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Consciousness as a global property of brain dynamic activity
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We seek general principles of the structure of the cellular collective activity associated with conscious
awareness. Can we obtain evidence for features of the optimal brain organization that allows for adequate
processing of stimuli and that may guide the emergence of cognition and consciousness? Analyzing brain
recordings in conscious and unconscious states, we followed initially the classic approach in physics when
it comes to understanding collective behaviours of systems composed of a myriad of units: the assessment
of the number of possible configurations (microstates) that the system can adopt, for which we use a global
entropic measure associated with the number of connected brain regions. Having found maximal entropy in
conscious states, we then inspected the microscopic nature of the configurations of connections using an adequate
complexity measure and found higher complexity in states characterized not only by conscious awareness but also
by subconscious cognitive processing, such as sleep stages. Our observations indicate that conscious awareness
is associated with maximal global (macroscopic) entropy and with the short time scale (microscopic) complexity
of the configurations of connected brain networks in pathological unconscious states (seizures and coma), but
the microscopic view captures the high complexity in physiological unconscious states (sleep) where there is
information processing. As such, our results support the global nature of conscious awareness, as advocated by
several theories of cognition. We thus hope that our studies represent preliminary steps to reveal aspects of the
structure of cognition that leads to conscious awareness.
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I. INTRODUCTION

While the coordinated patterns of organized activity in the
brain that are associated with cognitive states are definitely
intricate, the underlying global principles may be simple,
despite those mechanistically complicated processes. The
current overabundance of data should not preclude attempts
at a comprehension of fundamental principles. Are there
minimal, basic conditions for the nervous system to satisfy
to optimally process information? Although the structure of
anatomical connectivity sets limits to information transfer
among cell ensembles, there could be a principle governing
the activity of these networks to optimize the integration
and segregation of information associated with conscious
awareness. There have been proposals whose underlying
theme is that ongoing transformation of information in the
brain is reflected in the variability and fluctuations of the
widespread functional connections among brain cell ensem-
bles that manifest in aspects of consciousness. At the same
time, it has been proposed that consciousness requires a certain
high complexity in the organization of coordinated activity of
brain cell ensembles. There are many notions of complexity,
and structural as well as effective measures of complexity have
been advanced [1], with the view that functional organization
is determined and superimposed on the structural organization
[2]. The question with regard to the nervous system is to
find the most adequate notion that captures its complexity.
Starting from the most basic neurophysiological aspects,
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it is known that the coordinated collective activity of the
constituent cells (neurons and glial cells) is the essential aspect
that ensures a proper performance to aid the organism in
responding to a changing environment. The key elements are
not individual cells but networks, or ensembles of interacting
cells. The activity of nervous system cells is to a large extent
coherent, showing high degrees of temporal correlation and
coordination of activity such that cell assemblies self-organize
via transient synchronization [3,4]. A prominent question is
how to describe the organizing principles of this collective
activity which allow features associated with consciousness
to emerge. Therefore, it is probably in the scrutiny of the
correlations of activity where answers to those questions can
be found. Recent studies have in fact sought simplicity in
the principles governing the number of interactions among
variables describing networks [5]. While we use the terms
brain networks and connected signal throughout the text as
synonymous, it has to be noted that the notion of network
is not clear-cut in current neuroscience. In general, the idea
of network is an abstraction, which is useful in some studies
to summarize or put in perspective some observations, but in
the end this concept represents a relative view on how we
assemble the activity of a myriad of cells [6]. In this work,
we denote as networks any gradual clustering according to a
similar activity profile. In our study we focus on the collective
level of description and assume that coordinated patterns of
brain activity evolve due to interactions of mesoscopic areas
that can be recorded electrophysiologically.

A previous study showed that the specific values of a
synchrony index (see Sec. II) obtained in fully alert states
represent the largest number of configurations of pairwise
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signal combinations and thus have higher entropy [7]. Those
results were obtained from a global perspective, as the
calculation of the entropy in each cognitive state represented
the total number of configurations of connected signals over a
macroscopic time scale lasting several minutes. Based on the
same notion of pairwise connected signals, we have performed
here an estimation of the joint Lempel-Ziv complexity (JLZC)
that allows for a microscale perspective of the fluctuations in
the connectivity between two signals, as described in Sec. II. In
this study we have focused on this method and have computed
the entropy only to illustrate the differences (or similarities) in
the values of entropies and the JLZC, and in this manner we
avoid a duplication of the data presented in Ref. [7]. As ex-
plained in Sec. II, we have used clinical neurophysiologic data
obtained in individuals in different mental states and recorded
with three methods: scalp EEG, intracranial EEG (iEEG), and
magnetoencephalography (MEG). To facilitate the comparison
of the results for all cases, the normalized joint Lemplel-Ziv
complexity (nJLZC) is shown. One reason we wished to use
distinct recording techniques was to ascertain that the results
were not dependent upon the recording methodologies.

