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Potassium channels are much more permeable to potassium than sodium ions, although potassium ions
are larger and both carry the same positive charge. This puzzle cannot be solved based on the traditional
Poisson-Nernst-Planck (PNP) theory of electrodiffusion because the PNP model treats all ions as point charges,
does not incorporate ion size information, and therefore cannot discriminate potassium from sodium ions. The
PNP model can qualitatively capture some macroscopic properties of certain channel systems such as current-
voltage characteristics, conductance rectification, and inverse membrane potential. However, the traditional PNP
model is a continuum mean-field model and has no or underestimates the discrete ion effects, in particular
the ion solvation or self-energy (which can be described by Born model). It is known that the dehydration
effect (closely related to ion size) is crucial to selective permeation in potassium channels. Therefore, we
incorporated Born solvation energy into the PNP model to account for ion hydration and dehydration effects
when passing through inhomogeneous dielectric channel environments. A variational approach was adopted to
derive a Born-energy-modified PNP (BPNP) model. The model was applied to study a cylindrical nanopore and
a realistic KcsA channel, and three-dimensional finite element simulations were performed. The BPNP model
can distinguish different ion species by ion radius and predict selectivity for K+ over Na+ in KcsA channels.
Furthermore, ion current rectification in the KcsA channel was observed by both the PNP and BPNP models.
The I -V curve of the BPNP model for the KcsA channel indicated an inward rectifier effect for K+ (rectification
ratio of ∼3/2) but indicated an outward rectifier effect for Na+ (rectification ratio of ∼1/6).
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I. INTRODUCTION

Ion channels are important for facilitating the diffusion and
transport of ions across cell membranes, and ion selectivity
is crucial to many electrochemical and biomolecular systems
[1–9], such as the transport of specific ion species through
biomolecular channels [1,2,7,10]. The mechanism of selective
ion transport in potassium channels has been widely studied
in recent decades [2,11,12]. A longstanding question is why
larger K+ ions are selected over smaller Na+ ions. Various
theoretical methods have been employed to study the ther-
modynamic and kinetic basis for the selective permeation of
ions through different channels, including molecular dynamics
(MD) [2,13–16], Brownian dynamics (BD) [17–20], and
Monte Carlo (MC) [1,17,21,22], and Poisson-Nernst-Planck
(PNP) simulations [23–27]. The former three methods are
particle simulations that can capture discrete particle effects
and microscopic dynamics. In contrast, the PNP model is
a continuum model that can capture macroscopic transport
properties, but it describes particle interactions less accurately.
The PNP model is based on the mean-field approximation
of an ionic solution, in which ions are considered to be
point charges continuously distributed in solution. In the PNP
model, electrostatic potential is calculated through the Poisson
equation, and ion concentrations and currents are calculated
with the Nernst-Planck equation. PNP calculations use much
less computational power relative to other methods, and the
results, such as current-voltage characteristics (I -V curve), can
be directly compared with experimental data. However, as PNP
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theory neglects discrete particle effects and ionic specificity, it
cannot distinguish K+ from Na+ and, hence, the traditionally
used PNP model is not suitable for studying the selectivity of
potassium channels.

A number of previous investigations have indicated that ion
selectivity by micropores is mostly determined by size effects
(and the relevant dehydration effect) as well as electrostatic
interactions [5,28–31]. In the interaction energy point of view,
the size “matching” can be attributed to a lower energy barrier
when passing the channel. This process is closely related to
the ion solvation (hydration) and desolvation (dehydration)
processes, which was also mentioned many times in the
literature [32–35]. Recently, several improved PNP models
have been proposed based on incorporation of ion steric effects
[27,36–38]. However, to our knowledge and experience, it is
difficult for these size-modified models to predict the distinct
selectivity for potassium over sodium in realistic KcsA
channels [31,38]. It is recognized that size-dependent ion
dehydration plays an important role in the selective transport
of ions in KcsA channels (see the following figure and
discussion). As far as we know, there is no existing PNP model
that explicitly takes ion hydration interactions into account.

