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Efficient search acts as a strong selective force in biological systems ranging from cellular populations to
predator-prey systems. The search processes commonly involve finding a stationary or mobile target within a
heterogeneously structured environment where obstacles limit migration. An open generic question is whether
random or directionally biased motions or a combination of both provide an optimal search efficiency and how
that depends on the motility and density of targets and obstacles. To address this question, we develop a simple
model that involves a random walker searching for its targets in a heterogeneous medium of bond percolation
square lattice and used mean first passage time (〈T 〉) as an indication of average search time. Our analysis reveals
a dual effect of directional bias on the minimum value of 〈T 〉. For a homogeneous medium, directionality always
decreases 〈T 〉 and a pure directional migration (a ballistic motion) serves as the optimized strategy, while for a
heterogeneous environment, we find that the optimized strategy involves a combination of directed and random
migrations. The relative contribution of these modes is determined by the density of obstacles and motility of
targets. Existence of randomness and motility of targets add to the efficiency of search. Our study reveals generic
and simple rules that govern search efficiency. Our findings might find application in a number of areas including
immunology, cell biology, ecology, and robotics.
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I. INTRODUCTION

Migration and search are ubiquitous processes in biology
[1] and generic principles may underlie these processes
in seemingly distinct biological contexts. Many biological
organisms and objects detect the spatial gradients of chemicals
and respond to them by biased migration. Examples include
mice navigation for odor sources [2], olfactory navigation in
Drosophila [3], gradient sensing by amoebae and neutrophils
[4], among others [5,6]. Biological cells and organisms may
also show diffusive motions. During immune response, T cells
need to detect cognate antigens at the surface of antigen-
presenting cells and to interact with other immune cells. T cells
accomplish these tasks through migration in lymphatic nodes
or peripheral tissue [7]. T cell migration has been reported to
be diffusive [8,9], subdiffusive [7,10], superdiffusive [11], or
a combined migration [12]. However, it is not clear whether
these different migration modes are internally controlled or are
determined by environmental conditions [7].

How do target properties and the environment affect the
search efficiency of a cell or organism? Search processes
often happen in complex environments. In peripheral tissues,
cells face heterogeneous extracellular matrix (ECM) and other
cells [13] during their migration. ECM topography is able
to guide cellular migration and regulate cellular motility
through physical cues that geometrically constrain adhesion
sites [14,15]. For example, T cells’ velocity fluctuations have
been attributed to morphology of lymphatic nodes [16] and
the orientation of ECM fibrils affects direction of cellular
migration [17–22]. From such examples, one can conclude
that the physical structure of the environment is a determinant
of search efficiency; yet, the dependency of the optimal mode
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of migration on the environmental heterogeneity is not fully
understood. Further, we do not know how motility and density
of targets affect the optimal search strategy. For example, the
effect of motility of and frequency of antigen-presenting cells
(APCs) as T cell targets on the T cell search efficiency has not
been studied [7].

Here, we use simple models to look for generic rules that
determine search efficiency in a heterogeneous environment
and its dependency on density and motility of targets. Random
motions in the absence or presence of obstacles have been
studied widely in physics literature [23]. Presence of obstacles
alters both the diffusion constant [24,25] and the dynamics
of random motion [26–28] in a manner that depends on the
density and structure of obstacles. Obstacles are expected to
interfere with directionally biased motions because of creating
dead end paths [29]; consequently, the mean velocity will be a
nonmonotonic function of the bias and reaches zero for large
biases at steady state [30,31]. For moderate times, similar
behaviors were observed [32], but the extent of the interference
has not been explored for short time periods and noncritical
densities [33–40]. Here, we address this problem through
simulation and quantify the efficiency using a key quantity
that we borrow from studies on stochastic processes, namely,
first passage time (FPT, T , also known as first hitting time)
[41]. For an object searching for its target, FPT is a time that
takes to reach the target for the first time. Mean first passage
time (MFPT, 〈T 〉) which quantifies the average time needed
to reach a specific target, has been commonly considered
as indicative of search efficiency [42–44]. MFPT has been
calculated for both Markovian and non-Markovian walkers
[45–49], but it has not been studied (neither analytically nor
through simulation) for biased random walk in the absence
or presence of obstacles. Furthermore, the effect of motility
of targets (with both random and biased migration) and the
effect of obstacles on this process has not been studied yet.
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As we explain in the following, our findings reveal generic
rules that might be applicable to a wide range of problems
including immune cell migration, where search efficiency is
being intensely researched and MFTP has not yet been used
as a measure of search efficiency [7,11].

