to 7%; this finding indicates that no metabolic
deterioration occurred on the experimental time scale. With
sufficient nutrients, the saturation of cell number and/or
viability was most probably caused by density-dependent
contact inhibition [28–34]. Increasing contact inhibition also
relates to increased intercellular adhesion, which might induce
irregular wound edge geometry that can affect the healing
processes [35,36]. Nonetheless, it was later confirmed that
this geometrical irregularity of edge did not bias the healing
results (see Appendix D for an examination on the effects of
edge geometries).

2. Postwounding healing

Figure 3 shows snapshots at three postwounding time points
for four groups with waiting time tw of 24, 48, 72, and 96 h.
Groups with a longer waiting time exhibited slower healing,
which is an indication of bio-aging. Through postprocessing
of these snapshots, we can scrutinize this slowdown of healing
from the perspectives of the healed area evolution and the
density profile propagation.

The healed area �A is calculated as �A(t − tw) = A(tw) −
A(t), where A is the wound area measured in the unit of
105 pixels from the snapshots (see detailed procedures in
Appendix A 4). Figures 4(a1) and 4(b1) show the time
evolution of �A in different groups, and the slope of the curves
reflects the healing rate. The less steep healing curves with
longer waiting times illustrate slower healing processes. From
Fig. 2(a), the increasing density with waiting time seems to be
the cause of slow healing for long waiting times. Nonetheless,
healing events in experiment II [Fig. 4(b1)] progressed more
quickly than those in experiment I [Fig. 4(a1)] for the corre-
spondent groups because of a higher cell density, indicating
that the increase in cell density contrarily promotes healing
efficiency. Besides, by comparing group 3 in experiment I
with group 1 in experiment II, we find that the group with a
72-h waiting time (in experiment I) healed much slower than
the group with a 24-h waiting time (in experiment II), even
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FIG. 3. Snapshots of 0, 96, and 168 h after the creation of the
0.25-mm scratch wound in time-delayed wound healing assays for
HepG2.2.15 cells. (a) 24-h waiting time. (b) 48-h waiting time.
(c) 72-h waiting time. (d) 96-h waiting time. The dark yellow clots
scattered away from the wounds are packed cells.

though the two groups had similar prewounding cell densities
(3.2 × 107 per well) [see Fig. 2(a)]. These comparisons
confirm that the density effect is trivial compared with the
aging effect brought by the waiting time. More importantly, if
rescaling the time axis as (t − tw)/twμ where μ is a tunable
scaling exponent, we further find that the data for all groups
except for group1 (tw = 24 h) collapsed to a single curve with
μ = 0.72, as shown in Figs. 4(a2) and 4(b2). The collapse
of data on a rescaled time axis, known as dynamical scaling,
prevails in physical aging. The exponent μ, termed as aging
exponent [14], measures the rate of physical aging and we use
it here to quantify the rate of bio-aging. A larger μ implies
stronger aging, which can be interpreted as a rapid loss of
capacity for healing. Last, the failure of rescaling in the data
of group 1 in both experiments suggests that the onset of the
dynamical scaling of aging took place after 48 h.

Meanwhile, as is observed in Fig. 3, a small number of
cells migrated into the wound bed and the cell density is
decreasing with the distance away from the original wound
edge. We segmented the area around the wound edge into
several bins of 25/3 microns width [Fig. 4(c1)] and constructed
the profile of cell density in each sample snapshot by counting
the area covered by the cells normalized by the total area
in every bin. These profiles were further averaged for each
bin over all samples with the same waiting time and the
same postwounding time. Figure 4(c2) shows the evolution of
average density profile as a function of the distance for group 1
(tw = 24 h) and group 3 (tw = 72 h) in experiment I, with the
original wound edge (the half-density position immediately
after wounding) calibrated to the zero point of the horizontal
axis. We can observe that the postwounding average density

FIG. 4. Closure of wounds in terms of healed areas and density
profiles. (a),(b) Healed area as a function of normal and rescaled
postwounding time in experiments I and II for different waiting times.
The vertical axis is the healed area A(tw) − A(t), where A is the
wound area expressed in 105 pixels counted by Photoshop CS6 from
the snapshot. Panels (a1) and (b1) show the healing curves on the
normal time scale of the postwounding time t − tw , whereas (a2)
and (b2) show the data collapse in a renormalized time scale with a
rescaling exponent 0.72. Panels (c1) and (c2) show the cell density
profiles in experiment I. The vertical axis is the normalized cell
density measured as the area covered by the cells divided by the
total area in each bin and averaged over all the samples. The shaded
areas, red for t − tw= 24 h and blue for t − tw= 96 h, are the error
bars drawn with fill area.

profile propagates at a constant speed into the wound bed
like a traveling wave, as is extensively documented in the
previous literature [29–32,37,38]. The shape of the average
profile approximates to a sigmoid curve, yet with a wider
low-density head at the forefront, especially for t − tw > 24 h.
In the comparison between two groups, we find that the profile
in group 3 (tw = 24 h) propagates more slowly than that in
group 1 (tw = 24 h) with a wider extension in the low-density
head. This indicates that the cells at the leading edge can
migrate into the denuded area with a normal speed in both
groups but the bulk of cells behind in group 3 failed to advance
as quickly as in group 1. Moreover, since the profiles in
Fig. 4(c2) are bin averaged, we show the standard deviation of
the data (the shaded areas, which are the error bars drawn with
fill areas) for two postwounding time points in both groups. It
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is seen that the error ranges are generally large for all sample
sets, with the extended low-density heads at the leading edge
having the largest variability for the profiles of t − tw = 96 h
in both groups. This is related to the fact that heterogeneity
of healing rates across the samples emerges during the profile
propagation and peaks at the leading edges: in some samples
[for instance, Figs. 3(b) and 3(c), 96 h], several isolated cell
clusters or finger-shaped edges formed and promptly invaded
into the denuded area ahead of the bulk of the cells (see similar
results in Ref. [37]), while in other samples very few of them
appeared; the heterogeneous healing rates can also cause a
wound closed like a zipper [for instance, Fig. 3(a), 96 h]. A
further discussion is presented in Appendix C 3. Nevertheless,
no striking difference can be observed in the degree of this
heterogeneity between short and long waiting times, hence we
do not consider this heterogeneity of healing rates as a viable
mechanism for the bio-aging in this study.

3. Summary of experimental observations

From the experimental data, we know several facts: (1)
during the waiting time, cell density is slowly approaching a
saturation level due to the limit of space and cell viability is
exponentially decaying to a nonzero value possibly because
of contact inhibition, in which the increase in intercellular
adhesion and the accumulation of ECM with time might play
important roles; (2) the healing function calculated from the
healed area follows a dynamical scaling in relation to the
waiting time; (3) the slowdown of healing was not caused
by the density growth during waiting; (4) for groups with a
larger waiting time, the slowdown of the propagation of the
wound edge was mainly caused by the slow advancement of
cells behind the leading edge. In the following sections, we
construct minimal models based on these facts and detangle
the roles of several key factors such as cell proliferation
and cell migration to explain the slowdown of healing in
experiments. We also identify the control parameter through
criticality analysis in the minimal model and later confirm it
in a microscopic agent-based model, where the cell-cell and
cell-ECM adhesions and the cell cycle process are taken into
account.

III. MACROSCOPIC EQUATION-BASED MODEL

One of the simplest macroscopic equation-based models for
wound healing without waiting is the reaction-diffusion equa-
tion (RDE) proposed by Fisher and Kolmogorov [39,40] and
later verified and extended by many others [28–32,37,38,41].
Wound healing models using RDEs attribute the growth of
cell density to two factors: cell movement (diffusion) and
cell proliferation (reaction). To model the effect of contact
inhibition, the diffusivity and growth rate can be formulated as
monotonic decreasing functions of cell density [32]. However,
traditional RDEs (hereafter referring to the wound healing
models using RDEs) can reproduce none of the characteristics
of aging observed in the experiments; in fact, the healing events
even accelerate with longer waiting times (see Appendix B 1
for an introduction to RDE results). In the following section,
we propose a modified RDE model with a minimal set of
assumptions to reproduce the aging effects.