Ion hydration and dehydration are associated with free
energy change when transferring from the solvent region (high
dielectric) to the channel region (low dielectric). Born energy
[39] [Eq. (1)], defined as the electrostatic energy required to
transfer an ion from a vacuum with the dielectric constant
ε0 to a medium with the dielectric constant ε, is a good
approximation of ion hydration energy:

GBorn = q2

2a

(
1

ε
− 1

ε0

)
, (1)
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where q = Ze (Z is the valence of the ion and e is the
elementary charge) and a is the radius of the ion. The Born
model assumes that the dielectric medium (ε) is homogenous.
However, because ion hydration is largely governed by the
interaction between the ion and the nearby solvent molecules,
in smoothly inhomogeneous medium (ε varies smoothly with
position, as in this study where the diffusive domain is mainly
divided in two constant ε regions, the bulk high-εs region and
the low-εc pore region) we still use the Born model [with
a position-dependent ε(r)] to approximate the free energy
change at different positions. Boda et al. developed an interpo-
lation method using the induced charge computation method
for treating the passage of a charged hard sphere ion as it passes
through a sharp dielectric boundary. They analyzed the various
energy terms using a spherical ion passing through an infinite
flat dielectric boundary [40]. They also used grand canonical
Monte Carlo simulation to study the effect of solvation energy
on monovalent vs divalent ion selectivity in a reduced model
of the L-type calcium channel. In that method, they found
that changing the dielectric coefficient in the channel does
not produce observed change in selectivity, and claimed that
it is because the larger solvation penalty is counterbalanced
by the enhanced Coulomb attraction inside the channel [41].
However, for general ion channel geometry, the dielectric
transition region is much more irregular (such as the entrance
of the KcsA channel in this work), and a sharp dielectric
interface is an ideal approximation, so a diffuse interface
would be more realistic. In these cases, the above induced
charge calculation is intractable. The current PNP model
numerically solves the Poisson equation to strictly determine
the systems’ electrostatic interaction (at the mean field level)
with arbitrary geometry and inhomogenous dielectric media.
However, this continuum description does not capture well
the discrete particle effect such as the prominent ion solvation
effect as in above mentioned Monte Carlo method. In this work,
we incorporate the Born solvation energy into the PNP model.
If we treat the dielectric coefficient ε as position dependent,
the Born solvation energy can be evaluated analytically and
locally, and its variation during passage across a membrane
channel reflects hydration and dehydration processes. This
indicates that the permeability of a channel to ions depends on
the ionic radius and on the dielectric constant of the channel
and membrane [42,43]. Figure 1 illustrates the change in Born

FIG. 1. Schematic and corresponding change in Born solvation
energy for an ion moving from a high dielectric region (εs) to a low
dielectric region (εm).

solvation energy for an ion moving from left (high dielectric
region) to right (low dielectric region). As shown in Fig. 1, the
Born solvation energy increases when a point charge moves
from a high dielectric region to a low dielectric region. The
potential barrier can be calculated as

�GBorn = q2

2a

(
1

εm

− 1

εs

)
. (2)

Born energy is a type of strong interaction between an
individual ion and surrounding solvent molecules, and we can
therefore also refer to it as Born self-energy. As mentioned
above, the mean-field continuum PNP model is based on av-
erage interactions and neglects discrete particle effects, which
can cause underestimation of the Born energy of individual
ions. In this work, we incorporated the Born solvation energy
equation into the traditional mean-field free energy form and
used a variational approach to derive a Born-energy-modified
PNP (BPNP) model. We applied this new model to KcsA
channel and nanopore systems to demonstrate its predictive
capability of the selective permeation of potassium ions.

II. MODELS AND METHODS

A. Mean-field free energy with Born solvation energy

In our previous work [44], we presented a general and
complete mean-field free energy functional by incorporating
nonhomogeneous boundary effects in bounded domains. The
major goal of the study was to create consistency among
derived partial differential equation (PDE) models, the free
energy functional, and nonhomogeneous Dirichlet-Neumann
boundary conditions. The consistent generalized Poisson-
Boltzmann (PB) and PNP equations can be derived from
the new complete free energy functional using a variational
approach. A typical modeling domain is illustrated in Fig. 2,
and the free energy functional is as follows [44]:

F [c] =
∫

�

1

2
ρ(c)φ(c) dV

+
∫

�N

1

2
σφ(c) dS −

∫
�D

1

2
ε(r)

∂φ

∂n
φ0 dS

+β−1
K∑

i=1

∫
�

ci[ln(�3ci) − 1] dV −
K∑

i=1

∫
�

μici dV .