II. MODEL

Random walk models have been successfully used to
describe dynamics of a wide range of biological objects rang-
ing from animal movement, dynamics of micro-organisms,
to diffusion of biomolecules [50]. Generally, mean square
displacement, 〈r2(t)〉, for a randomly walking object can be
written as

〈r2(t)〉 = 4Dtα + v2t2 (1)

in which D is the diffusion constant and v is the drift velocity,
and if v = 0 walk is simple random walk (SRW). In the
presence of obstacles, diffusion constant changes from a fixed
parameter to a location dependent parameter, yet the mean
square displacement (MSD) and time remain linearly related
(of course to a limited extent) as

〈r2(t)〉 = 4Deff t
α (2)

in which Deff is the effective diffusion constant for the
medium. As we will show in this paper, Deff plays an
essential role in the time scale of the events for simple
random motion but not for directed motion. Without losing
generality, we consider a two-dimensional (2D) lattice in
which a walker is located at the center of a unit as its initial
location and can jump to the centers of the nearest neighbor
units. In this regard, jumping length would be equal to
the distance between unit centers (or edge of each unit)
δ at each time step (τ ). In order to model environmental
constraints, we consider each edge of these units as a potential
obstacle. Thus, for each (x,y) point we define two parameters
E(x+,y) and E(x,y+) for corresponding edges of each
unit. When there is an obstacle (E = 1 or lines in Fig. 1)
between two neighboring units, walker is not allowed to
pass. Otherwise (E = 0, free space in Fig. 1), it is free to
pass. As an initial condition, we screen all edges in the
lattice and will consider each one as a solid line (E = 1)
with probability of p and consequently no obstacle, E = 0,
with probability of 1 − p. (This process creates the square
bond percolation model [51] for obstacles with occupancy
equal to p and, respectively, the square bond percolation model
for noncut paths with occupancy of 1 − p; see Appendix)

Generally, the Fokker-Plank equation for this model would
be as follows [50]:

∂P (x,y,t)

∂t
= −�∇ · (vP (x,y,t)) + �∇ · (D �∇P (x,y,t)) (3)

in which v(x,y) = [b1(x,y)
b2(x,y)] and

D(x,y) =
[
a11(x,y) 0

0 a22(x,y)

]
=

[
Dx(x,y) 0

0 Dy(x,y)

]

with b1 = δ[r(x,y) − l(x,y)]/τ, b2 = δ[u(x,y) − d(x,y)]/τ ,
a11(x,y) = δ2[r(x,y) + l(x,y)]/2τ , a22(x,y) = δ2[u(x,y) +
d(x,y)]/2τ where r(x,y), l(x,y), u(x,y), and d(x,y) are the

(x,y)
(x+δ,y)

(x,y+δ)

(x,y-δ)

(x-δ,y)

+y,x(E
δ+
)

E(x-δ+,y)

δ

FIG. 1. Illustration of a searching walker within a structured
medium. The walker cannot jump to the neighboring units separated
by a solid line (corresponding E is equal to one), while it is free
to jump otherwise (corresponding E is equal to zero). As such, in
this figure, the walker at (x,y) is only allowed to move in depicted
directions. As an initial condition, each line will be considered
solid with probability of p. (This process creates the square bond
percolation model for obstacles with occupation equal to p and,
respectively, the square bond percolation model for for noncut paths
with probability of 1 − p; see Appendix.)

probabilities of going right, left, up and the down for a single
walker and for a SRW we have r = l = u = d = 1

4 (for more
details, see Appendix).

III. RESULTS

To study the effect of environmental obstacles (which in our
model are solid lines and their number is proportional to the
value of p) on migration of walkers, we simulate the motion
of 105 walkers separately moving on bond percolation lattice
based on Eq. (3) with v = 0. For v = 0 and different values of p

we calculated the mean square displacement [MSD or 〈r2(t)〉]
by averaging over trajectories of all independent walkers in a
600×600 lattice and for 600 time steps (probability of reaching
to the border of lattice in 600 steps is quite small and we could
be sure that none of the searching walkers would reach the
border).