A. Asymmetric RDE (ARDE) for wound healing

We first briefly introduce the original RDE model for wound
healing. Given a normalized cell density u(x,t)(0 � u � 1) at
position x in a one-dimensional space at any time t , the time
evolution of u(x,t) is

∂u

∂t
= d

∂

∂x
D(u)

∂u

∂x
+ mM(u)u, (1)

where D(u) and M(u), both decreasing from 1 to 0 as a
function of u, represent the normalized cell diffusivity and
the normalized cell mitotic rate, respectively. Constants d and
m are two coefficients weighting the contributions of the two
terms. The formulation of D(u) has many candidates, while
we adopt the one proposed by Cai et al. [32]:

D(u) = p

p + u
, (2)

where p > 0 is a coefficient inversely proportional to the
strength of contact inhibition. We set p as 0.01 in the following
simulations, hence D can hundredfold decrease from 1 to 0.01
when the cell density u increases from 0 to 1. Conventionally,
the proliferation term M(u)u takes the form of logistic growth
(1 − u)u [28–32,39–41]. Given the initial condition u(∗,0) =
u0, the solution to Eq. (1) is a sigmoid function of time for all x,
hence the cell density at any tw immediately before wounding
is

u(tw) = u0

u0 + (1 − u0)e−mtw
(3)

with the long time limit u(tw → ∞) ≈ 1 − u0/(1 − u0)e−mtw .
Therefore, the cell density approaches saturation with an
exponentially decaying speed, agreeing with the experimental
findings in Fig. 2(a).

When a wound is created, the cell density drops to zero
in the wound bed, inducing a dramatic density difference
at the wound edge. Then the cells start to diffuse from the
high-density region to the low-density region at the speed pro-
portional to D(u) while they proliferate at the rate proportional
to M(u). As a result, the cell density profile u(x,t) at the wound
edge is a traveling wave, with cells at the low-density region
having the highest diffusivity and mitotic rate. The formulation
of diffusivity D(u) and mitotic rate M(u) in RDE naturally
presumed that the cells can immediately sense the local cell
density and response promptly to the wound. Under this
assumption, the waiting time elapsed before wounding only
slightly affects the cell density at the wounding time [Eq. (3)]
without profound impacts on other parts of the dynamics. As
is observed from the comparison between experiments I and
II (see Sec. II B 2), the density effect cannot be the core reason
of aging.

To reproduce the aging effect, a strong dependence of the
diffusivity and the mitotic rate on the waiting time is necessary.
Therefore, we consider that the cells at the wound edge
do not resume their diffusivity or mitotic rate immediately;
particularly, the longer the cells wait, the slower the response
to the wound should be.

1. Delayed-proliferation model

We first propose a model of delayed recovery
in the mitotic rate M (u (x, t)) for all x as
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follows:

M(t) = Mcon(t), for Mcon(t) � M(t − �t)

M(t) = δMcon(t) + (1 − δ)M(t − �t), for Mcon(t) > M(t − �t)
, (4)

where δ ranging from 0 to 1 is a delay fraction, and Mcon(t) =
1 − u(t) represents the mitotic rate of the logistic growth,
which is subject merely to the contact inhibition. Indeed,
Eq. (4) categorizes the dynamics of M(t) into two conditional
cases: if Mcon(t) is smaller than the mitotic rate at the previous
time step M(t − �t), which means that the contact inhibition
is getting stronger, then M(t) will be reduced to Mcon(t)
immediately as the inhibition of mitosis; otherwise if Mcon(t)
is larger than M(t − �t), which implies a weaker contact
inhibition at the current time, M(t) would recover to Mcon(t)
at a delayed pace controlled by the fraction δ. Apparently,
the increase and decrease in M(t) depends asymmetrically on
Mcon(t), hence asymmetrically on u(t). In the extreme case of
δ = 0, M(t) will decrease everlastingly, thereby modeling an
irrevocable cell cycle inhibition. Contrastingly, in the case of
δ = 1, the recovery of mitotic ability becomes instantaneous,
and Eq. (4) will return to the logistic growth form. For a clearer
biological interpretation, δ characterizes how rapidly cells can
wake up from an arrest state (the state of cell cycle arrest). For
0 < δ < 1, the transition from a growth state to an arrest state
will be faster than its reversal process for a cell. For such a
loss of symmetry in the transitions between two cell states, the
term asymmetric RDE (ARDE) is used to name our model.

The numerical solutions to the ARDE model with a delay in
the proliferation term for different delay fractions and waiting
times are exhibited in Fig. 5. The wound condition is set
as u(xwound,tw) = 0,xwound ∈ [x ′,x ′′]. Figures 5(a1) and 5(a2)
show that the density profile u(x,t) still keeps the form of
a traveling wave, although the exact front shape and the
propagation speed depend on the delay fraction δ. A small
value of δ can slow down the wave propagation as well as the
transient formation of the stable front shape; meanwhile, the
low-density head of the cell front extends much wider with
a small δ [Fig. 5(a1)] than that with a large δ [Fig. 5(a2)].
Figure 5(b) shows the comparison of the density profiles
between two different waiting times with the same value of
δ. Similarly, the larger waiting time causes a slowdown of
front formation and propagation, with the stable wave shape of
the fronts having the extended head in the low-density region.
The slowdown of the front propagation and the change in the
front shape due to the small δ or the long waiting time suggest
that the delayed recovery of cell proliferation can slow down
the advancement of the bulk of cells behind the leading edge,
agreeing well with the experimental results [Fig. 4(c2)].

The healed area as a function of postwounding time is
displayed in the top panel of Fig. 6 with three different values
of δ [Figs. 6(a1)–6(a3)]. In the figures, the vertical axis of
graph is the normalized healed area calculated as

Ã(t) = 1

|x ′′ − x ′|
∫ x ′′

x ′
u(x,t)dx.

The loss of healing ability of cells with a longer waiting
time is clearly demonstrated by the slower increase in Ã(t).

In the lower panels of Figs. 6(a1)–6(a3), the healing data with
longer waiting times (tw > 36 steps) could be rescaled to a
single curve with distinct scaling exponents for three different
δ, whereas the healing curves with shorter waiting times (tw =
12, 24 steps) deviate from the dynamical scaling, just as the
healing of group 1 did in the experiments. The decrease in δ

(from 10−5 to 10−7 and 10−9) induced an increase in the scaling
exponent (roughly from 0.48 to 2.33 and 4.35), revealing the
role of δ in controlling the deterioration of healing efficiency.

FIG. 5. Numerical results of the postwounding cell front prop-
agation in asymmetric reaction-diffusion equation (ARDE) model
with a delay in the proliferation term solved with u0 = 0.9, and
d = m = 0.1, p = 0.01 on x ∈ [0,100]: (a1) and (a2) for different
values of delay fraction δ with tw = 10 and (b) for different waiting
times tw with δ = 10−5. The total wound area ranges from x = 35 to
x = 65. Only the left side of the wound edge is shown because the
density profiles on two sides are mirror symmetric.
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FIG. 6. Numerical results of the normalized healed area as a
function of postwounding time in asymmetric reaction-diffusion
equation (ARDE) model with d = m = 0.1, u0 = 0.5, p = 0.01. The
vertical axes represent the normalized healed area Ã. (a1)–(a3) For
three values of the delay fraction δ in the proliferation term. The
aging exponent increases when δ decreases and results of the first
two groups tw = 12 and tw = 24 deviate from the rescaled curve.
(b1) For different values of the delay fraction γ in the diffusion
term with tw = 0. (b2) For different values of waiting times. (b3) For
different values of waiting times with the modeling of spreading cells.
The black curves refer to λ = 0.001; the red curves refer to λ = 0.01,
where λ controls the length of the region occupied by the spreading
cells. Note that the x axes in panels (a1)–(a3) are on logarithmic
scales.

The reason a small δ can render a huge aging exponent may
be inferred from the following asymptotic analysis of mitosis
rate M . Assuming that all cells in the wound area experience
delayed recoveries of mitotic rate and that the cell diffusion is
negligible, we can derive the following time evolution equation
for the mitotic rate from Eq. (4):

M(t,tw) =
∫ t

tw

δ(1 − δ)t−t ′ [1 − u(t ′)]dt ′

+ (1 − δ)t−tw [1 − u(tw)]. (5)

Equation (5) consists of two terms: a convolution from tw to
t and a contribution from the density u(tw) immediately before
wounding. Apparently, a small δ will reduce the contribution
of the convolution term, and in the extreme situation δ = 0,
M(t,tw) is reduced to 1 − u(tw), which approaches e−mtw in
the limit of tw → ∞. The exponential decay in the mitotic
rate M with tw implies an exponential divergence of healing
time with tw, which leads to an infinite aging exponent for the
dynamical scaling [also demonstrated by Fig. 7(b), and see the
discussions in Sec. III B].