(3)

Here, ρ is the total charge density, defined as

ρ = ρf +
K∑

i=1

qici, (4)

where qi = Zie (Zi is the valence of the ith ionic species and
e is the elementary charge); K is the number of diffusive ion
species in solution that are considered in the system; ρf is the
permanent (fixed) charge distribution,

ρf (x) =
∑

j

qj δ(x − xj ),

which is an ensemble of singular charges qj located at xj inside
biomolecules; β−1 = kBT (kB is the Boltzmann constant and
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FIG. 2. The (a) geometry and (b) mesh of the cylindrical
nanopore.

T is the temperature); � is the thermal de Broglie wavelength;
μi is the chemical potential of the ith ionic species; φ = φ(c)
is the electrostatic potential, where c = (c1, . . . ,cK ), and φ

is determined by the Poisson equation [Eq. (5)] [ε can be
either position or ion concentration dependent; in this study,
we only consider the position-dependent case ε(r)]; and ci is
the concentration of the ith ionic species:

− ∇ · (ε(r)∇φ(c)) = ρ(c) in �,

ε(r)
∂φ

∂n
= σ on �N,

φ = φ0(r) on �D. (5)

To overcome the inability of the PNP model to predict
ion selectivity in ion channels and reduce overestimation
of the shielding effect [19,20], as discussed in Sec. I, we
considered ion self-energy changed when an ion passes
through a continuous dielectric boundary and incorporated
the Born-solvation-energy equation into the mean-field free
energy equation. We assume that the ion has a finite radius to

calculate the Born solvation energy despite the fact that we
treat the ion as a point charge in the model. The total free
energy including the Born solvation energy is represented as
follows:

F [c] =
∫

�

1

2
ρ(c)φ(c) dV

+
∫

�N

1

2
σφ(c) dS −

∫
�D

1

2
ε(r)

∂φ

∂n
φ0 dS

+β−1
K∑

i=1

∫
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ci[ln(�3ci) − 1] dV −
K∑
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∫
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+
K∑
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∫
�

ciα
q2

i

2ai

(
1

ε(r)
− 1

ε0

)
dV, (6)

where ai is the ion radius of the ith ionic species, and ε

is the dielectric coefficient, which locally depends on the
position of ions. Because the Born energy is a kind of specific
electrostatic interaction (between individual ions and the
surrounding solvent molecules), and the previous energy form
already includes electrostatic interactions of the whole system
in a mean-field level (but underestimates the strong specific
solvation effect—there are even no explicit solvation terms in
the energy form), incorporation of the Born solvation energy
would cause certain overlap in electrostatic interactions. As
the part of the overlap energy is hard to determine within
current methodology, we introduced an adjustable parameter
α to account for this overlap. In the next section, we begin with
this free energy functional and apply a variational approach to
derive the BPNP equations.

The above free energy (6) can also be reformulated into
another form. The chemical potential μi can be evaluated by
considering the special case of equilibrium state, i.e., δF

δci
= 0,

and we obtain

μi = qiφ + β−1 ln(�3ci) + α
q2

i

2ai

(
1

ε(r)
− 1

ε0

)
. (7)

Considering r → ∞, the potential φ → 0, ε(r) → εs , and
defining ci → cb

i (denoting the bulk concentration of the ith
species), we get

μi = β−1 ln
(
�3cb

i

) + α
q2

i

2ai

(
1

εs

− 1

ε0

)
. (8)

Substituting Eq. (8) into Eq. (6), an alternative free energy
form can be expressed as

F [c] =
∫

�

1

2
ρ(c)φ(c) dV
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1
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− 1

εs
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dV. (9)
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B. Born-energy-modified PNP equations

The ionic flux Ji is given by the following constitutive
relationship:

Ji = −mici∇μi, (10)

where mi is the ion mobility, which is related to the diffusivity
Di through the Einstein relation, Di = β−1mi . Substituting
Eq. (7) into Eq. (10), the transport equations are obtained from
the mass and current conservation law:

∂ci

∂t
= −∇ · Ji

= ∇ ·
(

βDici∇
{
qiφ + β−1 ln(�3ci)

+α
q2

i

2ai

(
1

ε(r)
− 1

ε0

)})
.

The complete BPNP equations take the form

−∇ · (ε(r)∇φ) = ρf +
K∑

i=1

qici in �, (11)

∂ci

∂t
= ∇ ·

{
Di

[
∇ci + βci∇

(
qiφ + α

q2
i

2ai

(
1

ε(r)
− 1

ε0

))]}
,

× in �s, i = 1,2, . . . ,K, (12)

ε(r)
∂φ

∂n
= σ on �N, φ = φ0(r) on �D,

ci = cb
i on �D, Ji · n = 0 on �m,

where n is the exterior unit normal. When the dielectric
coefficient is a constant rather than position dependent, the
above BPNP equations can be simplified to the traditional
PNP equations.

