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Possible mechanism for aligning microscopic flexible filaments predicted
using “caterpillar” hydrodynamics
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We use the “caterpillar” model for accurately calculating the inhomogeneous hydrodynamic friction along a
microscopic slender cylindrical filaments using Oseen level hydrodynamics. The methodology is applied to study
the motion of a flexible filament in a circularly polarized field. Our results predict that in dilute solution alignment
occurs along the axis of the field. For electric fields, the strengths and frequencies required are deduced. These
are experimentally accessible. We therefore propose that this is a practical method for aligning filaments such as
microtubules and functionalized carbon nanotubes.
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I. INTRODUCTION

Many slender microscopic filaments display remarkable
properties. Notable examples are carbon nanotubes and bio-
logical fibers, such as actin and microtubules. In cells, the latter
provide both strength and a means of intracellular transport.
They act as “tracks” along which nanoscale motor proteins
process, transporting cargo such as vesicles and large proteins.
An intriguing possibility is that of mimicking this system
for use in microfluidic devices [1]. With the emergence of
engineered devices at microscale and nanoscale dimensions,
there is a need for controlled transport at these length scales,
and the kinesin-microtubule system provides a highly evolved
biological transport system well adapted for these tasks [2].
The ability to manipulate their orientation is a fundamental
requirement for this, that is, imparting directionality to an
otherwise disordered system. This is not straightforward.
Focusing on microtubules, their electrostatic and dynamic
properties can be exploited for alignment. In experiments using
ac fields with high strengths and frequencies, induced dipole
alignment (parallel to the field) has been demonstrated [3,4].
The magnitude of the induced dipole, and hence susceptibility
to alignment, depends on the ionic strength, pH, and field
frequency and magnitude. On surfaces, alignment can be
achieved by using kinesin and polarity-specific antibodies for
immobilization prior to the application of external fields [5,6].

Alternatively, as well as the fact that they are charged,
one can also exploit the fact that filaments are normally
dispersed in a viscous environment. Moths and Witten [7,8]
showed that for rigid asymmetric colloidal particles this can
lead to alignment. Flexibility also influences their behavior
[9–12]. Notably, if slender filaments are subject to a force that
generates translational motion (gravity or an electric field, for
example) they will tend to orientate in a plane perpendicular
to that force. The origin of this effect is the interplay between
hydrodynamic friction, which varies along the length as a
function of distance from the ends, and bending elasticity.
In short, when one allows for the force mediated by the fluid
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on different parts of the filament, the friction it experiences
is higher towards the ends, causing it to bend. This bending
in turn introduces a force anisotropy in the form of a torque,
leading to rotation and a reorientation into the perpendicular
plane. Note that this differs from the effect described in
Refs. [7] and [8] in that, unlike the asymmetric rigid model, in
the rigid limit the variation of the friction along the filament
here is symmetric. It is the bending that breaks the symmetry,
so in the limit of a rigid filament there is no asymmetry and the
reorientation time tends to infinity [11]. Within the plane there
is no alignment and uniform translational motion will also
induce significant inhomogeneity in the system. The question
we address here is: Is there some other way of exploiting this
flexibility effect that can actually align filaments to a particular
direction? Specifically, we consider a filament in a circularly
polarized field. Such a field conveniently avoids net translation,
but does the elastohydrodynamic aligning effect persist? If so,
how does the filament quantitatively respond to such a field?
To answer these questions we use computer simulation. Our
first requirement is a numerical model that accurately captures
the relevant effects.

II. DESCRIPTION OF THE MODEL

Given the complexity of the interplay between varying
hydrodynamic forces and the deformation of even a single
flexible filament, analytic solutions are few [13]. This is
particularly true outside the linear regime. We have therefore
constructed a tractable but sufficiently sophisticated numerical
model to solve the problem by first considering a filament
of length L discretized into n beads. The distance between
neighboring beads is fixed, meaning that the model filament is
inextensible, and the bead separation is given by b = L/(n −
1). As the filament deforms, elasticity will penalize deviation
from the lowest energy conformation. The Hamiltonian of our
model system is derived by introducing a bending potential
between all sets of three consecutive beads and assuming that
there is no intrinsic curvature (see Refs. [14] and [11]). The
inextensibility constraint is imposed using the MILC SHAKE
algorithm [15]. Filaments of fixed length are effectively
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infinitely stiff while retaining flexibility. The reason we chose
this approach is that the type of filaments we consider cannot
accommodate significant axial extension. Experiments support
that this is a reasonable description of force-extension behavior
[16,17]. The most technical part of the problem is determining
the force exerted on the filament by the surrounding fluid, given
that the movement of the filament itself perturbs the fluid. Since
the filaments we are considering are microscopic in length, it
is reasonable to neglect inertial effects. In this limit the fluid
flow equations are linear. An approximate approach couples
the filament and fluid motion by requiring that beads in the
model act as Stokeslets (point forces acting in the fluid) [18].
They experience a hydrodynamic frictional force given by