FIG. 7. Critical behaviors in asymmetric reaction-diffusion equa-
tion (ARDE): complete healing time τ diverges as a function of delay
fraction δ, and cell density at wounding time u(tw). (a) log10τ vs
log10(1/δ). The lines from the bottom to top correspond to u(tw) =
1 − ε,ε from 10−1 to 10−15. (b) log10τ vs log10[1 − u(tw)]. Note that
log10[1 − u(tw)] is asymptotically proportional to tw according to
Eq. (3) and the horizontal axis is on a logarithmic scale. The curves
from the bottom to top correspond to δ from 10−1 to 10−15.

2. Delayed-migration model

Cell migration can also be suppressed by the increased cell
density or the accumulation of cell-cell or cell-ECM adhesion
[28–33,37,38]. Previous literature reveals that the motility of
the cells will change over time in a confluent cell sheet [22,23]
and the mechanics related to migratory ability of the cells at
the wound edge influence the wound closure efficiency [36,42–
45]. In a similar way to Eq. (4), we can realize the impact of
the waiting time on the cell migration by adding the “wake-up”
dynamics to the diffusion term in Eq. (2) as follows:

D(t) = Dcon(t) for Dcon(t) � D(t−�t)

D(t) = γDcon(t) + (1 − γ )D(t) for Dcon(t) > D(t−�t)
,

(6)
where γ from 0 to 1 is the delay fraction for the diffusivity.
Figure 6(b1) shows that, with a smaller γ , the wound heals
more slowly for tw = 0. Nonetheless, even if we fix γ to zero
(which means an irreversible decrease in the cell motility due
to the maturation of the inter- and extracellular conditions), no
notable aging effect is observed [Fig. 6(b2)].

This result is unexpected from the previous literature in
which the emergence of nonproliferative spreading cells at the
leading edge (around which lamellipodia can be found; see
Appendix E) and their motility were reported to be crucial
for healing efficiency. In ARDEs, such spreading cells are
not modeled. To test whether this absence of spreading cells
can explain the loss of the aging effect, we add the submodel
of spreading cells by multiplying a Heaviside step function
H [λ − D(x)] to the original mitotic rate obtained from Eq. (4).
Hence, when the cells have a diffusivity D larger than λ,
they will have zero mitotic activity. The newly introduced
parameter λ > 0 controls the length of the region occupied
by the spreading cells. Since these cells only appear in the
front rows of the wound edge [28,36,42–45], λ should be
small compared with the diffusivity coefficient d (refer to
Appendix E). Figure 6(b3) shows the healing curves for λ =
0.001 (black) and λ = 0.01 (red) in the case of δ = 1,γ = 0
under various waiting times. By comparing Figs. 6(b2) and
6(b3), we find that when λ is small, the role of spreading cells
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is negligible. The healing processes apparently appear slower
with a larger λ, yet still no notable aging effect is observed.

If we further consider reproducing the extended heads in
the density profiles as is shown in the experiment, we should
apply the wake-up dynamics [Eq. (6)] only to the bulk of cells
behind the leading edge, which will make the unnoticeable
aging effect in Fig. 6(b) even more trivial (results not shown
here).

In brief, the wake-up dynamics for the diffusion term
in ARDE do not render slowdown of healing unlike its
counterpart for the proliferation term. This can be attributed
to the fact that the diffusivity D does not decrease radically
with large waiting times [because the diffusivity D takes the
form of p/(p + u); in fact, any monotonic decreasing function
of u satisfying D(u = 1) > 0 cannot reproduce aging]. To
induce an aging effect by modifying the diffusion term in the
RDE models, we must add extra assumptions, such that the
diffusivity coefficient d decreases or the range of spreading
cells λ increases radically with the waiting time in a specific
fashion. However, the evidence is still lacking. Though the
inhibition of cell locomotion due to the densification of
the confluent cell sheets in short-time observation has been
reported [16,18,22], cell proliferation and the remodeling of
ECM were not triggered in these experiments. For healing
processes longer than the cell doubling time (which is the
estimated duration for a cell to divide and roughly 24 h for
HepG2.2.15 cells in our experiments), whether the diffusivity
decreases or the range of spreading cells increases with longer
waiting times and whether the cell migration can be resumed
promptly remain to be investigated in future experiments.

3. Summary of ARDE modeling for wound healing

The delayed recovery of cell proliferation in ARDE models
can well reproduce the dynamical scaling of the waiting-time-
dependent healing events (including the late onset of aging)
and the slow propagation of the cell fronts with an extended
low-density edge. Contrastingly, the delayed migration model
cannot induce the aging phenomenon without extra assump-
tions on the evolution of other parameters. Nevertheless,
considering that the cell motility and cell cycle dynamics
are coordinately regulated by a complex signaling network
of intracellular molecules, we are aware that the slowdown
of healing is a combined consequence of the mechanical and
biochemical factors. More experimental efforts should help
unveil the detailed mechanisms underlying this slowdown of
healing and identify the specified roles of cell proliferation and
cell migration.

B. Bounded criticality

A scaling between delay fraction δ and complete healing
time τ is also revealed by numerical simulations, where τ is
defined as the time when the normalized healed area Ã(t) >

99%. Figure 7(a) illustrates the divergence of τ with δ under
various u(tw). A larger value of u(tw) corresponds to stronger
contact inhibition due to a longer waiting time, as shown in
Eq. (3). The algebraic divergence of τ as τ ∼ (1/δ)β (β = 0.47
is universal for all parameters; see Appendix B 2) resembles the
criticality in physical systems with the critical point at δ = 0,
even though the divergence crosses over to a ceiling for a small

δ. A larger wounding density u(tw) postpones this crossover,
suggesting that δ serves as a control parameter similar to
a physical control parameter (e.g., temperature) under the
condition of stronger growth inhibition (caused by higher cell
density). The reason for the ceiling in the small δ region is
that as δ decreases, the second term involving u(tw) becomes
more dominant in M(t,tw) [see Eq. (5)], and thus τ diverges as
τ ∼ emtw independently of δ. Under stronger contact inhibition
[with u(tw) closer to saturation], the convolution term in Eq. (5)
can take effect with a smaller δ, and thus extend the range of
critical regime.

Figure 7(b) shows the relationship between log10 τ

and log10[1 − u(tw)]−1 for a series of δ, noting that
log10[1 − u(tw)]−1 is asymptotically proportional to tw ac-
cording to Eq. (3). The aging regime, in which τ increases
with tw, also crosses over to a ceiling; a smaller δ renders a
rapid divergence of τ (indicative of a dramatic aging) with
an extremely large aging exponent (τ ∼ t 9.7

w , the red line).
Additionally, the aging regime begins with an exponential
subregime and then crosses over to a power-law one, which
is more explicit with a smaller δ. This shift of subregime
elucidates why groups with a shorter wait failed to fit
dynamical scaling in ARDE results [see Figs. 6(a1-a3)].
Finally, the vanishing of the aging effect at extremely long
waiting times originates from the existence of cell diffusion as
demonstrated in Appendix B 3.

IV. SLOWDOWN OF HEALING
IN AN AGENT-BASED MODEL

To justify the biological contents of the delay fraction δ,
we further explored the aging phenomena in silico using a
cell-based approach that involves more detailed cell behaviors
than the ARDE models do.

A. Simulation results with discrete receptor
dynamics model (DRDM)

We adopted DRDM, an on-grid agent-based model for
epithelial tissue formation [46]. DRDM can reproduce diverse
tissue homeostatic states, including degenerate, normal, and
tumorigenic states merely based on cell-cell and cell-ECM
interactions without predefined mutations or environmental
changes. In the DRDM simulation, each cell secretes ECM
during growth and adheres to its ECM and neighboring cells;
when the cell-cell and cell-ECM adhesions are both strong
enough, the cell becomes polarized and prepared for cell cycle
arrest; cells can diffuse only if the cell-cell and cell-ECM
adhesions are weak. The cells in DRDM are equipped with
five types of receptors, the expressions of which discretely
change in response to the cell behavior in the previous time
step and then dictate the cell behavior for the next discrete time
step based upon comparisons between the receptor amounts
and respective thresholds (refer to Appendix C for a detailed
description). The primary finding from the DRDM in the
previous study [46] is that healthy tissues intrinsically evolve
into tumorigenic states (which feature large tissue volumes
with mostly proliferating cells) accompanying a decrease
in average cell age or else into degenerate states (which
feature diminished tissue volumes with mostly quiescent cells)
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FIG. 8. The slowdown of healing in the simulations with dis-
crete receptor dynamics modeling (DRDM) using the degeneration-
inducing parameters. (a) Healing processes on a normal and a rescaled
time axis (inset). Note that groups with waiting time tw larger than
36 steps obey the dynamical scaling with an aging exponent 0.75.
(b) Time evolution of population densities for arrested cell during
natural growth before wounding. Arrest cells are cells with arrest
receptor amount above arrest threshold a. Permanently arrested cells
are defined as the arrested cells with the sum of growth and adhesion
receptor amount below growth threshold g.

accompanying an increase in average cell age over a large
spectrum of time scales. We thus used the parameter settings
that reproduced normal-to-degenerate evolution accompany-
ing aging in our simulations (model details and the snapshots
of simulated healing events are displayed in Appendix C 1 and
Appendix C 2).