To take into account the effect of Born solvation energy, we
calculated the current inside the channel. In the BPNP model,
electrical current can be calculated as

Iz = −
∑

i

qi

∫
S

Di

(
∂ci

∂z
+ qi

kBT
ci

∂φ

∂z

+ 1

kBT
ciα

q2
i

2ai

∂
(

1
ε(r) − 1

ε0

)
∂z

)
dx dy, (13)

where S is a cut plane at any cross section inside the pore,
and Di is the diffusion coefficient of the ith ionic species. The
bulk diffusion coefficients are Dbulk

Na = 0.133 Å2/ps, Dbulk
K =

0.196 Å2/ps, and Dbulk
Cl = 0.203 Å2/ps for Na+, K+, and Cl−,

respectively. When the ions approach and enter the channel, a
position-dependent diffusion coefficient is adopted similar to
the form in Ref. [9]:

Di(r) = Di(z) = Dbulk
i

(
d1 + 1.0 − d1

1.0 + e− |z|−z0
�z

)
, (14)

where Dbulk
i is the bulk diffusion coefficient (as defined before),

d1 = 0.1 is the ratio of the effective diffusion coefficient in
the channel to that in the bulk region, z0 is the section for
which Di(z0) = 1

2 (Dbulk
i + d1D

bulk
i ), and �z is a parameter

for smoothing.

C. Generalized Boltzmann distributions

Based on the free energy functional (9), we can derive the
generalized Boltzmann distributions in the equilibrium state. If
c = (c1, . . . ,cK ) is in equilibrium, the electrostatic free energy
F = F (c) is minimized:

δF [c]

δci

= qiφ + β−1 ln
(
ci/c

b
i

) + α
q2

i

2ai

(
1

ε(r)
− 1

εs

)
= 0,

⇒ ci = cb
i exp

{
−βqiφ(c) − αβq2

i

2ai

(
1

ε(r)
− 1

εs

)}
,

i = 1, . . . ,K, (15)

where ci → cb
i , ε(r) → εs , and φ → 0 as r → ∞. We call

Eqs. (15) the Born-energy-modified generalized Boltzmann
distributions, as they generalize the classical Boltzmann
distributions ci = cb

i e
−βqiφ (i = 1, . . . ,K) when α = 0 (i.e.,

Born energy is not considered).

D. Position-dependent dielectric coefficient

Ionic solutions consist of charged ions, “hydration” solvent
molecules near the vicinity of the ions, and “free” solvent
molecules. The effective dielectric permittivity inside a chan-
nel is thought to be related to ionic hydration shells [45,46] or
the dehydration state in many cases. Due to limitations of the
channel structure, the effective dielectric coefficient around
the ions inside the channel will decrease due to the removal of
water. Moreover, many experiments and theoretical analyses
have indicated that the dielectric coefficient decreases with
increasing local ionic concentrations [47–49]. For simplicity
in this work, we suppose a high dielectric constant outside
the channel and a low dielectric constant inside the channel,
and there is a narrow smooth transition region between them
(see an example in Fig. 3). The position-dependent dielectric
coefficient can take a form similar to Eq. (14):

ε(r) = ε(z) = εs

(
a1 + 1.0 − a1

1.0 + e− |z|−z0
�z

)
, (16)
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FIG. 3. Dielectric coefficient profiles for the PNP and BPNP
models.
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where εs is the bulk dielectric coefficient (εs = 78), a1 is the
ratio of the effective dielectric coefficient in the channel (εc)
to that in the bulk region, z0 is the section for which ε(z0) =
1
2 (εs + εc), and �z is a parameter for smoothing. In Sec. III B,
we give the clear and explicit expressions for the diffusion and
dielectric coefficients.

In Sec. III, we use Eq. (16) as an example to test the effect
of Born solvation energy in the BPNP system of Eqs. (11)
and (12).