II. METHODS

A. Electrophysiological recordings

Recordings were analyzed from 27 subjects. Some patients
were described in Guevara et al. [8]. Specifically, two patients
with different epilepsy syndromes were studied with MEG;
one patient with temporal lobe epilepsy was studied with
iEEG; three patients with frontal or temporal lobe epilepsy
were studied with simultaneous iEEG and scalp EEG; and
four nonepileptic subjects were studied with scalp EEG.

For the study of seizures versus alert states, the two subjects
with MEG recordings and the temporal lobe epilepsy patient
investigated with iEEG were used. Details of these patients’
epilepsies, seizure types, and recording specifics have been
presented in previous studies (MEG patients in Ref. [9];
iEEG patient in Ref. [10]). In addition to our patients, we
also used iEEG data in seven other patients obtained from the
European Epilepsy Database [11]. The database contains well-
documented metadata and highly annotated raw data as well
as several other features. Acquisition rates varied from 254 to
1024 Hz, and these differences were taken into consideration
for the data analyses. For more information about the
recordings and the settings see Ref. [11]. For the study of sleep
versus alert states, scalp EEG recordings from five subjects
were used. The three patients with combined scalp EEG-iEEG
have been described previously in Ref. [12]; the two subjects
with only scalp EEG were investigated for syncope, with
no evidence of epilepsy found during prolonged monitoring.
For the study of coma, scalp EEG recordings from two
patients in coma secondary to hypoxic brain injury were used,
alpha coma in one case and burst-suppression pattern in the
other.

MEG recordings were obtained using a whole head CTF
MEG system (Port Coquitlam, BC, Canada) with sensors
covering the entire cerebral cortex, whereas iEEG subdural
and depth electrodes were positioned in various locations
in the frontal and temporal lobes depending on the clinical

scenario, including the amygdala and hippocampal structures
of both temporal lobes. EEG, iEEG, and EEG-iEEG recordings
were obtained using an XLTEK EEG system (Oakville, ON,
Canada). Acquisition rates varied from 200 to 625 Hz, and
these differences were taken into consideration for the data
analyses. The duration of the recordings varied as well: for the
seizure study, MEG sample epochs were each of 2-minutes
duration, with total recording times of 30–40 minutes per
patient; the iEEG patient sample epoch selected for analysis
from a continuous 24-hour recording was of 55-minutes
duration. The sleep study and coma data segments were each
2–4 minutes in duration, selected from continuous 24-hour
recordings or 30-minute clinical recordings (coma).

The EEG control group (10 healthy subjects) were taken
from the Physionet EEG Motor Movement/Imagery Dataset.
The system is described in Refs. [13,14].

B. Joint Lempel-Ziv complexity of pairwise connections

Based on the idea of Kolmogorov complexity, Lempel
and Ziv developed their algorithmic complexity using the
idea of a program based on the recursive copy and paste
operation [15]. This complexity has been used in the analysis
of different types of neurophysiological signals, among others
for the study of the effects of anesthesia, seizures, depression,
and consciousness [16–18]. Their definition lies on the two
fundamental notions of reproduction and production. If we
consider a finite size sequence Sn = s1 . . . sn of symbols of an
alphabet A of finite size α = |A| it defines the following:

(a) Reproduction: A process of reproduction from a se-
quence Sn consists in its extension Rn+m = SnQm where Qm

is a subsequence of length m of the sequence SnQmε, where ε is
the operation of suppression of the last symbol. In other words,
there exists an index p � n (called pointer) in the sequence Sn

so that q1 = sp, q2 = sp+1 if p < n and q2 = q1 otherwise (the
symbol just copied in this case), etc. As an example, S3 = 1 0 1
reproduces the sequence R6 = 1 0 1 0 1 0 since Q3 = 0 1 0 is
a subsequence of S3Q3ε = 1 0 1 0 1, i.e., q1 = s2 = r2, q2 =
s3 = r3, and q3 = q1 = r4 previously copied. In other words,
SQ can be reproduced from S by recursive copy and paste
operations. In a sense, all the “information” of the extended
sequence is in Sn.

(b) Production: A production operation, denoted Sn ⇒
Rn+m = SnQm, consists in reproducing the subsequence
Rn+mε from Sn. The last symbol can also follow the recursive
copy-paste operation, so that the production is a reproduction
but can be “new.” Note thus that a reproduction is also a
production, but the converse is false. As an example, S3 = 1 0 1
produces S3Q3 = 1 0 1 0 1 1, but it does not reproduce this
sequence: q1 = s2 = r2, q2 = s3 = r3, but the last symbol does
not follow the recursion, q3 �= r4. The difference between
reproduction and production is that in production the last letter
can come from a supplementary copy-paste but can also be
“new.”