As expected, the healing process decelerated with waiting
times tw [Fig. 8(a)], and for tw from 36 to 90 iterations,
the healing curves fit dynamical scaling with an exponent of
0.75 [inset of Fig. 8(a)]. Scrutinizing the dynamics of the
subpopulations during the natural growth before wounding,
we observed a growing population of cell-cycle arrested cells
undergoing three regimes [Fig. 8(b)], the second of which
(with a steady linearity) is concomitant with the dynamical
scaling regime. This suggests that the critical factors relating
to delay fraction δ can be those driving the structural shift in
the cell subpopulation.

B. Criticality of multiple factors

The dynamics of the subpopulation structure in DRDM are
affected by multiple factors, including cell-ECM adhesion,
cell-cell adhesion, cell polarization, the regulation of cell-cycle
arrest, apoptosis, and cell movement. Because apoptosis is
negligible in the in vitro cell monolayer formation, only the
effects of the ECM threshold e, polarization threshold p, arrest
threshold a, and growth threshold g are examined.

We first explain how these four thresholds function in
DRDM. Growth threshold g: the number of growth receptors
exceeding the growth threshold is a prerequisite for cell
growth. ECM threshold e: the number of ECM receptors (or
the receptors bound to ECM) exceeding the ECM threshold is
one of the prerequisites for a cell to be polarized into an apical
state; the ECM threshold thus inversely correlates with the
sensitivity of a cell to ECM. Polarization threshold p: the
number of adhesion receptors exceeding the polarization
threshold is the other prerequisite for a cell to polarize. Arrest
threshold a: arrest receptors begin to accumulate once a cell
becomes polarized, and if the number of arrest receptors hits
the threshold a, the cell cycle will be arrested into a state with

no more growth and with weakened adhesion to other cells
and the ECM, i.e., a state referred to as cell cycle arrest.

Healing time τ̃ in the DRDM simulation is defined as the
time when 90% of the wound sites are reoccupied by cells, and
is measured for different sets of e, g, a, and p. As a result, e

and g are the two most critical factors that slow the healing as
illustrated in Fig. 9(a); in contrast, p and a play insignificant
roles in aging [Fig. 9(b)]. However, the abrupt jump of τ̃ from
roughly 50 to infinity in Fig. 9(b) corresponds to the emergence
of incomplete healing, which is another complex issue that has
not been evaluated in experiments or ARDE models; we give
explanations on incomplete healing in Appendix C 3.

The dependence of healing efficiency on the ECM threshold
e [Fig. 9(c2)] shows that the ECM plays a role in the

slowdown of healing. A lower value of e induces a quicker
polarization that may lead to cell cycle arrest, suggesting that
the accumulation of ECM induces the slowdown of healing
in DRDM through promoting cell cycle arrest. The growth
of ECM in DRDM can meanwhile affect the cell motility.
Nevertheless, as we have shown in Appendix C 4, the loss
of cell mobility cannot lead to a significant aging effect in
DRDM, in agreement with the correspondent findings in the
ARDE models. Hence, the aging effect associated with ECM
in DRDM simulations is caused by cell cycle arrest instead of
the mechanical reasons.

Healing times diverge continuously with g as a power
law τ̃ ∼ gβ̃ for small g [Fig. 9(c1)]. Clearly, 1/g serves as
a control parameter as the delay fraction δ does in ARDE
[see Fig. 7(a)] and the criticality vanishes for both smaller
1/g and δ. However, the slope of log10 τ̃ vs log10 g (i.e., the
value of critical exponent β̃) differs with other parameters such
as various ECM thresholds e [Fig. 9(c2)] and various arrest
thresholds a [Fig. 9(d)], indicating that g is not as dominant
as δ for controlling the dynamical scaling.

Nonetheless, the essence of δ can still be understood by
associating δ with g. In DRDM, growth threshold g determines
the asymmetry of the regulation in the restriction point (a
checkpoint for entry and exit of cell cycle arrest): entry into
arrest depends only on the arrest receptors, whereas the exit
from arrest requires additionally the growth receptor amount
exceeding g [Fig. 10(a)]. When g is zero, entry into and exit
from cell cycle arrest are governed solely by arrest receptors,
i.e., the transitions between growth and arrest become symmet-
ric. Otherwise for any nonzero g, quiescent cells must have
their growth receptor amount overcome an extra barrier of g.
If g is too large, cells can rarely restore the growth, and the
growth-to-arrest transitions in the cell states are irrevocable.
The arrest-to-growth (or the growth-to-arrest transition) in
DRDM cells is exactly a microscopic representation of the
increase (or decrease) in the mitotic rate M in the ARDE
[Eq. (4)], and the growth threshold g in DRDM, similar to that
of δ in the ARDE model [Fig. 10(b)], controls the deterioration
of healing efficiency [referring to the inset of Fig. 9(a)]. In
addition, just as the critical role of δ is more prominent
under stronger contact inhibition in ARDEs [Fig. 7(a)], and
the criticality or aging in DRDM controlled by g is likewise
more apparent under growth-inhibitive settings such as a low
ECM threshold [Fig. 9(c1)], a low polarization threshold (a
sensitive polarizing response to cell-cell adhesion), or a low
arrest threshold [a strong cell-arrest regulation; see Fig. 9(d)].
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FIG. 9. Healing time τ̃ in discrete receptor dynamics modeling (DRDM) with different parameter settings. All wounds are set to be
performed at ten steps after the start of the simulation. The values of thresholds e,g,p,a on the figures are in the unit of RM , which is the
receptor amount required for mitosis. See Appendix C for other parameters. (a) Healing time τ̃ vs extracellular matrix (ECM) threshold e and
growth threshold g. Inset: the log-log plot of τ̃ vs tw with four pairs of {e,g} pointing to the black balls on the 3D diagram. (b) The diagram
in the space of polarization threshold p and arrest threshold a, with e fixed at 0.8RM and g at 0.05RM . The infinitely diverged values of τ̃ are
truncated to 104. (c) The 2D log-log plot of τ̃ vs g and the log-linear plot of τ̃ vs e. (d) The divergence of τ̃ as a function of g for different
arrest thresholds a, with e = 0.8RM .

Given the fact that the delay fraction δ has been substantiated
by the growth threshold g in many aspects, we can interpret
the critical parameter for bio-aging in the wound healing
context as the degree of asymmetry between growth-to-arrest
and arrest-to-growth transitions in cell cycle governed by the
restriction point. This asymmetry is hereafter briefly termed
as restriction asymmetry.

V. DISCUSSION

A. A comparison of physical aging and bio-aging

1. Analogy in the picture of trap model

Over the past decade, the analogy between glassy or
jammed materials and cellular layers has been studied on

FIG. 10. Asymmetric transitions between cell growth and cell
cycle arrest in discrete receptor dynamics modeling (DRDM) as a
microscopic interpretation (a) and in asymmetric reaction-diffusion
equation (ARDE) as a macroscopic interpretation (b). The thickness
of the arrows represents the transition rate.

the basis of mechanobiology. Many mechanistic features of
cytoskeletal dynamics were found, such as dynamic hetero-
geneity, cooperativity, and kinetic arrest, and these glasslike
mechanics are speculated to have a profound impact on the
biochemical activities of the cellular layers [16–19]. Although
the interdependency and causality between the glasslike
mechanics and the slowdown of healing are not fully clarified,
we are able to establish an analogy between the slowdown of
healing in the cell monolayer and the slowdown of relaxation in
physical systems based on the current findings in experiments
and simulations.