E. Numerical and software implementations

The three-dimensional (3D) BPNP equations were solved
using the finite element method (FEM) [26,50,51], which is
advantageous for modeling irregular geometries with complex
boundary conditions. Our finite element algorithms were based
on tetrahedral meshes. The volume mesh of a cylindrical
nanopore was generated using COMSOL5.2, and the ion channel
volume mesh was generated using our biomolecule surface
meshing software TMSMESH [52] and a few other meshing
tools. TMSMESH was used to generate a manifold surface
mesh that can handle large systems. The program TETGEN

[53] was employed to generate the tetrahedral volume mesh.
The details are described in the next section. The algorithms
were implemented with the 3D parallel adaptive finite element
package PHG [54]. We adopted a decoupled iteration method
to solve the coupled Poisson equation and Nernst-Planck
(NP) equations. The under-relaxation scheme was employed
to guarantee the convergence of the algorithms [51].

In the next section, we apply the system of Eqs. (11)
and (12) to a cylindrical nanopore and a realistic potassium
channel. In the cylindrical nanopore example, we only solve
the BPNP model in the solvent region �s and do not consider
the molecular domain �m.

III. RESULTS AND DISCUSSIONS

A. Simulations of a cylindrical nanopore

To evaluate the effect of Born solvation energy, we first
applied the system of Eqs. (11) and (12) to a cylindrical
nanopore. A cylindrical nanopore with a height of 30 Å and
a pore radius of 2 Å was placed in the middle of a cubic box
(100 Å × 100 Å × 100 Å). As shown in Fig. 6, the narrow
radii of the selectivity filter in the KcsA channel is about 2 Å.
In order to better compare the results of the nanopore and the
KcsA channel, so we set the same pore radius, 2 Å, in the
cylindrical nanopore simulation. To simulate a realistic ionic
solution system, we set the charge density on the inner surface
of the nanopore to −0.085 C/m2. The boundary potential at
the upper side of the box was fixed to zero, and that at the
bottom side was set from −200 to 200 mV to obtain different
membrane potential differences. The geometry and mesh of the
cylindrical nanopore is illustrated in Fig. 2. To straightly study
the selectivity of K+ and Na+, our modeled system is a ternary
mixture of K+, Na+, and Cl− in the electrolyte. The Born radii
are used in this work, i.e., aK = 1.95 Å, aNa = 1.62 Å, and
aCl = 2.26 Å for K+, Na+, and Cl−, respectively. The Born
radius is obtained by the free energy needed to bring the ion
from vacuum into the electrolyte. In this respect, the Born
radius can be considered an experimentally derived parameter

−20 −15 −10 −5 0 5 10 15 20
0

1

2

3

4

5

6

Z axis(Å)

C
on

ce
nt

ra
ti
on

(M
)

PNP for both N+
a and K+

BPNP for N+
a

BPNP for K+

FIG. 4. Cation distributions based on PNP and BPNP models for
a ternary electrolyte system (with Na+, K+, and Cl− ion species) in a
cylindrical nanopore under a fixed membrane voltage V0 = −0.20 V
and bulk concentration cb

Na = 0.1 M, cb
K = 0.1 M, and cb

Cl = 0.2 M.

[41]. We tested some values of the parameter α in Eq. (6)
(the details can be seen in Sec. III B) and set α to 0.10 as an
example to show the results of the cylindrical nanopore in this
section.

Figure 2(a) demonstrates a typical biophysical ion transport
system. The domain �s denotes the solvent region filled with
ionic solution. The solute region �m is the domain occupied by
the membrane, channel protein, or nanopore [7,31,51,55,56].
The whole computational domain is denoted as � = �m ∪ �s .
Domains �m and �s are separated by a molecular surface �m.
We used �D and �N to represent boundaries with Dirichlet and
Neumann boundary conditions, respectively. The boundary
of the solvent region is represented as �s = �D ∪ �N. The
domain within the dotted lines is a variable dielectric region.
The volume mesh of the cylindrical nanopore was generated
with COMSOL5.2, as shown in Fig. 2. Figure 3 illustrates
the profiles of the dielectric coefficients for the PNP (solid
lines) and BPNP (dotted lines) models. As shown in Fig. 3,
the position-dependent dielectric coefficient has a continuous
change, as defined in Eq. (16).

Figure 4 shows the cation distributions based on the PNP
and BPNP models in a cylindrical nanopore under a fixed
membrane voltage (V0 = −0.20 V) and bulk concentration
(cb

Na = 0.1 M, cb
K = 0.1 M, and cb

Cl = 0.2 M). As shown in
Fig. 4, the BPNP model can distinguish between cations with
the same charge but different ion radii. This result can be
explained by analyzing the Born solvation energy. The Born
solvation energy will increase when an ion moves from the
solvent region to the channel. However, the potential barrier
defined by Eq. (2) will decrease with increasing ion radius.
Therefore, K+ is more likely to occupy the channel.