The sequence generated is called a history H, and many
different histories Hi exist for the same sequence. Then, for a
given Hi of the sequence, let us define by CHi

(Sn) the number
of productions of this history. Clearly min(2,n) � CHi

(Sn) �
n. In the spirit of the Kolmogorov complexity, Lempel and Ziv
defined the complexity of the sequence as the minimal number

062410-2



CONSCIOUSNESS AS A GLOBAL PROPERTY OF BRAIN . . . PHYSICAL REVIEW E 96, 062410 (2017)

of production processes needed to generate it:

C(Sn) = min
Hi∈{histories of Sn}

CHi
(Sn). (1)

It can intuitively be understood that in the optimal history, all
the productions are not reproductions, otherwise it would be
possible to reduce the number of steps: the optimal history is
indeed exhaustive [15]. This fact allowed the developments of
simple algorithms of evaluation of the Lempel-Ziv complexity
of a sequence [19]. The total number of subsequences present
in Sn has an upper bound [20], denoted as L(Sn):

L(Sn) = C(Sn){logα[C(Sn)] + 1}. (2)

For large n the normalized Lempel-Ziv complexity is defined
as

c(Sn) = C(Sn){logα[C(Sn)]}
n

. (3)

C. Joint Lempel-Ziv complexity

Originally the Lempel-Ziv complexity (LZC) was used for
temporal analysis. Zozor et al. [21] proposed an extension
of the method to analyze multidimensional signals, which
became therefore useful for spatio-temporal analysis. The
main idea is to use the LZC for vectorial data, and this can be
done naturally extending the alphabet. Consider k sequences
X i = xi,1; . . . ; xi,n for i = 1, . . . ,k, where the letters belong
to the alphabet A = {1, . . . ,α}.1 Now, for the sequence V =
v1, . . . ,vn where the component vj has the xi,j as α-ary
descomposition, i.e., vj = ∑k

i=1 xi,jα
i , the joint Lempel-Ziv

complexity (JLZC) is defined as

C(X1, . . . ,Xk) = C(V ). (4)

Using this approach, the algorithm proposed in Ref. [19]
to evaluate the LZC can still be used, comparing scalars.
Moreover, one of the most interesting properties of the JLZC
is the invariance by any permutation σ of {1, . . . ,k}, i.e.,
C(X1, . . . ,Xk) = C(Xσ (1), . . . ,Xσ (k)) [21].

We apply the LZC to our measures of phase synchronization
in the following manner (see the schematic in Fig. 1). Initially
a phase synchrony index (R) was calculated from all possible
pairwise signal combinations, for which we use the standard
procedure of estimating phase differences between two signals
from the instantaneous phases extracted using the analytic
signal concept via the Hilbert transform. The methods have
been extensively described in several publications, so we refer
the reader to a few representative papers [9,22]. In brief, to
compute the synchrony index, several central frequencies,
as specified in the text, were chosen with a bandpass filter
of 2 Hz on either side; hence, for one value of the central
frequency f , the bandpass is f ± 2 Hz. The central frequencies
were chosen according to the relevant behavioral states and
some analytical limitations. To see whether similar results
were obtained with different frequencies, we chose several
provided there was power at those values (note of caution:

1In the original paper the authors generalize the method using
different alphabets for each signal. In our case, the alphabet is the
same.

if there is very little power at some frequency, our methods
cannot be applied since they are based on the extraction of
phases of oscillations). The phase synchrony index R was
calculated using a tw = 1 s running window and was obtained
from the phase differences using the mean phase coherence
statistic, which is a measure of phase locking and is defined
as R = |〈eiφ〉tw | where φ is the phase difference between two
signals. This analytical procedure has been described in great
detail elsewhere [8,9,22]. We note that the only preprocessing
of the data was done in the case of the scalp EEG recordings,
where a Laplacian derivation was used to decrease volume
conduction and the common reference contamination [7,8].

For each pair of signals we obtain {R(t)} sequences. We
have to binarize these continuous sequences using a threshold
Th, between 0 (non-“connected”) when R(t) < Th and 1
(connected) otherwise. The thresholds were obtained from the
mean R given by surrogates (we used 10 surrogates per each
original signal). Here, as already mentioned, we remark again
that we are using the term “connectivity” although in reality our
synchrony analysis reveals only correlations between phases
of oscillations; it is, however, reasonable to infer that these
correlations of activity may underlie some degree of connec-
tivity. After the discretization we obtain Np binary sequences,
where each row vector Bi = bi,1, . . . ,bi,t corresponds to the
connectivity between two recording channels.