The analogy between the two types of aging can be
articulated with the trap model [47]. In a system with many
particles (or cells), each particle (or cell) senses a local energy
trap (or a biochemical trap that induces cell cycle arrest)
formed by neighbors (or ECM, cell-cell adhesion); the escape
from it requires more effort than does entering into it. When
the control parameter approaches a critical value, the barrier
of the traps will become so high that the system dynamics
may easily be captured in the local minimum of the total free
energy. In this analogy, the two systems based on disparate
dynamics resemble each other, having a common definition of
the control parameters as the ratio of the effort required to fall
into a trap (arrest) to the effort required to escape. Typically,
when this ratio is small (e.g., low temperature, high density
in physical systems and small δ in ARDE), the dynamics of
the particles (or cell cycles) tend to be arrested and the system
loses the ability to relax in physical systems (or to regenerate
in biological systems).
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2. Unclarified issues

Due to the low time resolution and the short observation
time scale of the current experiments of TDWHAs, a finer
comparison between the slowdown of healing and the slow-
down of relaxation events in physical systems is limited, thus
leaving many unclarified issues associated with the analogy
between two types of aging. For instance, dynamical scaling
of physical aging is believed to originate from time-spatial
local scale invariance symmetry [48], a property that currently
has no biological counterpart. Also, the scaling exponent
of physical aging typically ranges from 0 to 1, whereas in
the proposed ARDE, this exponent can be far greater than
1 when δ is close to zero; this suggests a possibility that
the exact scaling of the healing curves in relation to the
waiting time might be exponential, instead of a power law.
Meanwhile, the critical range of the control parameter found in
the biological model is restricted and influenced by many other
factors such as cell movement, cell-ECM interactions, and cell
polarization, among others, implying that the living systems
with tremendous complexity might be no perfect analog of
any physical systems. Finally, the concepts of equilibrium
and relaxation in physics (associated with ergodicity and a
process of reaching ergodicity) do not rigorously correspond
to tissue homeostasis and regeneration (where only nonergodic
steady states are possible) and it is unclear to what extent this
fundamental discrepancy could falsify the analogy and impair
its application prospects. These issues may provide many new
research themes for future studies.

B. Implications for modulating regeneration

1. Reducing restriction asymmetry

In the model analyses, the key factors in bio-aging were
identified as (1) growth inhibition (resulting from cell-cell
contact and cell-ECM interactions, among others), which is
the prerequisite, and (2) restriction asymmetry, the controller
for the “wake-up” dynamics from the deep growth inhibition.
For better regeneration, reducing the inhibition of cell growth
is risky because growth inhibition is naturally programmed
for tissue stability and tumor suppression. Nevertheless,
reducing the asymmetry of cell-cycle regulation can enhance
regeneration without risking tumorigenesis assuming natural
growth inhibition is undisturbed. Therefore, administrating
restriction asymmetry in the clutter of biological details is
crucial.

Restriction asymmetry in tissue may result from irreversibil-
ity of the activation route of signaling pathways [49,50] or
can emerge from the monotonic shift of cell subpopulation
structure [6]. Practical application to the regeneration of
a specific tissue such as the liver tissue requires a full
understanding of restriction asymmetry in a computational
model exclusive to the hepatocytes in a multicellular context
before key factors can be tuned in relevant experiments.
However, we should always be aware that the delayed wake-up
of cell activity may only be one possible ingredient attributed
to tissue aging. In some circumstances, other factors such
as the deterioration of the environment or the age-dependent
pathogenesis can play more prominent roles.

FIG. 11. Measuring aging in a system’s life excursion. Traditional
biomarkers are focused on life expectancy (i.e., the chronological
distance from the present to death); whereas, the dynamical scaling
exponent μ in this article quantitatively describes regeneration-related
aging rate from young to old.

2. Evaluating regeneration-related aging rate

Measurements of aging are difficult because of the
complexity of the interactions among contributing factors
[51]. Numerous studies have revealed the genetic determinants
of longevity [52] and placed a focus on life expectancy, i.e.,
the chronic distance to life termination (death; Fig. 11).
However, the distance from the beginning of life (birth) and
the speed of aging should also provide much information
about the regenerative potential, which would facilitate health
maintenance. The dynamical scaling exponent μ obtained by
fitting the wait-dependent healing processes in our study can
serve as a quantitative description of the regeneration-related
aging rate of a tissue on its life excursion from young to old
age. Even though our protocol for measuring μ is inconvenient
for in vivo experiments, μ can be easily measured in vitro
for any cell lines of interest with any specific environment
settings.

VI. SUMMARY

Dynamical scaling of multicellular regeneration in time-
delayed wound healing assays (TDWHAs) reveals an other-
wise invisible link bridging physical and biological aging. The
scaling provides an exponent that indicates the regeneration-
related aging rate and also sheds light on a methodology for
pinpointing the controller of the biological organizations in
maintaining the capacity for regeneration. Under the mapping
of multicellular regeneration to physical relaxation, parallel
models at the macro- and microscopic levels have identified
restriction asymmetry of cell-cycle processes (the asymmetry
of the transitions between the growing and the arrested states)
as the most viable role in reproducing the dynamical scaling
of healing events. Restriction asymmetry serves as a biological
control parameter analogous to the control parameters found in
physical systems: it controls the speed of slowdown of healing
(relaxation) and the power-law divergence of the healing time
(relaxation time) near the critical point; yet, its critical role
in controlling aging is more prominent under strong growth
inhibition caused by specific cellular mechanisms, such as
strong cell-cell and cell-ECM interactions. The unification of
two seemingly incomparable types of aging in this study not
only facilitates an integrated understanding of the bio-aging
mechanism but also suggests the further applicability of
nonequilibrium physics to complicated life phenomena beyond
thermal and mechanical levels. We expect future studies of
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FIG. 12. Time-delayed wound healing assays. (a) The procedures in time sequence: Seeding, starvation, waiting and wounding. Group
number N corresponds to a waiting time of 24 × N h. (b) Left: one well has three scratches (wound gaps), as represented by the vertical pink
lines; six sample areas, marked by six circles, were located in the center, adjacent to the horizontal auxiliary blue line, which was manually
drawn to help locate sample positions. Right: the photograph for each sample taken by a microscope (magnification: 400 ×), where the dark
area is the wound area. (c) Postprocessing of images using Photoshop CS6. First, we tuned up the contrast and exposure rate of the snapshot, and
then use the Magic Wand for an accurate identification of the wound area. The number of pixels enclosed by the wound edges (the highlighted
cyan curves) was calculated automatically by the software.

TDWHAs to involve various cell lines and experimental
settings at higher time resolution and with longer waiting
periods for clarifying the detailed mechanism underlying the
slowdown of healing and for better translating the theory of
physical aging to bio-aging problems.
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APPENDIX A: MATERIAL AND METHODS

1. Cell line and cell culture

HepG2.2.15 hepatocellular carcinoma cells were main-
tained in high-glucose Dulbecco’s minimal essential medium
(DMEM; Gibco, ThermoFisher Scientific), supplemented with
10% fetal bovine serum (US origin, Gibco, ThermoFisher
Scientific) at 37 °C and 5% CO2. The medium was changed
twice a day to ensure sufficient nutrients for the cells
throughout the entire experiment.

2. Cell counting with a hemocytometer

Cell suspension (10 μL) was taken using a pipette and the
pipette tip was placed near the edge of the chamber, allowing
the cell suspension to enter the counting chamber by capillary
action. The microscope was then focused on an area of the

counting chamber and the cells were counted using a tally
counter. The average cell count was taken from each of the sets
of 16 corner squares and multiplied by 10 000-fold. The final
value was the number of viable cells per mL in the original
cell suspension. The total cell number in a well was then
calculated as this density value times the volume of the total
cell suspension in a well (10 mL).

3. Cell viability with 3-(4, 5-dimethylthiazol-2-yl)-2,
5-diphenyltetrazolium bromide (MTT) assays

The medium was removed from each sample of the well and
replaced with fresh culture medium. Then MTT (5 mg/mL)
was added to each well to a final concentration of 10%. The
cells were incubated at 37 °C for 4 h. SDS-HCL solution
(10% SDS in 0.01 M HCL) was then added to each well
and mixed thoroughly using a pipette tip. Cells were then
incubated at 37 °C for another 4 h in a humidified chamber.
Finally, the samples were mixed and absorbance was read with
a spectrophotometer at 550 nm (reference 750 nm), indicating
the metabolic viability of the total cells in the well.

4. Procedures

Newly thawed HepG2.2.15 cells were passaged at con-
fluence, and seeded into six-well plates at an initial density
u0, followed by a period of cell starvation for synchronizing
cell cycles. At the end of starvation, the time was reset to
zero. As illustrated in Fig. 12(a), the plates of cells were
divided into N groups, each of which awaited an additional
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TABLE I. Parameter settings for two separate experiments of
time-delayed wound healing assays.