Figure 5 shows the PNP and BPNP simulations of voltage-
current (I -V ) curves for cations in a cylindrical nanopore with
three ion species (cb

Na = 0.1 M, cb
K = 0.1 M, and cb

Cl = 0.2 M)
under different membrane voltages from −200 to 200 mV.
Due to the symmetric shape and surface charge distribution of
the nanopore, the two models predict a symmetrical current
under different membrane voltages. The difference of I -V
curves for Na+ and K+ in the PNP model is only due to the
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FIG. 5. I -V curves for cations based on the PNP and BPNP
models in a cylindrical nanopore with three ions (cb

Na = 0.1 M,
cb

K = 0.1 M, and cb
Cl = 0.2 M) under a change in membrane voltage

from −200 to 200 mV.

different diffusion coefficient for Na+ and K+. The I -V curves
based on the BPNP model indicate a distinct selectivity of K+
over Na+.

As previously discussed, the new BPNP model overcomes
the shortcomings of the traditional PNP model for studying
selectivity in ion channels. The BPNP model can distinguish
cations with the same charge but different ion radii. In the next
section, we use the BPNP model to investigate ion selectivity
in a realistic potassium channel.

B. Simulations of a potassium channel

In this section, we investigate the application of the BPNP
model [Eqs. (11) and (12)] to a realistic potassium channel: the
bacterial channel KcsA [see Protein Data Bank (PDB) entry
1BL8]. The channel is constructed of 5892 atoms, with three
primary sections: an opening pore on the cytoplasmic side
of the cell interior, a large water-filled cavity, and a narrow
selectivity filter. The narrow selectivity filter is only 12 Å
long, whereas the remainder of the pore is wider [57]. Due to
its relatively complete channel functions, the KcsA channel has
been widely used to study ion selectivity. Figure 6(a) shows
the molecular surface of the KcsA channel obtained using
the software VMD 1.9.1 [58]. From bottom to top, we can
clearly see the channel pores, water-filled cavity, and narrow
selectivity filter with binding sites for cations. The radius of the
KcsA channel was calculated based on molecular surface mesh
according to the method described in Ref. [59]. As shown in
Fig. 6(b), the radius of the KcsA channel is complex in shape,
and the selectivity filter is short and narrow with a radius of
about 2 Å. The diameter of the cavity in the center of the
channel is 10 Å.

The unstructured tetrahedral volume mesh and triangular
surface mesh of the KcsA ion channel is shown in Fig. 7. The
molecular surface mesh of the KcsA channel was generated
using TMSMESH [52], and the number of faces was reduced
using ISO2MESH [60]. The program TRANSFORMESH [61] was
used to improve the mesh quality. A tetrahedral volume mesh
was generated using TETGEN [53]. Finally, the membrane mesh

FIG. 6. (a) Molecular surface and (b) pore radius of the KcsA
channel (PDB code 1BL8).

was added to the tetrahedral volume mesh, and the boundary
faces were properly marked [51]. The mesh over the whole
domain has a total of 102 572 vertices and 643 832 tetrahedra.

To study ion selectivity in the KcsA channel using the
BPNP model, we considered an electrolyte solution containing
two positive ion species (approximately representing Na+

and K+) and one negative ion (approximately representing
Cl−). As discussed in Sec. II D, we use the similar position-
dependent form for diffusion and dielectric coefficients. The

bulk diffusion coefficients are Dbulk
Na = 0.133 Å

2
/ps, Dbulk

K =
0.196 Å

2
/ps, and Dbulk

Cl = 0.203 Å
2
/ps for Na+, K+, and Cl−,

respectively. We set d1 = 0.1, z0 = 12.5, and the smoothing
parameter �z = 1.0. Then the position-dependent diffusion
coefficient takes the form

Di(z) = Dbulk
i

(
0.1 + 0.9

1.0 + e−(|z|−12.5)

)
. (17)

For the dielectric coefficient, we set a low dielectric coefficient
εc = 30 in the channel, i.e., the ratio of the effective dielectric
coefficient in the channel to that in the bulk region is 15

39 . Then
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FIG. 7. The unstructured tetrahedral volume mesh and triangular
surface mesh of the KcsA ion channel.

the position-dependent dielectric coefficient takes the form

ε(z) = 78

(
15/39 + 24/39

1.0 + e−(|z|−12.5)

)
. (18)