We first focus on search efficiency of simple random
walkers. We can readily extract the main macroscopic feature
of simple random walk, i.e., diffusion constant D, through
analysis of 〈r2(t)〉. When p increases, searching walkers will
migrate slower, but we define an effective diffusion constant
Deff as the indication of average diffusion constant for the
whole medium [see Fig. 2(a)]. Using variation of MSD per
time and 〈r2(t)〉 = 4Deff t , we calculate the value of Deff

for different values of p [Fig. 2(b)]. To analyze the search
efficiency of random walkers, we need to calculate FPT (T )
and its average MFPT (〈T 〉). To do so, we simulate the
random walk process on relative percolation lattice for 105

independent walkers and find the time T that it takes for every
searching walker to reach the target. To be consistent with
previous studies and to create comparable results, we work
with normalized MFPT, 〈T 〉/N , in which N is the number
of sites which the walker can visit (for distribution of T , see
Appendix). In agreement with previous results [52], the value
of 〈T 〉Deff/N fits nicely the universal curve of ln(R) in which
R is the distance between initial place of searching walkers
and their target [Fig. 2(c)].
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FIG. 2. (a) Evolution of MSD per time for different values of
p (p = 0, 0.1, 0.2, 0.3, and 0.4 from top to bottom) in units of
jumping length δ and time step τ . Linear behavior, which remains
for p < pc = 0.5, indicates diffusionlike motion for walkers and the
slopes of fitted lines are equal to 4Deff for each p. (b) Deff/D versus p.
(c) Normalized MFPT, 〈T 〉Deff/N , per distances between the initial
place of walkers and their target R for different values of p fits to
the universal diagram of ln(R) (the solid line). In agreement with
previous results [52], this figure shows that Deff regulates the time
scale of search. SEMs for all cases are smaller than symbol size.

Next, we study directionally biased migration in the
presence of obstacles. We consider that a walker that starts
searching from its initial location (x0,y0) tends to migrate
toward a target at (x ′,y ′). Biological entities can detect the local

gradients of chemicals and respond to them by moving toward
the source of chemicals [2–6]. Based on the Keller-Segel
model [53], this process can be modeled through choosing
the direction towards the target with a higher probability (see
Appendix). In such a case, the probability of moving in the
right direction at any (x,y) position can be defined as below
(other probabilities also change the same) which can be higher
or lower than other probabilities based on the the values of x

and x ′:

r(x,y) = 1 − E(x+,y)

S(x,y)

eγ |x−x ′ |

eγ |x−δ−x ′ | (4)

in which γ is the strength of migration towards the target
and is formed of ability of entities to detect and respond to
chemical gradient. γ = 0 indicates SRW (for l, δ changes to
−δ and for u and d, y takes the place of x) and S(x,y) is again
the normalization factor which ensures r + l + u + d = 1.
For p = 0, we have b1 = ±b2 = ∓δ(eγ δ − e−γ δ)/τS(x,y)
and a11(x,y) = a22(x,y) = δ2(eγ δ + e−γ δ)/τS(x,y). When γ

approaches 3.5, migration changes to an entirely directed
(ballistic) motion towards the target [Fig. 3(a)]. To understand
the effect of directionality of migration on search efficiency,
we analyzed 〈T 〉 per R for different values of directionality
γ . When we increase the directionality of motion, behavior of
〈T 〉/N per R changes from ln(R) for SRW to R/v for ballistic
motion in which v is the migration velocity.

As Fig. 3(b) indicates, for p = 0 and a fixed value of
R, MFPT is a univocally decreasing function of γ which
means that directionality of motion always increases the search
efficiency and for γ > 3 〈T 〉/N reaches to its minimum
〈T 〉∗/N , which is the time needed for directly moving from
initial place towards target divided by the factor N . While
for a nonzero p, the behavior of 〈T 〉/N per γ is not
univocal [Fig. 3(b)]. For each nonzero value of p, there
is a γ ∗ that creates the minimum value of 〈T 〉/N which
identifies the optimized search strategy. This result implies
that in a heterogeneous medium, a purely random or purely
directed migration towards target is not the optimized strategy.
Instead, a combination of directed and random motion is the
optimal choice and the density of obstacles determines the
contributions of each mode.