Item Description/value

Pipette type Gilson, 200 μL/tips (200 μL)
Average wound bed width 0.25 mm
Starvation time before waiting 24 h
Initial seeding cell density 5 × 105 (experiment I),

(per mL) 2 × 106 (experiment II)
Group number 4 (experiment I), 5 (experiment II)

period of time TN = 24 × N (h) before subjected to wounding
(using a pipette). For each well in the plates [the left graph of
Fig. 12(b)], three linear parallel wound gaps were created (the
vertical pink lines), with six samples located at the center of the
well [the six circled areas adjacent to the horizontal auxiliary
blue line in Fig. 12(b)]. Each group was under continuous
observation for ∼190 h and photographed once every 24 h. The
right panel in Fig. 12(b) presents a typical snapshot from the
experiments. The photographs were postprocessed in Adobe
Photoshop CS6 for counting the pixel number in the wound
areas using the Magic Wand Tool [Fig. 12(c)]. Two series of
experiments were conducted with two different sets of initial
density u0 and group number N . See Table I for a summary of
parameter settings in the experiments.

APPENDIX B: WOUND HEALING BY
REACTION-DIFFUSION EQUATION (RDE)

1. Models failing to reproduce slowdown of healing

Let us consider the following RDE:

∂u

∂t
= ∂

∂x
D(u)

∂

∂x
u + M(u)u, with

D(u) = p/(p + u), and M(u) = 1 − uq.

Coefficients p and q determine the strength of the depen-
dence of the normalized diffusivity D and the mitotic rate M

on the cell density u, respectively. Note that q = 1 yields the
Fisher model evaluated in the main text. Spatial coordinates
range as x ∈ [0,100] with a wound condition initialized at
different waiting times, u(xwound,tw) = 0,xwound ∈ [35,65].

The numerical solutions of RDEs with different sets of
{p,q} are illustrated in Fig. 13(a). Contrary to what we
observed in experiments, there is an acceleration of healing
with waiting time. This is because a longer waiting time can
cause more cells to accumulate at the wound edge before
healing starts, which later results in more migration of cells
into the wound area and consequently a faster rate of healing
[i.e., the red line advances more quickly than the black line in
Fig. 13(b)]. Therefore, the original reaction-diffusion model
that involved only contact inhibition was not able to reproduce
the phenomena of aging.

FIG. 13. Time-delayed wound healings in the original reaction-diffusion model. (a) Healing results for different waiting periods under
various parameter settings. The meaning of p and q is explained in Appendix B 2. (b) The cell density distribution after wounding for two
healing events at different cell densities immediately after wounding (the red line for higher density and the black line for lower density). The
vertical axis is the cell density ut and the horizontal axis is the cell position x. The grey dashed line marks the position of the wound edge
immediately after wounding and the space to the right of the grey dashed line is the wound bed with zero cell density. Top: the distribution
of cell density at tw immediately after wounding. Bottom: the distribution at tw + �t (�t is a small-time interval). Higher cell density on the
wound edge at tw causes more cells to migrate into the wound bed (the red line is always above the black line).
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FIG. 14. The critical exponent estimated from numerical re-
sults of asymmetric reaction-diffusion equation (ARDE). �(δi) =
[log10τ (δi+1) − log10τ (δi−1)]/(log10δi+1 − log10δi−1) denotes the
derivatives of log10 τ as a function of delay fraction δ calculated
from a series of data τ (δi),i = 1,2 . . . ,N . (a) �(δ) under various
wounding densities u(tw) with the parameter setting m = d = 1,p =
0.01 (corresponding to the data in Fig. 7). (b) Divergence of log10 τ

with other parameter settings under high contact inhibition u(tw) =
1 − 10−15. (c) �(δ) calculated from the data in (b) in comparison
with the control group (m = d = 1,p = 0.01).

2. Critical exponent β

In the ARDE models, the divergence of healing time τ as
a function of 1/δ follows a power-law relation τ ∼ (1/δ)β

when u(tw) is extremely close to a saturation value of 1
(maximal contact inhibition). To evaluate the value of β,
we calculated the local derivatives of ln τ as a function of
delay fraction δ from a series of data τ (δi), i = 1,2 . . . N

with δi+1/δi = 0.1 [corresponding to Fig. 7(a) in the main
text] as �(δi) = [log10τ (δi+1) − log10τ (δi−1)]/(log10δi+1 −
log10δi−1) [Fig. 14(a)]. The value of �(δ) has three regimes
with the increase in ln δ−1:�(δ) rises from zero first, then
encounters a plateau, and finally returns to zero. For small
u(tw) (low contact inhibition), the regime with a stable plateau,
which indicates a power-law relation τ ∼ (1/δ)β , is absent;
for u(tw) extremely close to 1 (high contact inhibition), the
stable regime exhibits two subregimes with the first plateau
roughly at β = �(δ) = 0.469 ± 0.002 and the second one
at 0.5. We confirmed the existence of such a staircase in
the plateau regime with various model parameters under
u(tw) = 1 − 10−15 [Figs. 14(b) and 14(c)], where the first
plateau is universally around β = �(δ) = 0.471 ± 0.009, yet
the onset timings of the second plateau [β = �(δ) = 0.5] are
diverse. Meanwhile, the data groups with smaller p, smaller
d, and larger m tend to exhibit longer first plateaus, implying
that the first plateau with lower β is more associated with the
mitotic or reaction term in ARDE; by contrast, if the diffusional
dynamics is dominant (larger p, larger d, and smaller m), the
second plateau (τ ∼ √

1/δ) will quickly ensue.
Clarifying the origin of this phenomenon by relating it to

some established universality class might shed light on the
application of existing physics models or lead to the discovery

of a class of criticality related to complicated life phenomena.
We expect future studies on the mapping between the ARDE
(which is originally designed for a biological process) and
a physical model (such as the kinetically constrained model
[53]) to elaborate this criticality.

3. Vanishing of aging with a large waiting time

In the ARDE model for wound healing, the increase
in healing time τ with waiting time tw was bounded by
a ceiling where τ stops diverging and the aging effect
vanishes. This is because when cell density saturates (u → 1),
the number of diffusing cells ∇[D(u)∇u] from the wound
edge immediately after wounding converges to a nonzero
value [D(u → 1) + D(u → 0)]/4, asymptotically. The small
number of cells migrating from the wound edge to the wound
bed as an instant response to wounding is independent of u(tw)
in the long time limit:

du

dt
= ∇(D(u)∇u) ∼ 1

4
[D(u→1) + D(u→0)] ≈ 2p+1

4(p+1)
.

Therefore, the instantaneous recovery of M(u) for cells in
the wound bed converged to a nonzero rate when the waiting
time approached infinity as follows:

dM(tw)/dt = dM[u(tw)]/dt = δdu(xwound,t)/dt

= δ(2p + 1)/4(p + 1).

This leads to a vanishing of aging effect [dM(u)/dt

irrelevant to tw]. Such a ceiling for criticality is almost
inevitable in models where cell movement is driven by any
existent density differences, even if in the following extremal
circumstances:

(i) The diffusivity recovers in a delayed pace such that
D(t) = γDcon[u(t)] + (1 − γ )D(t − �t), where Dcon(u) can
be any ideal diffusivity purely under contact inhibition at cell
density u satisfying (ii), and γ , ranging from 0 to 1, is the
delay fraction imposed on the diffusion term;

(ii) Dcon(u → 1) > 0 and converges to zero with
Dcon(0) = 1.

The reason can be demonstrated as follows: The in-
stantaneous number of cells that migrate into the wound
immediately after wounding depends on two terms, D(u → 1)
and D(u → 0), representing the cell diffusivity on the wound
edge and in the wound bed, respectively. Even if D(u → 1)
(at the edge) approaches zero with large waiting time tw,
D(u = 0,tw + �t) can asymptotically converge to a minimum
of nonzero value in the long time limit as

γDcon(u → 0) + (1 − γ )D(tw → ∞)

= γDcon(u → 0) + (1 − γ )D(u → 1)

≈ γDcon(0) + (1 − γ )Dcon(1),

which is not sensitive to large tw. Clearly, the onset of the
ceiling regime and the vanishing of aging effect at extremely
large waiting times is inevitable for the ARDE models. We
postulate that in real experiments, incomplete healing may
occur with such long waiting times (see Appendix C 3).
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TABLE II. Adapted from Table II in Lou and Chen [46]. Discrete receptor dynamics for any single cell at time step t . The denotations Rg ,
RE , Rh, Ra , Rd represent the amount of growth receptors, ECM receptors, adhesion receptors, arrest receptors, and death receptors, respectively.
The denotation E is the concentration of ECM substances. The receptor and ECM amount change dynamically for each cell. The values of the
parameters are listed in Table III.