We used the same Born radii (aNa = 1.62 Å, aK = 1.95 Å, and
aCl = 2.26 Å) of these ions as in the simulations of the cylin-
drical nanopore. We tested some values of the parameter α in
Eq. (6). Figure 8 shows the cation concentration changes with
the parameter α based on the BPNP model in the KcsA channel
under a fixed membrane voltage (V0 = −0.20 V) and bulk
concentration (cb

Na = 0.1 M, cb
K = 0.1 M, and cb

Cl = 0.2 M).
As shown in Fig. 8, the sodium concentration approaches
a very dilute state (cNa ∼= 0.005 M), and the potassium
concentration approaches the saturated situation (cK ∼= 45
M) when α is more than 0.25. And there will be some
difficulties in obtaining the numerical solution of the BPNP
model when α is more than 0.30. It is noted that the parameter
α is 0.22 when “saturation” occurs for the above-mentioned
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FIG. 8. Cation concentrations in the KcsA channel under a fixed
membrane voltage (V0 = −0.20 V) and bulk concentration (cb

Na =
0.1 M, cb

K = 0.1 M, and cb
Cl = 0.2 M) based on BPNP models.
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FIG. 9. Cation distributions in the KcsA channel under a fixed
membrane voltage (V0 = −0.20 V) and bulk concentration (cb

Na =
0.1 M, cb

K = 0.1 M and cb
Cl = 0.2 M) based on PNP and BPNP models.

nanopore system. In the following simulation studies of KcsA
channel, we only took α to 0.225 as an example. The boundary
potential at the upper side (extracellular) of the box was also
fixed to zero, and that at the bottom side (intracellular) was set
from −200 to 200 mV to obtain different membrane potential
differences.

We first considered ion distributions in the KcsA channel
at different position along the z axis under a fixed membrane
voltage (V0 = −0.20 V) and bulk concentration (cb

Na = 0.1 M,
cb

K = 0.1 M, and cb
Cl = 0.2 M). Figure 9 demonstrates that the

traditional PNP model (the same dashed red lines for both Na+

and K+) cannot distinguish between the two cations with the
same charge, whereas the BPNP model can clearly distinguish
between Na+ and K+ ions based on ionic concentration. The
distribution of K+ has two peaks, about 7 Å apart, which is in
agreement with the structural property of the two K+ binding
sites presented in Ref. [57]. We calculated the concentrations of
cations around the two binding sites. The concentration of K+
at the positions of either of the two peaks is 43.02 and 44.66 M,
respectively, whereas the corresponding concentrations for
Na+ are 2.20 and 2.76 M. This indicates that the BPNP
model can clearly predict the selective binding of K+ over
Na+. However, it is hard to predict that strong selectivity as
measured in experiments where K+ could be 10 000 times
more permeant than Na+ [57]. Similar to the analysis in the
previous section, the Born solvation energy will increase when
a cation enters the KcsA channel, but the potential barrier
will decrease with increasing ion radius. Because K+ is larger
than Na+, K+ has a lower potential barrier than Na+ and can
therefore enter the KcsA channel more easily.

The relationship between ionic current and membrane
voltage, i.e., the I -V curve, is an important characteristic
describing the ion transport property through the channel.
The flux can be calculated with Eq. (13). We first considered
the potential energy profiles for the KcsA channel. Because
the structure of the KcsA channel is highly asymmetric
from bottom to top (Fig. 6), the potential energy profiles
for membrane voltages 0.20 V (left) and −0.20 V (right)
are also not symmetric (Fig. 10). Figure 10 shows electric
potential energy profiles (landscape) for PNP and BPNP
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FIG. 10. Electrostatic potential energy profiles (in units of kBT ) for the KcsA channel simulated by the PNP and BPNP models with
membrane voltages of 0.20 V (left) and −0.20 V (right) in the intracellular region.

models. The electric potential energy of the BPNP model
contains electrostatic potential energy and the Born solvation
energy:

EBPNP = qiφ + α
q2

i

2ai

(
1

ε(r)
− 1

ε0

)
, (19)

and for the PNP model, the electric potential energy is
only the first term (qiφ). When the cations move from the

intracellular to the extracellular region (outward direction),
they must overcome a higher potential energy barrier than
that when moving from the extracellular to the intracellular
region (inward direction) in both models. In the BPNP model,
K+ and Na+ must overcome almost the same potential
barrier (∼11.5kBT ) when they move in the outward direction
[Figs. 10(c) and 10(e)]. However, K+ must overcome a lower
potential barrier [∼ 6.0kBT , Fig. 10(f)] than Na+ [∼7.5kBT ,
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FIG. 11. I -V curves simulated by the (a) PNP and (b) BPNP models for the KcsA channel for bulk concentrations of cb
Na = 0.1 M,

cb
K = 0.1 M, and cb

Cl = 0.2 M and membrane voltage differences from −200 to 200 mV.