Next, we ask how target frequencies and motility of targets
affect search efficiency. Number of randomly distributed
targets within medium n regulates the value of 〈T 〉/N through
decreasing the distance in which we expect the searching
walker to see a target by the factor of

√
n and, consequently,

〈T 〉/N with the factor of n. Furthermore, instead of a fixed
target, we consider that at each time step, the target is able to
move randomly by probability of pm or remains at its location
with probability of 1 − pm. In the targets’ frame of reference,
target is fixed but at each time step the walker moves 1 + pm

times. As a result, after M steps it had moved M × (1 + pm)
times and 〈T 〉/N should decrease by the factor of (1 + pm).

As another possibility, we considered a walker chasing a
target which in turn moves randomly. Effects of directionality
of motion and density of obstacles were studied [Fig. 4(a)].
Finally, it may happen that both targets and walkers search
for each other according to Eq. (4) [Fig. 4(b)]. Migration of
target (both randomly and towards searching walkers) does not
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FIG. 3. (a) Variation of 〈T 〉/N per R for p = 0 and γ = 0, 0.02, 0.1, and 1 from top to bottom. As γ increases, 〈T 〉/N changes from ln(R)
for a random walker to R/v for ballistic motion in which v is the migration velocity. (b) Changes of 〈T 〉/N per γ for R = 30 and p = 0.4,
0.3, 0.2, 0.1, and 0.0 from top to bottom. As p increases, 〈T 〉/N deviates from the univocal behavior. For larger values of p, there is a γ ∗ at
which walkers have the minimum value for 〈T 〉. For p = 0.4, p = 0.3, p = 0.2 and p = 0.1, γ ∗ = 0.12, γ ∗ = 0.4, γ ∗ = 0.72 and γ ∗ = 1.3,
respectively, are creating 〈T 〉∗/N . Standard error of the means (SEMs) for all cases are smaller than symbol size.

change the general behavior of 〈T 〉/N for different values of p

but the value of γ for corresponding optimized search strategy
γ ∗ would be different [Fig. 4(c)]. Dynamics of 〈T 〉∗/N for all
studied cases was obtained [Fig. 4(d)].

Using MSD analysis to study random walk is not reliable for
all cases [54,55]. For small values of γ , MSD does not change
whereas 〈T 〉 might change dramatically. Besides, for larger
values of γ when we increase the value of p, analysis of MSD

shows that a superdiffusive motion is gradually converted to a
diffusive motion and then to a subdiffusive motion.

The results of our study can be generically applied to
a wide range of problems including cell migration, animal
movements, and dynamics of nonbiological microparticles.
For example, as shown in the Appendix, our findings can be
applied to shed light on some of current open problems related
to T cell migration.
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FIG. 4. (a) Behavior of 〈T 〉/N per γ when walker migrates towards the target with directionality of γ and the target itself moves randomly
for p = 0.4, 0.3, 0.2, 0.1, and 0.0 from top to bottom. (b) Behavior of 〈T 〉/N per γ when both target and walker migrate towards each other
with directionality of γ for p = 0.4, 0.3, 0.2, 0.1, and 0.0 from top to bottom. (c) Behavior of γ ∗ as the γ which minimizes 〈T 〉/N and
consequently generates the optimized search strategy for biased migration (half-right square), random migration (half-down square), and fixed
targets (half-left square). (d) Behavior of 〈T 〉∗/N as the minimum value of 〈T 〉/N for biased migration (half-right square), random migration
(half-down square), and fixed targets (half-left square). SEMs for all cases are smaller than symbol size (see Appendix).
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IV. DISCUSSION

Here, we simulated a wide range of migration dynamics
from random migration to a pure directed migration towards
targets and studied the unexplored effect of directional bias
on 〈T 〉 and density of obstacles and motility of targets.
Expectedly, we find that density of obstacles does not change
the 〈T 〉 for simple random walk. For a directionally biased
migration, directionality always decreases 〈T 〉 in the absence
of obstacle, and the minimum value of 〈T 〉 as the indication
of the optimized migration strategy corresponds to the largest
directionality γ ∗ ∼ 3.5 (ballistic motion). In the presence of
obstacles, instead of a pure directed motion, a combined
motion, 0 < γ ∗ < 3.5, leads to the minimum value of 〈T 〉
and thus the optimized search strategy. The physical structure
of environment thus dramatically affects search efficiency,
and randomness plays a beneficial role in finding targets.
When the target frequency increases or the targets are able
to migrate (both randomly and directed towards walker), they
are easier to find (not for higher values of p). In the presence
of obstacles, directionality plays the same dual role. Finally,
physical obstacles could change the dynamics of motion and
convert a superdiffusive motion to a subdiffusive one.
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APPENDIX

1. Bond percolation model on square lattice

The model we use to describe the obstacles is analogous to
bond percolation model on square lattice [51] with occupancy
equal to p; but, instead of bonds, we are working with lattice
units which are confined with these bonds. Besides, paths
walker could migrate through belong to a bond percolation
square lattice with occupancy equal to 1 − p (Fig. 5).