We then apply the aforementioned JLZC over this matrix. In
this case the alphabet length is α = 2 and the components of the
vector V are vj = ∑Np

i=1 bi,j 2i , where bi,j are the components
of the binary connection matrix. Finally, to normalize the
measure we use Eq. (3). Now, each column of the binary
connection matrix represents the brain state at time ti , and
every state is assigned a letter of the alphabet A; the LZC
measures the complexity over the string of these letters (states).
If the system remains in the same state, the letters of the
sequence are the same and thus JLZC is 0. The same happens if
the sequence has fluctuations that repeat themselves, the states
or letters that will appear will be concatenated in the same
fashion giving low JLZC. But if the state changes all the
time without a pattern, the number of the configuration
states or letters will be higher giving a higher complexity.
Thus JLZC captures information from the system that the
entropy (see Sec. II D) cannot. As an example if we have two
different binary strings X1 = 01010101 and X2 = 11010001,
the entropy is S(X1) = S(X2) = 0.5, but the complexity is
C(X1) = 3 and C(X2) = 4. Another advantage of JLZC is that
it does not require one to compute the probability distribution
function as the calculation of entropy needs.

For our estimations of JLZC and entropy a complication
emerges if the number of signals is large. The total number
of possible pairs of channels for a specific montage is given
by the binomial coefficient Np = Nc!/2!(Nc − 2)! where Nc

is the number of channels taken for the analysis. Then we
have the 2-ary decomposition alphabet Nα = 2Np . If we take
Nc = 20 channels, we have Np = 190 pairs of channels and
Nα = 1.57 × 1057. For Nc > 20 we have Nα → ∞, which is
impossible to manage. In this work, to compute the JLZC,
we took N = 20 for all the montages that have more that 20
channels. To compare the values for different montages, we
normalize the LZC applying Eq. (3). The invariant permutation
property of the JLZC allows us to put each recording in any
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FIG. 1. Joint LZC applied over the synchrony index (R). (a) Magnetoencephalographic signal recorded in eight channels. (b) The synchony
index calculated over all possible pairs (Np = 28). (c) Binary connection matrix, black = connected, white = not connected. On the bottom,
the schematic brains represent in a pictorial manner what the rows and columns of the binary matrix composed of 1’s and 0’s mean (detailed in
Sec. II). (d) The fluctuating connections among brain areas that will be assigned a value of JLZC depending on the variability of the connectivity
patterns.

position of the binary matrix B without changing the JLZC
value. Finally, it is important to point out that the JLZC depends
on the recording sampling frequency, because the number of
possible configurations appearing in a period depends on the
number of data points. Thus, only signals recorded with similar
sampling frequencies should be compared. It is for this reason
that in our study we cannot put together results obtained in
different patients, and these are shown according to their own
specific sampling rates.

D. Entropy of the number of connections

The calculation of entropy was described in Ref. [7]; here
we briefly summarize the method. The number of pairwise con-
nected signals is obtained from the aforementioned threshold
of the synchrony index. This gives us a Boolean connectivity
matrix, with 0 entry if the corresponding synchrony index is
lower than a threshold, and 1 if higher, and two channels are
connected if the corresponding entry in the matrix is 1. The
total number of possible pairs of channels given a specific
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channel montage is given by the binomial coefficient N =
Nc!/2!(Nc − 2)! where Nc is the total number of channels
in the recording montage. For each subject and condition we
calculate p, the number of connected pairs of signals in the
different behavioral states, using the aforementioned threshold
of the synchrony index, and estimate C, the number of possible
combinations of those ppairs, using the binomial coefficient
again: C = N !/p!(N − p)! In sum, all these calculations
represent the relatively simple combinatorial problem we
are trying to solve: given a maximum total of N pairs of
connected signals, in how many ways can our experimental
observation of p connected pairs (that is, the number of 1’s
in the matrix) be arranged. To assess entropy we assume
that the different pairwise configurations are equiprobable,
thus the entropy is reduced to the logarithm of the number
of states, S = ln(C). However, the estimation of C is not
feasible due to the large number of sensors; for example, for
144 sensors (our typical MEG montage), the total possible
number of pairwise connections is [1442] = 10 296; then
if we were to find in the experiment that, say, 2000 pairs
are connected, the computation of [102962000] has numbers
too large for numerical manipulations. To overcome this
difficulty, we used the well-known Stirling approximation for
large n: ln(n!) = n ln(n) − n. The Stirling approximation is
frequently used in statistical mechanics to simplify entropy-
related computations. Using this approximation, and after
some basic algebra, the equation for entropy reads S =
N ln(N/N − p) − p ln(p/N − p) where N and p, defined
above, are the total number of possible pairs of channels
and the number of connected pairs of signals in each
experiment, respectively. Because this equation is derived from
the Shannon entropy, it indicates the information content of
the system as well [23]. In the figures, the continuous curves
shown are obtained from the Stirling approximation equation
above, representing the possible entropy values of all possible
numbers of pairwise combinations, yielding an inverted U. On
that curve, we plot the data points associated with each specific
condition.