FH = −(γ ⊥
0 n̂n̂ + γ

‖
0 p̂p̂) · (v − vH ), (1)

where v is the velocity of the bead and vH is the induced fluid
velocity at its location. The vector n̂ (p̂) is the unit vector
normal (parallel) to the axis. The parameters γ̂0 are then the
bead friction coefficients. In this model the local fluid velocity
vH is now a linear combination of the velocity fields generated
at that point by each of the Stokeslets [11,19,20], leading to a
hydrodynamic force on bead i given by

FiH = −(γ ⊥
0 n̂n̂ + γ

‖
0 p̂p̂)

·
⎡
⎣vi − 1

8πη

∑
i �=j

(
Fj

|rij | + Fj · rij rij

|rij |3
)⎤

⎦. (2)

The constants γ̂0 can also be written in terms of the friction
exerted by a sphere of radii â, γ

⊥(‖)
0 = 6πηa⊥(‖), where the

constant η is the viscosity. Note that â are not “real” radii,
in that the beads in the model have no spacial extension.
Rather, they are parameters determining the friction strength.
The question is now what values to take for â/b. One choice is
the “shish kebab” model of [21], where a⊥/b = a‖/b = 1/2.
However, Bailey et al. [21] showed that for this model the
friction coefficients of the filament for motion perpendicular
and parallel to the axis (γ ⊥ and γ ‖) are

γ ⊥ = 4πηL

ln (L/βb) + 2b
3a⊥ − 1

+ O[ln−3(L/βb)], (3)

γ ‖ = 2πηL

ln (L/βb) + b
3a‖ − 1

+ O[ln−3(L/βb)], (4)

where β = e−k and k is the Euler-Mascheroni constant. The
theoretical result from slender body theory is also of this form,
but the constants in the denominators depend on the shape of
the filament [22]. Only when the perpendicular hydrodynamic
radius is chosen to be a⊥/b = 4/(3[2 ln(2) + 1]) ≈ 0.559 is
this model in agreement with theory to the order of error in
the equations. This value is close to, but not equal to, the
value in the shish kebab model. Similarly, the parallel friction
coefficient matches theory when the parallel hydrodynamic
radius is chosen to be a‖/b = 2/(3[2 ln(2) − 1]) ≈ 1.73 (still
with r/b = β). This differs more significantly from the shish
kebab value and also differs from the perpendicular radius.
The agreement of this “caterpillar” model [21] with theoretical
results is thus conditional upon choosing the hydrodynamic

radius, and hence bead friction coefficient, to be the tensor,

γ ⊥
0 = 6πηa⊥ = 8πηb[2 ln(2) + 1]−1,

γ
‖
0 = 6πηa‖ = 4πηb[2 ln(2) − 1]−1. (5)

We also note that this methodology is equally applicable to
match to numerical expressions for the friction, instead of
slender body theory results. These may be preferable for
filaments with lower aspect ratios. Here we restrict ourselves
to slender filaments. In this limit, a similar analysis shows that
only with these choices of hydrodynamic radii is the correct
variation of the friction coefficient along the length of the
filament recovered to O[ln−3 (ε] in the slenderness parameter
ε = r/ l. This is crucial, because it is this variation in friction
along the length that causes a flexible filament to bend when
it is set in motion, and this is the origin of the effect we are
considering here. Higher-order hydrodynamic approximations
are possible for modeling a filament, for example, the Rotne-
Prager (RP) tensor [23]. These have the advantage of removing
singularities in the Oseen tensor that give rise to large errors
when two beads come into close contact. For the work reported
here, we do not consider the close approach of two filaments.
The divergence in the Oseen tensor causes no problems,
so using a higher-order tensor would simply introduce an
unnecessary computational overhead.