FIG. 5. Black (dark gray) edges are the boundary of units and
red (light gray) edges connect the center of units. When we consider
existence of black edges with probability of p, the crossing red edges
would be cut by probability of p and will remain with probability
of 1 − p. As a result, red edges together generate a square bond
percolation with occupancy equal to 1 − p.

r

r

FIG. 6. Motion of two walkers at medium with p = 0.4.

2. Simulation process of migration in heterogeneous media

For a given initial configuration of the environment, proba-
bilities of jumping at different directions are given by l(x,y) =
1−E(x+,y)

S(x,y) , r(x,y) = 1−E(x+δ+,y)
S(x,y) , u(x,y) = 1−E(x,y+δ+)

S(x,y) , and

d(x,y) = 1−E(x,y+)
S(x,y) , where S(x,y) is the normalization factor

for these probabilities and we have S(x,y) = 4 − E(x+,y) −
E(x + δ+) − E(x,y+) − E(x,y + δ+). During simulation,
each walker moves based on the the given probabilities which
are under effect of position of obstacles. Diffusion of walkers
on lattice would be regulated by barriers. To deeply understand
the effect of barriers, consider the corresponding Langevin
equation as the equation of motion of walkers. Remind that
this Langevin equation is the continuum limit of the random
walk and if we discrete the space and time, the Langevin
equation would be the description of random walk on lattice.
For simple random walker (SRW) we have b1 = b2 = 0 and for
SRW with p = 0, a11 = a22 = Dx = Dy = D/

√
2. For other

values of p, a11 and a22 (consequently Dx and Dy) would be
determined locally based on the presence of obstacles. Each
walker during migration calculates these probabilities and
moves based on them (Fig. 6). Langevin equation of ∂P (x,y,t)

∂t
=

−�∇ · (vP (x,y,t)) + �∇ · (D �∇P (x,y,t)) is ṙ = v + √
Dη(r,t)

with 〈η(r ′,t ′)η(r,t)〉 = δt,t ′δr,r ′ .

3. Speed fluctuation

As shown in Figs. 7 and 8, location of the walker and its
velocity significantly fluctuate in time. As Figs. 7–9 show, a
quite random motion could have different phases. A reliable
analysis of searching walker dynamics should consider longer
time scales and large number of searching walker in order to
obtain accurate results.
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FIG. 7. Position of three walkers at different media as a function
of time for p = 0 as the short dashed line, p = 0.2 as the short dotted
line, and p = 0.4 as the solid line.

4. Informed random walk and chemotaxis

Different animals have been shown to recognize and orient
towards odors over distances from a few hundred meters to
few tens of kilometers [56]. Chemotactic cues are able to
navigate cells up to few millimeters [57–59]. For a single
chemoattractant secreting cell, the chemotactic response can
be seen for ∼200 μm [58] distances. One very common model
for chemotaxis is the Keller-Segel model [53] in which for cells
centered at x, the probability of steps to the right and left will be
given by F [c(x + δ) − c(x)] and F [c(x − δ) − c(x)]. δ is the
migration length, c(x) is the concentration of chemoattractant
at x, and F is an increasing function. By considering c(x) ∝
1/|x − x ′| in which x ′ is the location of source on x axis and
F (c) ∝ e(γ c) for the probability of steps to the right r , we
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FIG. 8. Average velocity of the same walkers for 10 time steps
for p = 0 as the short dashed line, p = 0.2 as the short dotted line,
and p = 0.4 as the solid line. Speed fluctuations for different values
of p can been seen. Speed fluctuations appear at short time scales,
and might be interpreted as different migration dynamics.
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FIG. 9. Histogram of average velocities for 10 time steps for
p = 0.4, 0.2, and 0.0 from top to bottom. which is in qualitative
agreement with reports for T cells [8] with δ = 10 μm and τ = 1 min.

have r ∝ eγ |x−x′ |
eγ |x−δ−x′ | and for the probability of steps to the left

l, we have l ∝ eγ |x−x′ |
eγ |x+δ−x′ | . Expanding model to 2D and adding

the presence of obstacles reads as

r(x,y) = 1 − E(x+,y)

S(x,y)

eγ |x−x ′ |

eγ |x−δ−x ′ | ,

l(x,y) = 1 − E(x+,y)

S(x,y)

eγ |x−x ′ |

eγ |x+δ−x ′ | .