III. RESULTS

Whereas the results using the macroscopic entropic mea-
sure and the microscopic nJLZC tend to be similar, there
are important differences that provide insight into the brain
dynamics in the distinct states. While the technical description
of the entropy and the nJLZC is presented in Sec. II, here we
explain in simple words what these measures mean. Basically,
the entropic measure is that associated with the total number
of configurations of connected brain networks (pairwise, as
we use synchrony) in each experimental condition, thus the
more possible configurations of connections the larger the
entropy, which results in low entropy for either too many
connections (as occurs in seizures, coma, and sometimes sleep)
or too few as sometimes occurs in sleep (see Ref. [6] for a
detailed discussion of this entropy). On the other hand, the
nJLZC evaluates the fluctuations in the connectivity pattern
of the entire combinations of networks (or, more precisely,
signals) in each montage and in very short time windows.
Hence, we have been able to set entropy and complexity
measures in the context of connections among brain networks

to evaluate the variability and the global information content
of the system. In the cases of loss of consciousness due to
pathological (nonphysiological) states, both the entropy and
the nJLZC have consistently lower values as compared with
conscious states. Representative results are depicted in Figs. 2
and 3 for the epileptic recordings. Most of the entropy results
were already presented in Ref. [7], and here we just show
some representative examples to compare the results with
those obtained using the nJLZC. Figure 2 shows the time
course of the nJLZC as patients develop seizures. Importantly,
the decrease in complexity is more manifest when the nJLZC
is evaluated using signals over the whole brain, as opposed
to those only from one hemisphere [Fig. 2(a)]. Importantly,
Fig. 2(b) illustrates the decrease in complexity (evaluated at 5
Hz) only after the patient lost consciousness, which occurred
when the seizure generalized, at 350 s. Thus, this patient
allowed us to correlate loss of consciousness with complexity,
regardless of the presence of abnormal seizure activity in some
brain areas. It was previously shown that, similarly, the entropy
decreased only after the seizure generalized and patient lost
consciousness [Fig. 1(c) in Ref. [7]]. Shown in the figure is
the nLZC evaluated from the phase synchrony at 15 Hz to
demonstrate that the changes in complexity thus computed
depend on the frequency at which synchrony is analyzed. As
discussed in the next section, this is not surprising due to the
complex nature of synchronization even during robust ictal
activity.

Figure 3 shows that generalized seizures (that normally
imply loss of consciousness) are characterized by lower
entropy and nJLZC. The bar graphs represent the average
nJLZC for several patients recorded with iEEG or MEG.
It is of interest to note that lower frequencies display the
largest differences, for both measures, between the conscious
(interictal, or between seizures, brain activity) and the seizure
state. This can be seen too in Tables I and II in Sec. A 1, which
present all mean values of nJLZC for the different groups of
epileptic patients, some recorded with MEG and others with
iEEG; the same trend of lower complexity associated with ictal
activity, most clearly at lower frequencies, can be appreciated,
and as well that the differences between interictal and ictal
states in the cases of iEEG are not as pronounced as those
using MEG, possibly due to the localized distribution of the
intracraneal sensors, which renders this technique not as global
as the MEG recordings that cover the whole cortex. These
considerations are further elaborated and discussed below.
In another pathological unconscious state, Fig. 4 shows the
entropy and nJLZC in coma, as compared to normal, conscious
individuals, demonstrating lower nJLZC and entropy of the
connectivity during coma. All the values are shown in Table III
in Sec. A 1.