III. RESULTS

We now turn to investigating the possibility of aligning
filaments using a circularly polarized field. This could be a
gravitational field or an electric field. As discussed in Ref. [11],
it is difficult in experiments (although not impossible) to
access the regime where gravitational fields are high enough to
induce significant bending. Consequently, we restrict ourselves
to analyzing regimes easily accessed using an electric field.
Microtubules are charged biofilaments that have been shown to
respond to moderate, experimentally accessible electric fields
[9,12]. Carbon nanotubes, on the other hand, are uncharged
but can be functionalized to give an effective electrical charge
[24]. One could question whether a hydrodynamic model
based on the Oseen tensor is valid for the particular case of a
charged filament, because there exists the possibility that the
presence of counterions screens this tensor [25]. However, the
experiments of van den Heuvel et al. [12] convincingly showed
that for microtubules the induced bending followed scaling
behavior consistent with a hydrodynamic mechanism. Because
this mechanism is itself a consequence of the long-range nature
of the hydrodynamic propagator, this observation strongly
suggests that for filaments any such screening is either absent
or incomplete.

We carried out a series of simulations using the model
described above in experimentally accessible regimes of
parameter space. The purely dissipative equations of motion
were solved in the limit of negligible inertia. We apply
an electric field of the form Ex = 0, Ey = E cos (2πf t)ŷ,
Ez = E sin (2πf t)ẑ, where E and f are the field magnitude
and frequency, respectively. In all cases we set L = 1 and
the number of beads in the model to 80. In the caterpillar
model the number of beads fixes the aspect ratio. For this
value, its accuracy is shown in [21]. Following the argument
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FIG. 1. A trace of the ends of the filament during the alignment
process after subtracting the center-of-mass motion for three different
field frequencies (B = 1.2).

above, we are then considering a cylindrical filament with
aspect ratio L/d ≈ 80 (although the effect considered here
only depends logarithmically on the aspect ratio [21]). For a
microtubule (diameter 25 nm), this would typically correspond
to a length of a couple of microns. We define a dimensionless
force B = L3Eq̃/α that characterizes the magnitude of the
electric forces to the elastic forces. Here, q̃ is the charge density
of the filament, and α is the flexure. The effect of flexibility
enters through B. When B � 1, significant deformation is
expected, whereas when B � 1 elastic forces dominate and
the filament will remain predominantly straight. The rigid case
is the limit B → 0. We can estimate experimentally accessible
values of B for microtubules. From Ref. [9], the average
length L was 5 μm, the flexure α is of the order 10 pN μm2,
and the effective linear charge density was measured to be
q̃ = 280 e/μm. The microtubules remained stable in a field
of 20 V/cm. Using these values, we calculate that B ≈ 1 is
easily achieved experimentally. Experiments carried out by
van den Heuvel et al. actually achieved much higher values,
and pronounced bending was indeed observed [12]. In our
simulations B is near the modest value of unity. We also
define a characteristic time τT = γ̄ ⊥/Eq̃, which is the amount
of time it takes the filament experiencing an external field of
magnitude E to translate transversely a distance of its length.

The simulations predict that a charged body placed in
circularly polarized field gyrates in the yz plane following
the direction of the applied field. The center-of-mass motion
occurs concurrently with a hydrodynamic reorientation due to
bending of the filament. Traces of the location of the endpoints
of the filament after subtracting the center-of-mass motion
for representative simulations are shown in Fig. 1. Here, the
filament is initially tilted at an angle of 45 degrees in the xy

plane, but in time it aligns itself with x̂, perpendicular to the
plane of the polarized field [26]. There is also an azimuthal
angle to consider, but this only influences the initial direction
of motion (i.e., rotates results shown in Fig. 1). Our results
suggest that circularly polarized electric fields are a indeed a
possible means for aligning charged filaments. Before we can
propose that the method is also practical, there are other things
to consider.

The filament motion resembles sedimentation constrained
to the surface of a cylinder. If the radius of this cylinder is
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FIG. 2. Hydrodynamic alignment time τH as a function of
frequency (B = 0.8).

too large, then there is pronounced rotational motion, which
is undesirable. The magnitude of this steady-state gyration
radius R can be estimated using simple scaling arguments. We
expect 2πR ≈ ω/f , where ω is the tangential velocity. When
the frequency of the electric field is chosen to be f = τ−1

T and
ω = L/τT , R ≈ L/2π , independent of B the field strength.
This expression is exact for B → 0, where bending is
insignificant. We further confirmed from simulations, with
a dimensionless force ranging from B = 0.08–1.6, that the
expression for R remains sufficiently accurate for values of B

around unity to provide a reasonable estimate for the spatial
extension of the rotation of the filament during the alignment
process. From this we can conclude that, so long as the
frequency is around τ−1

T or higher, the rotation can be localized
to lengths of the order of the length of the filament.