For the case of fixed target, the mentioned approach dis-
tribution of chemoattractant works properly. The effect of
motility of targets on chemoattractant distribution needs
more clarification. Chemoattractants diffusion constant has
been reported to be Dchem ∼ 7×10−7 cm2/s [60]. Based on
〈r2(t)〉 = 4Dchemt and r ∼ 300 μm, chemoattractants travel
the longest distance in our model in few minutes. Since this
time is smaller than our model time step, 10 min, our approach
for simultaneously updating distribution of chemoattractants
remains valid.

5. Spatial distribution of walkers

Probability density function (PDF) of x (y) which repre-
sents the probability of finding the walker at position x (y) at
t obeys

φ(x,t) = 1√
4πDxt

e
−x2

4Dx t ,

φ(y,t) = 1√
4πDyt

e
−y2

4Dy t .
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tion for large values of p for p = 0, 0.2, and 0.4 from top to bottom.
For larger values of p, the distribution starts to deviate from normal
distribution but the best fitted normal distribution curves’ standard
deviation is governed by

√
Deff .

But, for larger values of p, distributions of x and y start
to deviate from normal distribution (Fig. 10). These new
distributions are governed by

√
Deff but MSD still shows linear

dependency on time (Fig. 2). Within a heterogeneous medium
with fractal structures, dynamics of the motion has been
demonstrated to be related to fractal dimension and spectral
dimension of the structures [26–28]. For other distributions of
physical obstacles, it has been shown that dynamics of motion
and diffusion constant are related to density of obstacles.
Randomly distributed fixed obstacles can decrease diffusion
constant [24,25].

6. MSD analysis

During our analysis we considered MSD diagram versus
time as our reference to analyze migration dynamics of walkers
and obtain Deff . However, log/log diagram of MSD versus
time shows the dynamics of motion with higher accuracy
(Fig. 11). As Fig. 11 shows, for p = 0.4 the dynamics of
migration changes to subdiffusive but our calculations based
on Deff remain valid most probably because of negligible effect
of this variation as seen in Fig. 2. Besides, even if we eliminate
the case of p = 0.4 because of appearance of subdiffusive
behavior, our main results remain valid for smaller values of
p in which p ∼ 1.

Using MSD analysis to study random walk is not reliable
for all cases [54,55]. For small values of γ = 0.005, MSD
does not change whereas 〈T 〉 decreases by 25%. Besides, for
larger values of γ , i.e., γ = 0.07, when we increase the value
of p, analysis of MSD shows that a superdiffusive motion

1 10 100
100

1000

10000

time

M
SD

FIG. 11. MSD versus time in log/log diagram for p = 0 with
α = 1.02, p = 0.1 with α = 1.02, p = 2 with α = 1.0, p = 0.3 with
α = 0.97, and p = 0.4 with α = 0.87 from top to bottom. For p =
0.4, α deviates from 1 but the general analogy we used still works
properly. For each case, error in the value of α is less than 0.02.

(α = 1.15) gradually is converted to a diffusive (α = 1.0)
motion and then to a subdiffusive motion (α = 0.85) (Fig. 12).

7. Distribution of T

By now we have studied the behavior of MFPT. Here, we
aim to study FPT itself and its distribution. Distribution of
T is not like normal distribution. Instead, it has skewness
which seems to be log-normal distribution [61] which changes
by time and variations in γ and p. Random variable x is

100

10

100

time

M
SD

FIG. 12. MSD for different values of p and γ at δ units γ = 0.07,
p = 0, and α = 1.15 (black half-up square); γ = 0.07, p = 0.3, and
α = 1.02 (red half-right square); γ = 0.07, p = 0.42, and α = 0.85
(green half-down square); γ = 0.005, p = 0, and α = 1.00 (blue
half-left square). As this figure indicates, for γ = 0.07 the value of
α changes from 1.15 ± 0.01 to 0.85 ± 0.01 for different values of p.
This variation indicates the fact that physical obstacles are capable of
altering the whole dynamics of motion. Also, for γ = 0.005 in which
the value of 〈T 〉 decreases 30%, we still have α = 1.002 ± 0.001.
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FIG. 13. Distribution of FPT, T , for R = 10 (red), R = 20