While the previously shown pathological unconscious
states display same tendency towards lower entropy and nLZC,
in the case of the physiological unconscious states we analyzed
(sleep stages), there are important differences between the
nJLZC and the entropy estimation. As illustrated for one
representative case, Fig. 5 shows that, while the entropy was
consistently lower during slow wave sleep (SWS) stages, as
was found in Ref. [7], the nJLZC had lower values only at the
lowest frequency studied (3 Hz). Tables IV and V in Sec. A 1
show all the values across all subjects in the different states
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FIG. 2. nJLZC of the transition between interictal-ictal activity in two epileptic patients. Seizures are marked by the dotted lines. (a) Upper
graph shows one MEG signal taken in a patient with primary generalized absence epilepsy and seizures associated with loss of consciousness.
Middle and lower graphs depict, respectively, the nJLZC (using a 1-second running window) estimated from several sensors in the right
hemisphere and in both hemispheres for a central frequency Cf = 5 Hz. Note the clearer decrease in complexity when signals from both
hemispheres are considered, indicating that seizures in this type of epilepsy (generalized spike-and-wave) are best described as a global state.
(b) Upper graph shows one iEEG signal taken in a patient with frontal lobe epilepsy. Middle and lower graphs represent the nJLZC calculated
using all intracraneal sensors at the central frequency of 5 Hz and 15 Hz, respectively. It is important to note that in this case the seizure, which
started at ∼320 s, did not generalize until ∼350 s according to the clinical report (first dotted line), and it was at this time when the patient lost
consciousness. Second dotted line indicates end of the seizure. The drop in the complexity is clear at 5 Hz after the seizure generalized.

and frequency bands, where it is apparent that it is at low
frequencies (4–12 Hz) when the nJLZC is consistently lower
than in fully alert states, and the differences are greater between
the deepest SWS stage (sws3-4) and the awake state. It is
also of note that, in those subjects where rapid-eye movement
(REM) states could be recorded, the nJLZC is similar or even

higher than the awake state, a result that parallels that found
in the entropy values reported in Ref. [7].

IV. DISCUSSION

In summary, our observations suggest that conscious
awareness is associated with maximal entropy that represents
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FIG. 3. nJLZC and the entropy (S) for MEG and intracranial EEG (iEEG) seizure recordings for different central frequencies (5, 10, 15,
28, 35 Hz). (a) Mean nJLZC for seven patients recorded with iEEG in interictal (cross-hatched bar) and ictal (seizure) (diagonally hatched bar)
states. (b) nJLZC derived from three patients and six MEG recordings. Comparing panels (a) and (b), it can be seen that lower complexity is
associated with ictal states but the differences are more pronounced in case of MEG signals. (c), (d) Entropy for one patient recorded with MEG
and iEEG, respectively; the dots and the triangles represent the interictal and the ictal (seizure) values for the different central frequencies. The
Gaussian curve in these plots is described in Sec. II and represents entropy values of all possible numbers of pairwise combinations of signals.

a global, macroscopic perspective of the total number of
configurations of connected brain networks; on the other
hand, the more local, microscopic view of the fluctuations in
connectivity patterns given by the nJLZC does not consistently
show a decreased complexity, and this occurs especially during
sleep stages where there could be unconscious cognitive
processes. Hence, conscious awareness seems to be best
described as a global brain state. As such, our results support
not only the main theme underlying several major theories
of consciousness and cognition, namely, the requisite for
a substantial number of microstates—or configurations of
neuronal connections, that is, variability in the establishment
of functional connected networks—in order to increase the

TABLE I. nJLZC for the epileptic patients obtained with MEG.
All values are in the order of 10−3. The complexity is lower during
seizures except at 28 Hz.

Interictal Seizure

Cf (Hz) Mean Std Mean Std

5 6.0 0 2.2 0.4
10 6.0 1.4 4.4 1.4
15 7.0 1.4 5.7 1.2
28 5.0 0.7 7.5 1.2
35 8.5 0.7 6.8 1.5

integrated information (as postulated by the information
integrated theory [24]), to broadly broadcast activity to many
different cell networks (the global workspace theory proposes
that widespread distribution of information leads to conscious
awareness [25]), and to avoid becoming trapped in one
stable activity pattern (metastability [26]), but also endorse
numerous computational and theoretical studies indicating that
the variability in the patterns of organized activity arising
from the maximization of fluctuations in synchrony [27] is
fundamental for a healthy brain [28]. It is fair to remark
that, while we have used the term connectivity, in reality our
synchrony analysis reveals only correlation between phases of
oscillation, as already discussed in Sec. II; nevertheless, some

TABLE II. nJLZC for epileptic patients in MEG recording. All
the values are in the order of 10−3. As before, the complexity tents to
be lower during seizures, except 35 Hz.

Interictal Ictal

Cf (Hz) Mean Std Mean Std

5 4.8 0.6 3.2 1.6
10 5.5 1.6 4.2 1.2
15 7.8 1.5 7.7 1.5
28 8.7 0.9 7.8 0.5
35 7.5 2.8 8.5 1.0
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S1
S2
CG

(a) (b)

FIG. 4. nJLZC (a) and entropy (S) (b) of scalp EEG recordings in two patients in coma (S1 and S2) and a control group (CG, 10 healthy
subjects) for the central frequencies indicated.

basic assumptions have to be made and it is reasonable to infer
that these correlations of activity may underlie some degree,
or probability, of connectivity. In this regard, our results are
consistent with the computational observation that transitions
between conscious states are achieved by just varying the
probability of connections in neural nets [29].