Fig. 10(d)] when they move in the inward direction. The
properties of these energy profiles determine the properties
of the I -V curves as discussed in the following.

Figure 11 presents the I -V curves simulated by the PNP and
BPNP models for bulk concentrations of cb

Na = 0.1 M, cb
K =

0.1 M, and cb
Cl = 0.2 M and membrane voltage differences

from −200 to 200 mV. We considered the rectification ratio
r(�φ), defined as |I (−�φ)/I (�φ)|, where �φ is the voltage
difference (membrane voltage). The I -V curves simulated by
the traditional PNP model [Fig. 11(a)] and the BPNP model
[Fig. 11(b)] are asymmetrical [i.e., |I (−�φ)| �= |I (�φ)|],
which indicates certain so-called rectification effects. How-
ever, these two models indicate essentially different rectifica-
tion effects; see below for a detailed description. And again as
expected, PNP results [Fig. 11(a)] do not reflect ion selectivity.
The I -V curves of Na+ and K+ in the PNP model only have
slight differences due to their diffusion coefficients (Dbulk

Na =
0.133 and Dbulk

K = 0.196 Å
2
/ps). As seen in Fig. 11(b), the

current of the BPNP model for K+ is obviously higher than that
for Na+, particularly when the membrane voltage is negative.
By comparing the results of PNP [Fig. 11(a)] and BPNP
[Fig. 11(b)] models, we found some interesting phenomena. As
is common sense, people usually may trivially expect a large
ionic current if the concentration in the channel (or binding
site) is high. As shown in Fig. 9, the concentration of K+ in the
channel calculated by the BPNP model is significantly higher
than that predicted by the traditional PNP model. However, the
current for K+ calculated by the BPNP model is lower than
that predicted by the PNP model. As mentioned above, the
quantitative relationships between concentration and current
are complicated and nonintuitive. As shown in Fig. 11, we
also found that the rectification effects for K+ and Na+ were
different in the BPNP model. Both the PNP and BPNP models
simulated ion current rectifications [i.e., r(�φ) �= 1]. The
rectification ratios for both Na+ and K+ in the PNP model
are about 2, and the ratio for K+ in the BPNP model is about
1.5, but the rectification ratio for Na+ in the BPNP model
is much smaller than 1 (∼1/6), which is completely different
from that for K+. This is in contrast to the case of the symmetric
cylindrical nanopore, where theI -V curves are symmetric and
there is no rectification effect observed (Fig. 5). Therefore,
the I -V curves for the KcsA channel show an inward rectifier

effect for K+ and an outward rectifier effect for Na+, which
means K+ can pass more easily in the inward direction than
in the outward direction, i.e., r(�φ) > 1, and the contrary
for Na+. But due to the small current of Na+, the Na+ ion
almost cannot pass from the extracellular to the intracellular
region. This observation agrees with the function of the KcsA
potassium channel. These I -V properties are attributed to the
asymmetric potential energy landscape originating from the
geometry and charge distribution of the channel protein (see
Fig. 10).

IV. CONCLUSIONS

We incorporated the Born solvation energy into the mean-
field free energy for an inhomogeneous electrolyte with
position-dependent dielectric permittivity. We derived a BPNP
model based on a variational approach and applied it to
study the selective permeation of potassium in a cylindrical
nanopore and in a realistic KcsA channel. The BPNP model
overcomes the shortcomings of the PNP model by including
ion-radius-specific solvation interaction. The BPNP model can
differentiate between Na+ and K+ ions through simulated
ion concentrations and I -V curves. The I -V curves clearly
indicate the selectivity of K+ over Na+ in the KcsA potassium
channel. Both the PNP and BPNP models predicted ion current
rectifications in the KcsA channel, but with different results.
The I -V curve of the BPNP model for the KcsA channel
indicates an inward rectifier effect for K+ but indicates an
outward rectifier effect for Na+. Future work is to improve
the model by incorporating other important factors for ion
channels such as the ion volume excluded effect, steric effect,
and concentration-dependent dielectric coefficients, and to
study channel systems not limited to the potassium channel.
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