(green), and R = 40 (blue)with γ = p = 0.

log-normally distributed if log(x) has a normal distribution.
For a qualitative comparison, in each case we have shown the
fitted log-normal curves. Also, distribution of log(T ) would
be an appropriate candidate to see how much the distribution
of T is comparable to log-normal distribution. Analogous to
〈T 〉, T tends to increase for larger values of p and decrease for
larger values of γ . But, it also exhibits variations in distribution
(Figs. 13–15).

8. Visualizing search efficiency

When we have p = 0, a directed migration towards target
is the most efficient strategy to reach target. As we move from
directed migration toward random migration, the efficiency
will decrease. Figures 16(a) and 16(b) show that for a free
space, a directed migration with γ = 0.5 reaches to the target
when the other walker with γ = 0.125 has passed less than half
of its way towards the target. Contrary to what happens for free
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FIG. 14. Distribution of FPT, T , for p = 0 (red), p = 0.2 (green),

and p = 0.4 (blue) with R = 40 and γ = 0.
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FIG. 15. Distribution of FPT, T , for γ = 0.1 (red), γ = 0.01
(green), and γ = 0 (blue) with p = 0 and R = 40.

space, in the crowded space with a lots of obstacles, the walker
with lower directionality is able to reach the target in a shorter
time with respect to the walker with higher directionality
[Figs. 16(c) and 16(d)].

A closer look at migration in the medium with obstacles will
provide deeper understanding. Figure 17 shows migration with
different directionality at a crowded medium. For γ = 0.5,
the walker will choose the direction towards the target with
probability of seven times larger than γ = 0.125. This high
directionality leads to a smaller number of choices for these
walkers. As a result, when there is no straight way towards
target, these walkers will face troubles in finding their way.
They usually choose the direction which minimizes their
distance with target. Double sided vectors indicate the edges
that the walker might be trapped in. At each side of these
edges, the walker finds the other side as a point with higher
probability. When γ approaches 1, the walker could be trapped

(a)

(b)

(c)

(d)

FIG. 16. Migration of two walkers with directionalities of γ =
0.125 and 0.5 for p = 0 and 0.4. For free space, p = 0, the directed
migration (a) will arrive in a shorter time. While the walker with lower
directionality (b) has passed half of its way towards the target. When
the density of obstacles increases at medium, the walker with higher
directionality moves slower than the other walker. For p = 0.4 (c),
the walker just passed the half of distance between the initial place
and the target when the other walker (d) has reached the target (colors
have the same scale and they indicate time).
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a

b

1

1
2

2

FIG. 17. Migration with different directionalities, red vectors
with γ = 0.125, and green vectors with γ = 0.5. At points a and
b, probability of taking direction of 1 at point b is about half of the
probability of taking the direction of 1 at point a whereas these two
points are identical.

in any set of these edges for unlimited times. On the other hand,
the walker with γ = 0.125 chooses its direction rather freely
and the chance of being trapped is much lower for this walker.
For point a in Fig. 17, the probability of going the direction of
1 is equal to

e−γ δ

e−γ δ + eγ δ
= 0.4

with γ = 0.125 while at point b the probability of going the
direction of 1 is equal to

e−γ δ

e−γ δ + eγ δ
= 0.27

with γ = 0.5. As a result, the walker with γ = 0.125 can
escape such positions faster than the walker with γ = 0.5.
Note that these probabilities should be multiplied to get the
final probability of escape and, consequently, this difference
will be multiplied.

9. Medium size effect

Size of medium which walkers are moving in it has been
shown to have no effect on 〈T 〉/N in which N is the number
of sites which walker can visit. In this regard, we calculated

0 5 10 15 20 25 30 35 40
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3

R

<
T
>
/N

FIG. 18. Effect of size of lattice on 〈T 〉/N per R in δ units (δ =
10 μm) with N = L × L for L = 30 (black), L = 50 (red), L = 70
(blue), and L = 100 (magenta).

0.01 0.1 1
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1

γ

<
T
>
/N

FIG. 19. Standard error of mean of MFPT, 〈T 〉/N , versus γ with
p = 0.4 and R = 40.