These observations indicate that the measures of entropy
and nJLZC as have been used here are associated with the
handling of information, or cognitive processing, that may
or may not be related to conscious awareness. Thus, we find
that while our macroscopic measure of entropy consistently
distinguishes conscious and unconscious states, the analysis
of the microscopic fluctuations at short time scales of the
configurations using nJLZC reveals high complexity during
apparent unconscious states like SWS and REM. But this is
not really surprising, as substantial brain activity has been
demonstrated not only during REM but also during non-
REM sleep using a variety of methods, including fMRI and
electrophysiological recordings [30–33], studies that indicated

TABLE III. nJLZC for two patients in coma and 10 healthy
subjects (CG). All the values are in the order of 10−3. The complexity
is always diminished in the coma.

Patient Cf (Hz) nJLZC (10−3) Std (10−3)

1 3 4.6 –
5 8 –

10 7.5 –
15 5.2 –

2 3 8.4 –
5 11.0 –

10 10.5 –
15 9.8 –

CG 3 14.2 2
5 13 2.8

10 12.7 3.1
15 14.6 2.6

that the oscillatory activity during non-REM phases were
more complex than previously thought and that there is a
reorganization of brain networks into localized modules during
SWS [34]. Additionally, theoretical studies have assessed
first-order phase transitions during the sleep cycle that bring
forth fluctuations in activity [35]. Brain activity during sleep is
theorized to be necessary for memory consolidation [36,37].

As to the epileptiform activity here studied, a decrease in
entropy was previously reported specifically in generalized
seizures when there is a loss of conscious awareness [7],
and our nJLZC studies here show the same phenomenon.
Moreover, we had the advantage of one of our patients
experiencing generalization of the seizure at a later stage
and thus remaining conscious during the beginning of the
ictus [Fig. 1(b)]. The reduced complexity during seizures is
less clear as the recording sites become more localized, as
shown in our analysis of iEEG signals, which substantiates
the global nature of consciousness. It should be noted too that
loss of consciousness during seizures is variable and normally
coincides with the degree of generalization [38]. Once again,
then, as opposed to the global entropy computation, the nJLZC
captures not only the microstate fluctuations during sleep but
also the intricacy of the complexity of synchrony patterns in
seizures, in keeping with other works that have shown the
multiscale processes of synchronization in epilepsy [39–41].

Considering the reports that have observed a repertoire of
ongoing brain states and common motifs of connections in
resting conditions [42–44], it is tempting to conjecture that
nJLZC captures this ongoing recurrent activity that is a feature
of the normal, healthy brain, but that is lost during pathological
conditions when functional coordination is altered; hence, it
is in these pathological cases (seizures, coma) when nJLZC
drops consistently low, but not in sleep. Thus, our measures
may be more related to reflect optimality of nervous system
dynamics, rather than consciousness as such. Because these
fluctuations of spontaneous activity have been proposed to
constitute a fundamental principle of brain organization [45],
our observations help frame in a more formal sense the
inquiry into how consciousness arises from the organization
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awake
sws2
sws3-4

(a) (b)

FIG. 5. nJLZC (a) and entropy (b) in one subject during different slow wave sleep (sws) stages (sws2 and sws3-4) and wakefulness,
calculated at three central frequencies of 3, 8, 35 Hz. Note that unlike nJLZC, the entropy tends to be higher in the awake state at all frequencies
but more marked at lower ones.

of nervous system tissue. We also advance, in view of our
results that the entropy and complexity of slow oscillations
differentiate best conscious and unconscious states, that the
low-frequency oscillations represent a most fundamental prop-
erty of the underlying (self)organization of cell assemblies, and
indeed it was recently proposed that slow oscillations provide
information about the underlying healthy or pathological
network [46]. The communication among neurons via nested
rhythms may require synchronization at low frequencies that
serves as temporal reference for information transfer at other,
higher frequencies observed during wakefulness [47,48]. Our
studies thus may contribute to the current debate on the
possible, putative roles of gamma rhythms in cognition [49].
To integrate these high-level perspective results with basic
cellular properties will require more investigations, but it is
noteworthy that neurons possess a characteristic low-pass
filter behavior (thus favoring slow oscillations) that is lost
after disturbances common to epilepsy or traumatic brain
injury [50].