Conditions Cell behaviors Receptor dynamics

Rg + Rh < RM AND not arrested grow
Rg[t+1] = (1 + γ )Rg[t]

E[t + 1] = sRg[t]−c(Rh[t]+Ra[t]+Rd [t])
None adhere to neighbors Rh[t + 1] = Rh[t] + �Rh[t]

and ECM RE[t + 1] = RE[t] + �RE[t]
Rg[t + 1] = Rg[t] − �Rh[t] − �RE[t]

see �Rh and �RE in Appendixes A and B
in Lou and Chen [46]

Rh > p AND RE > e polarize Ra[t + 1] = Ra[t] + ascrRh[t]
Rh[t + 1] = (1 − ascr)Rh[t + 1]

Rh � p OR RE � e not polarize Rd [t + 1] = Rd [t] + dscr(Rh[t] + Ra[t])
Rh[t + 1] = (1 − dscr)Rh[t]
Ra[t + 1] = (1 − dscr)Ra[t]

Not arrest Ra > a restriction point entry into arrest
Arrest Ra � a AND Rg > g exit from arrest
Rg + Rh < RM AND not arrested proliferate empty seed a daughter cell at a random vacant neighboring site

Rg
daughter[t + 1] = Rg[t + 1] = B

no space doing nothing
Rd > d suicide R∗[t + 1] = 0,E[t + 1] = 0

R∗ refers to all kinds of receptors
Rh + RE < h move See Appendix C in Lou and Chen [46]

APPENDIX C: WOUND HEALINGS BY DISCRETE
RECEPTOR DYNAMICS MODEL (DRDM)

1. Model and parameter settings

DRDM is an on-grid cell-based model for epithelial
tissue formation. Each cell is equipped with five types of
receptors: growth receptor, adhesion receptor, ECM receptor,
arrest receptor, and death receptor. The cell compares the
number of receptors with different receptor thresholds to
trigger a series of decision-making processes that will update
the configuration of these five receptor types (Table II).
Thus, the number of receptors always dynamically changes,
determining the functions and the phenotype of a cell.
Interested readers can refer to Lou and Chen [46] for a detailed
demonstration of the model construction and the receptor
dynamics.

The parameters involved in the receptor dynamics for
wound healing simulations are summarized in Table III. Here
we explain the meaning of adhesion threshold (the meaning of
other key thresholds is introduced in the main text, Sec. III B).
Adhesion threshold h: if the total number of adhesion and
ECM receptors is below the adhesion threshold—i.e., the
adhesive cohesion is low enough—cells can move to an empty
neighboring site with a lesser amount of surrounding ECM.
We should mention that a time step in the simulation using
the parameter settings in Table III is roughly one-quarter of
the cell doubling time. The nonproliferative spreading cells at
the forefront of the edge are not modeled by DRDM because
proliferation and migration may simultaneously occur in one
time step if the receptor configuration of a cell meets the
specific conditions as is described in Table II.

2. Snapshots of healings

The snapshots of healings with three different waiting times
are illustrated in Fig. 15, where the slowdown of healing can
be observed.

3. Heterogeneous healing rates and incomplete
healing phenomena

The most eminent discrepancy between the agent-based
model DRDM and the ARDE model lies in the ability to
reproduce the heterogeneous healing rates at the leading edge
and the incomplete healing phenomenon. In the ARDE model,
the varying ability of cell proliferation and migration depends
only on the cell density, suggesting that the cells have the
potential to grow and move [D(u) > 0, M(u) > 0] as long
as any unhealed space with cell density u < 1 remains. By
contrast, in the DRDM, the inhibition of cell growth and
cell mobility depends not only on cell density, but also on
the adherent cohesion among cells, the sensitivity to ECM,
and on the intrinsic regulation for cell cycle arrest. These
sophisticated factors yield a huge diversity of cell phenotypes
in DRDM, resulting in heterogeneous healing behaviors along
the wound edge. As shown in Figs. 16(a) and 16(b), some of the
leading cells invade into the wound bed quickly while others
remain inactive, producing some finger-shaped healing fronts.
Although the macroscopic cell mitotic rate averaged along the
whole edge should be equivalent to M(u) in the ARDE model,
this equivalence holds only for smaller waiting times when
more cells are viable with less heterogeneous cell phenotypes.

The heterogeneity among cell phenotypes profoundly
affects the healing processes when the waiting time is long
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TABLE III. Parameter settings used for time-delayed wound healing simulations in Fig. 9(a). Note that we set death threshold d as a
sufficiently large number to ensure that cell death was negligible during the whole simulation. ECM threshold e and growth threshold g were
two variables scanned from 0 to 2RM with a sampling interval of 0.05RM . For the simulations in Fig. 9(b), g was fixed as 0.05RM and e as
0.8RM . The simulation space was a rectangular space with the 71 columns and the 10,000 rows. The wound bed was a rectangular space with
16 columns and 10 000 rows located at the center of the space.

Parameter Definition Baseline value

S space size of the 2D normal lattice with periodical boundary condition 71 × 10000
W size of the wound bed 16 × 10000
B number of basic growth receptors for a newly born cell 30
RM minimum of total receptor numbers for mitosis 100
s secretion rate of ECM 10
c decrease rate of ECM 0.5
g growth threshold from 0.0 to 2.0RM

p polarization threshold 0.09 RM

h adhesion threshold 0.2 RM

d death threshold 109RM

e ECM threshold from 0.0 to 2.0RM

a arrest threshold 3 RM

γ growth rate of growth receptor concentration 0.1
ascr accumulation rate of arrest receptor 0.25
dscr accumulation rate of death receptor 0.5
escr upper limit number of ECM secreted by per mass of growth receptors 20

enough, causing incomplete healings in DRDM especially
with a low arrest threshold a, i.e., a higher tendency for
cell-cycle arrest. As a result, healing was totally ceased in
the middle of the process [Fig. 16(c)], leaving the wound areas

FIG. 15. Snapshots of simulated time-delayed wound healings
in discrete receptor dynamics model (DRDM) with low diffusivity.
Each grey dot represents one arrested cell, while the red one is for a
proliferating cell. ECM threshold e = 2.5RM , arrest threshold a =
0.2RM , growth threshold g = 0.1RM , adhesion threshold h = 0
(zero motility). Other parameters are the same as in Table II.

unhealed. To understand this phenomenon, one can imagine
an extremely unfortunate case where no cell on the wound
edge is reactivated to proliferate or move. This occurs when
very few cells are active in the system with a finite number of

FIG. 16. Finger-shaped healing fronts and incomplete healing
phenomena. (a) One snapshot from discrete receptor dynamics
model (DRDM) simulations. Red dots: proliferating cells; grey dots:
temporarily arrested cells; black dots: permanently arrested cells.
Note that nonproliferative spreading cells at the forefront of the
edge are not modeled in DRDM simulation. (b) One snapshot from
experiment I. The snapshot size was 100 × 100, and wound bed
size was 16 × 100. (c) Incomplete healing events in DRDM, with
arrest threshold a = 0.15RM , extracellular matrix (ECM) threshold
e = 2.5RM and growth threshold g = 0.3RM . Other parameters are
the same as listed in Table II. (d) Incomplete healings in vitro with
HepG2.2.15 cells subcultured for about 40 generations.
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FIG. 17. Wound closure in the discrete receptor dynamics model
(DRDM). (a) Free cell movement (h → ∞) with a high regrowth
barrier (g = 0.3RM ). (b) No cell movement (h = 0) with low
regrowth barrier (g = 0).

total cells, hence the averaged mitotic rate along the edge can
only decrease in a quantum manner with longer waiting times:
jumping from a small value to zero. Even if the finger-shaped
edges can form, a lower value of arrest threshold a, which
indicates strong inhibition of cell cycle, will gradually suppress
the mitosis of the cells during the healing, thus preventing the
cells at the “finger” from further invasion into the denuded
area.

In fact, we also observed incomplete healings in another
series of experiment with a cell line of HepG2.2.15 subcultured
for about 40 generations, i.e., these cells were “old” in
contrast to the newly thawed cell line used in experiments I
and II (in the main text). The reason of incomplete healing
in vitro is unclear so far; however, we postulate that the
accumulation of the damages to the cells over generations
can correspond to the decrease in arrest thresholds in the
DRDM simulation. Accordingly, the incomplete healing may
be caused by the strong cell-cycle inhibition in experiments and
it should occur for two kinds of cells: (1) the old cells which
inherently have low arrest thresholds; (2) the newly thawed
cells with extremely long waiting time, which have higher
arrest thresholds but accumulate excessive nondegradable
“arrest receptors” over time.