〈T 〉/N for lattice with different sizes and Fig. 18 shows that it
does not depend on lattice size.

10. Error analysis

In all graphs, the value of standard error of mean has been
smaller than the size of symbol. Here is the SEM for some
cases (Fig. 19).

11. Effect of number and motility of targets

When the motility of target increases (except for small
values of pm when p = 0 in which 〈T 〉/N starts to increase),
〈T 〉/N decreases. This result is understandable through
relative reference frame. In the targets’ frame of reference,
the target is fixed but at each time step the walker moves
1 + pm times. As a result, after M steps we have 〈r2〉 =
M(1 + pm)Deff . Consequently, at the targets’ frame reference
time needed to move distances including the distance between

0.0 0.2 0.4 0.6 0.8 1.0
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FIG. 20. 〈T 〉/N per pm with R = 30 for p = 0, 0.1, 0.2, 0.3, and
0.4 from top to bottom. Based on analytical conclusion, we expect it
to behave like 〈T 〉/N ∼ (1 + pm).
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FIG. 21. Variation of 〈T 〉/N per number of targets n for p =
0.4, 0.2, and 0.0 from top to bottom. 〈T 〉Deff/N fits n−κ with κ =
1.11 ± 0.05.

the walker and target should be divided by 1 + pm. Figure 20
confirms this idea for all values of p.

The number of randomly distributed targets within medium
changes the search time. We can estimate this relation
analytically. Consider Rexp as the radius around initial position
of the searching walker in which we expect it to see a target.
When the searching walker is at the center of medium with
N visitable sites, we can argue Rexp ∼ √

N which for larger
numbers of targets n, we have R2

exp ∼ 〈T 〉 ∼ N
n

(Fig. 21).

12. Application to T cell migration analysis

By δ = 10 μm and τ = 1 min, dynamics of walker would
be analogous to reports for T cells with speed of 10 μm min−1

[8,58]. Our model provides an alternative explanation for
experimentally observed speed fluctuations of T cells [7,8]
which is currently attributed to the morphology of lymph
nodes [7,16]. Based on our result, speed fluctuations are an
intrinsic feature of random motion; environmental features,
including morphology of lymph nodes, might be able to alter

the speed distribution but they can not be regarded as the
source of fluctuations (see Figs. 7–9). Our study provides
an explanation for seemingly contradictory reports where T
cell migration was seen to be diffusive [9], subdiffusive [10],
and superdiffusive [11]. Our model predicts that an inherently
superdiffusive motion may effectively appear as diffusive
or subdiffusive depending on the physical structure of the
environment. T cell migration dynamics is thus defined by
both internal and external determinants. Our model indicates
that interpretation of measured migration dynamics has to be
done with care; seemingly random motion of T cells in lymph
nodes [9,62,63] cannot be interpreted as a uninform migration
before deciphering the environmental effects on migration
dynamics. Our model predicts that an intermediate value for
chemoattractants gradient maximizes the efficiency of T cell
search. We know that recently activated T cells can search
for or follow cognate APCs [7,64] through chemotaxis and
can move more than 500 μm under effect of chemoattractants
[58,59]. Since the directionality of motion for immune cells
is a function of chemoattractants’ secretion rate and density
[58], the efficiency of T cells search would be a function of
chemoattractants gradient. As a result, in a crowded medium
of tissue, an intermediate value of chemoattractants’ gradient
minimizes the search time. This prediction is readily testable
experimentally. Recall that our results are valid for R > δ,
including R = 30, δ = 300 μm. A T cell interacts typically
with more than one target cell (e.g., APCs) during the immune
response; however, it is not clear how target frequencies
affect T cell search efficiency [7]. Our model predicts that
for randomly moving T cells, the search time decreases as
with the factor of n in which n is the number of targets and
this relation holds almost for all densities below critical value.
APCs are able to move and their migration is important in
the immune response [65,66], but the implications of APC
migration for T cell search efficiency has not been studied
yet [7]. Our result predicts that motility of targets decreases
the search time for all density of obstacles by the factor of
1 + DAPC/D in which D is the T cell diffusion constant and
DAPC is the APC diffusion constant. APCs sometimes search
for T cells [67], but it is not clear how that affects T cell
search efficiency [7]. Here, our model predicts an intermediate
value of chemoattractant gradient which minimizes the search
time.
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