To now quantify the time scale of reorientation, we define
the hydrodynamic alignment time τH as the time taken for
the angle between the filament axis and x̂ to decrease by 10
degrees. This is somewhat arbitrary, but one would reach the
same conclusions for the scaling behavior with a different
definition of the change required to define τH . The first
parameter we consider is the magnitude of the frequency of
the applied field. In the limit where f � τ̄−1

H , where τ̄H is
the hydrodynamic alignment time in a static field (f = 0),
we recover the results discussed in Ref. [11]. As we increase
the frequency while keeping B constant, the alignment time
increases. This dependence is shown in Fig. 2. The filament
spends an increased amount of time changing orientation to
adjust to the alternating direction of the field. The result
is that when the frequency is too high, the filament takes
an impractically long amount of time to align, so long that
the effect of diffusion cannot be ignored and a deterministic
simulation is no longer valid (see below). When the frequency
is approximately τ−1

T then, for B ≈ 1, the alignment time is
(using values for microtubules reported in Ref. [9]) a modest
τT ≈ 1 s.

The dependence of τH on the dimensionless field strength
B is shown in Fig. 3. One can observe two scaling regimes.
For low B’s, the observed relationship is τH ≈ γ ⊥/F̃B, which
is consistent with that observed in Ref. [11] for alignment in
a static field. One can predict this by noting the analytical
expression for the torque from Ref. [27] scales with ∼F̃B.
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FIG. 3. Hydrodynamic alignment time τH as a function of the
dimensionless field strength B.

Since the rigid case is the limit B → 0, we see that, as
for the case of sedimentation, the alignment time in this
limit approaches infinity. For high B’s, the hydrodynamic
alignment time obeys a different scaling relationship: τH

actually increases with B. This is because the frequency for
these simulations is chosen to be proportional to τ−1

T , so as B

increases, so does the frequency and therefore the alignment
time, as discussed in the previous paragraph. The crossover of
scaling behavior therefore occurs when f ≈ τ̄−1

H . Using the
shish kebab parametrization leads to qualitatively the same
conclusion but differs quantitatively by some 30%. So for a
direct comparison with possible experiments, the difference
between the shish kebab and caterpillar is significant.

Other forces are present that will compete with the
hydrodynamic forces driving alignment. As long as τH is
shorter than all other time scales, hydrodynamic reorienta-
tion will dominate these effects. First, thermal forces act
to randomize its orientation. The time scale for rotational
diffusion is roughly τD ≈ γ ⊥L2/kT . We can neglect this when
τH/τD ≈ L/B2λ � 1, where λ is the persistence length (λ =
α/kT ). For a 5-μm microtubule, this condition is satisfied
as long as B > 0.1. Additionally, under certain conditions
microtubules in solution have an induced dipole moment
along their axis [3,4,9]. The time scale associated with the
alignment of the dipole with the field can be estimated by
τd ≈ γ ⊥L2/delE. To ensure that this process is negligible
requires that τH /τd ≈ del/q̃BL2 � 1, where del ≈ ᾱEL and

ᾱ is the effective polarization coefficient per unit length of the
microtubule [4]. This leads to the condition that for B ≈ 1,
ᾱE/q̃L � 1. Therefore, the influence of the induced dipole
can be minimized by increasing the filament length and by
changing the solvent conditions and external field parameters
to minimize ᾱ [3,4,12].

A final complication is the presence of other filaments.
We considered the scenario of two filaments separated by a
distance h, exposed to the same field described above. At
the start of the simulation, one filament is aligned with the x̂

direction and the second is tilted at an angle of 60 degrees in
the xy plane. The alignment time was measured for multiple
separations. In the regime where h/L > 1, the filaments be-
have as isolated entities. This is consistent with the results from
studies of cooperative motion in a static field carried out by
Llopis et al. [28]. For h/L < 1, a more complicated dynamic
is observed that is strongly dependent on the initial conditions.
Therefore we cannot immediately conclude whether alignment
is hindered or assisted in concentrated solutions, given the wide
range of parameter space. It suffices to say as that as long as
the solution is at a low enough concentration, neighboring
filaments should do not inhibit alignment.

IV. CONCLUSIONS

To conclude, our simulations predict that it is practical
to align flexible charged filaments in dilute solution to a
prescribed direction using a circularly polarized field. For the
case of an electric field we delineate the window of parameter
space for achieving this alignment. These predictions assume
that the hydrodynamic interaction of the filament with itself
is not screened. Any deviations from the predictions of the
simulations would therefore shed light on the important open
question as to how the presence of counterions influences the
forces acting on a charged filament. We hope that this will
motivate experimental studies and ultimately provide a useful
tool for technological applications.
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