4. Time delayed healing in DRDM under
varied adhesion thresholds

The effect of delayed recovery in cell movement can also be
examined in DRDM by varying adhesion threshold h, which
represents the minimum level of adhesion required to fix a cell
in its local surroundings. In Fig. 17(a), the adhesion threshold h

was set to infinity, indicating that cell movement is totally free
regardless of any cell-cell or cell-ECM adhesion. Meanwhile,
the growth threshold g was set as 0.3RM which is a huge barrier
for the cells to re-enter the growth state from an arrest state.
The results revealed that even with the freest cell movement,
a strong regrowth barrier still causes the slowdown of healing
for short waiting times and the incomplete healing for longer
waiting times. Conversely, if h is 0, which means zero cell
motility due to a strong cell-cell and cell-ECM adhesion, a
small value of g could still ensure a quick healing process, as
shown in Fig. 17(b), nevertheless, with the cliff-shaped healing
curves. This comparison illustrates that the role of mitotic
deterioration is much more significant than that of retarded cell
movement in reproducing the slowdown of healing in DRDM.
Besides, we clearly see that the reduced cell motility causes a

FIG. 18. Wound healing in silico with curved wound edges.
(a) Wave models of the wound geometry. (b) Two types of wound bed
geometry. (c) Simulation results. Each legend for the scattering dot is
characterized by a set of parameters, denoted as ±A,L in the figure,
where the minus (positive) sign stands for snake-shape (gourd-shape)
wound bed, A is the amplitude of the wound edge wave, and L is the
wavelength.

“frozen” phase before the initiation of healing in Fig. 17(b).
This also implies that in the early stage of healing, the slow
cell migration postpones the initiation of cell proliferation
that follows. However, the “frozen” phase and cliff-shaped
healing curves cannot be seen from the experiment; hence it
is very unlikely for the cells to have low motility with a high
proliferation rate in the real situation.

APPENDIX D: WOUND EDGE ROUGHNESS

The increase in cell-cell cohesive bonds with time led to
irregularly zigzagged wound edges in all experiments, even
if the wound edges were intended to be straight. Whether
this unevenness of the wound edges have introduced artificial
biases on the healing rates in experiments needs to be
examined.

1. Edge roughness in DRDM

We first established a model for controllable curvatures of
the wound edge as illustrated in Fig. 18(a), where a wave func-
tion mimics the nonstraight wound edge with a specific ampli-
tude A and wavelength L. Hence, the unevenness of the wound
edge can be quantified by A/L. Additionally, we considered
two types of curved wound bed [Fig. 18(b)]: a snakelike bed
(two paralleled wound edges) and a gourdlike bed (two mirror-
symmetric wound edges). The simulation results in Fig. 18(c)
show that a higher value of A/L leads to more rapid healing,
whereas the straight wound edge heals most slowly. No
significant differences were detected between snake-shaped
[Fig. 18(c1)] and gourd-shaped [Fig. 18(c2)] wound beds.
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2. Edge roughness in experiments

Agreeing with the conclusions of another study (refer to
Arciero et al. [35]), our data in silico suggested a crucial
phenomenon: wounds with highly curved edges can heal
quickly. To clarify whether the nonstraight wound edges in-
deed introduced mechanical confounders into the experiments,
we perform an analysis of the curvature of real wound gaps in
experiments. As the edge curvatures in the experiments were
irregular, we calculated the roughness instead of the curvature
of the edge.

The line edge roughness is related to the fractal dimension
of a line [54,55] and is indicated by the scaling exponent α in
the local standard deviation G(r) = rα of a wound edge line
with respect to the local window width r . The local standard
deviation of the edge fluctuations can be calculated as follows:

G(r) = 1

N − r

N−r∑
j=1

⎡
⎢⎣ 1

r + 1

j+r∑
i=j

⎛
⎝xi − 1

r + 1

j+r∑
k=j

xk

⎞
⎠

2
⎤
⎥⎦

1/2

r = 0,1, . . . ,N − 1,

where {xi}i=1,2,...,N is the set of horizontal positions of the N

evenly sampled points at the wound edge along the vertical
axis [see Fig. 19(a)]. The sample interval is 25/3 microns,
which is roughly a cell diameter and the sample point number
N = 73 for each edge in the snapshots.

When the exponent α is 1, the edge is perfectly straight; if α

is close to zero, the line is highly rough. Figure 19(b) presents
four examples of different wave functions distinguished by
their respective geometry and roughness. Using these four
wave functions of the wound edge in DRDM simulations,
we can plot the relationship between the healing time and
roughness α as shown in Fig. 19(c), where the healing time
first rises rapidly when α is close to zero, and then increases
mildly when α > 0.4. This plot implies that the healing rate
is not so sensitive to the edge geometry unless the edge
is extremely rough. Figure 19(d) shows the local standard
deviation G(r) of eight exemplar edges in experiment I.
Figure 19(e) displays the average wound edge roughness for
each group (dotted circles) with typical individual samples
(open squares) outlining the variance. Overall, no significant
difference in wound edge roughness could be identified.

smoothrough
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FIG. 19. Edge roughness in discrete receptor dynamics model (DRDM) simulations and in vitro experiments. (a) The method of calculating
roughness exponent. In a newly set x-y coordinate system, the wound edge (outlined in light green) was evenly sampled along y axis as the
points coordinated by the vertical positions yi = i and the correspondent horizontal positions xi(i = 1,2, . . . N ). The sample interval is 25/3
microns and the total number of sample points N is 73. The local standard deviation G(r) was then calculated based on a series of {xi} and
fitted to rα , where r is the window width and α is the indicator for line edge roughness. (b) Roughness exponent α calculated for four wave
functions aligned with their wound bed geometries. (c) Healing time vs roughness exponent α in DRDM simulation using four wave functions
presented in (b). (d) Local standard deviation G(r) for eight exemplar edges from experiment I. (e) Comparison of averaged line roughness
among four groups in experiment I, labeled by their waiting times (which are 24, 48, 72, and 96 h).
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Notwithstanding that the variances were large in some groups,
the absolute values of α were still within the range from 0.30
to 0.50. According to Fig. 19(c), these rough edges resulted
in limited even negligible impact on healing efficiency. In
conclusion, we argue that the irregular curvatures of wound
geometry caused by increasing intercellular adhesion did not
bias the healing processes with different waiting times in our
in vitro experiments.

APPENDIX E: SPATIAL DISTRIBUTION OF CELL
PHENOTYPES DURING WOUND HEALING

Wound healing is a complex process consisting of cell
spreading, cell proliferation, and cell migration. The spatial
distribution of these cellular events behind the wound edge is
essential for the modeling of the wound healing process.

According to Haider et al. [56], the mitotic rate of cells
was evaluated by laser scanning cytometry that the percentage
of cells at the S phase in the wound region is over tenfold
larger than that outside of the wound region. Similar results
can be found in other literature [57–59]. Ronot et al. [60]
used optical flow analysis to quantitatively measure the cell
velocity in relation to the distance from the wound center for
three kinds of cell lines (murine fibroblasts, human epithelioid
HeLa cells, and rat rhabdomyosarcoma cells) and found that
the velocity of the migratory cells peaked at the wound edge
and then decayed exponentially with the distance from the
edge.

Zahm et al. [28] used immunofluorescent staining tech-
nique to quantitatively investigate the spatial distribution of
spreading, migrating, and proliferating cells behind the wound
edge for respiratory epithelial cells. It is clearly shown that

FIG. 20. Spatial distribution of spreading, proliferation and mi-
grating cells behind the wound edge in wound healing for in vitro
respiratory epithelial cells. Information was extracted from the data
shown in Ref. [28].

the cells right at the front rows of the wound edge were
nonproliferative spreading cells around which the lamellipodia
was formed to pull the whole cell sheet into the wound region.
Near the wound edge (80–320 microns behind the wound
edge), almost 50% of the cells were proliferative; while far
behind the wound edge (>300 microns), the percentage of
the proliferative cells abruptly decreased to less than 5%. In
contrast, the migratory ability of cells was strongest at the
wound edge and decayed as the distance from the wound
edge increases (0–1600 microns behind the edge). Figure 20
illustrates the spatial distribution of spreading, proliferation,
and the cell migratory ability during the wound healing for
respiratory epithelial cells in vitro. Similar results can also be
found in Savla et al. [61].
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