The macroscopic entropy of the number of possible config-
urations we calculate here and in Ref. [7] measures the infor-
mation content of the functional network [23]. This framework
of relating information to the organization of cognition may
be very useful as other authors have already emphasized;
a classical text on processes of organization described by
change of information content with time is Ref. [51]. Previous
work proposed that a general organizing principle of natural
phenomena is the tendency toward maximal, more probable,
distribution of energy and matter [52], a proposal that is
encapsulated by the notion of maximization of information
transfer [53]; thus we venture that the brain organization
optimal for conscious awareness will be a manifestation of
the tendency towards a maximal information exchange. Hence
it is not surprising that when the organism is fully involved
in processing sensory information this information is largest.
On the other hand, even in moments of unconsciousness

there can be substantial processing, which is revealed upon
a closer scrutiny at the microscale level, as that provided
by the JLZC. The results provide evidence for the notion
that ongoing transformations of information in the brain are
reflected in the variability and fluctuations in the functional
connection among brain cell ensembles (large entropy of
the number of possible configurations and concomitant large
complexity), which manifest in aspects of consciousness. The
crucial aspect for a healthy brain dynamics then is not to
reach maximum number of units interacting, but rather the
largest possible number of configurations (allowed by the
constraints). In this regard, the maximum entropy approach
has been advocated as a simplifying framework for the study
of networks [5]. Thus, in conclusion, our studies shed light
on two levels: at a conceptual level they emphasize the global
nature of conscious awareness, whereas at a more practical
level, perhaps of use in the clinic, they reveal information
processing that can occur unconsciously. We thus hope that
our studies will help find general principles of the structure
of cognition that underlie aspects of conscious awareness,
following the advice of Dehaene: “much . . . has focused on
the details of a few specific phenomena, rather than on the
general architecture of cognition” [54].
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APPENDIX

1. Analysis of epileptiform activity

We summarize the results for all patients of the nJLZC.
Tables I and II show the mean nJLZC for all patients, in the case
of those recorded with MEG (Table I) or with iEEG (Table II).
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TABLE IV. nJLZC in wakefulness and different sleep stages in
scalp EEG recordings. Some recordings did not show all sleep stages,
e.g., in subject 4 only sws3-4 could be confirmed. All the values are
in the order of 10−3. Note the tendency to diminish the complexity
in the deepest slow wave sleep stage (sws3-4), most clearly seen at
lower frequencies, there being even substantial increases at higher
frequencies.

Patient Cf (Hz) Awake REM sws2 sws3-4

1 4 9.8 9.5 9.5 7.9
8 13.3 13.7 12.4 12.5

12 13.8 13.6 12.7 12.5
28 14.8 14.5 14.7 14.8
35 14.7 14.6 14.8 14.8

2 4 21.5 21.6 21.4 21.6
8 21.2 21.3 20.8 21.5

12 20.1 21.9 21.1 21.1
28 16.5 22.1 21.6 22.0
35 15.8 22.0 21.9 21.7

3 4 24 22.9 23.7 25.1
8 24.5 24.8 24.0 24.2

12 25.2 24.6 23.5 23.9
28 25.1 25.6 25.7 26.6
35 25 26.1 26.4 26.6

4 4 6.3 – – 5.8
8 8.3 – – 5.6

12 8.9 – – 8.1
28 11.2 – – 12.1
35 11.1 – – 11.8

5 4 10.1 9.0 10.2 7.5
8 6.7 11.0 10.5 11.4

12 5.1 10.7 9.9 10.8
28 13.2 12.6 12.0 11.8
35 13.7 13.3 12.3 12.2

6 4 14.9 – 11.6 11.5
8 12.0 – 12.1 12.8

12 12.5 – 12.3 10.8
28 14.8 – 11.4 11.4
35 8.2 – 11.6 11.7

To help the visualization, we multiplied values times 10−3.
These data are used in Fig. 3. The central frequencies used were
(5, 10, 15, 28, 35 Hz) in a group of six patients recorded with
MEG and seven patients recorded with iEEG during interictal
and ictal (seizure) state. The reason to separate both groups is
that the sampling frequencies differed (625 Hz for the MEGs
and 1025 Hz for the iEEGs), and, as mentioned in Sec. II,
the relative values differ with substantially different sampling
frequencies.

Whereas for the MEG recordings the channels taken for the
calculation were identical in all patients, and covered frontal,

TABLE V. nJLZC in wakefulness and different sleep stages in
intracranial EEG recordings. Some recordings did not show all sleep
stages, e.g., in subject 4 only sws3-4 could be confirmed. All the
values are in the order of 10−3. As before in the case of the scalp
recordings, the tendency to decrease complexity in sws3-4 occurs.

Patient Cf (Hz) Awake REM sws2 sws3-4

1 4 12 12 11 9
8 14 16 15 16

12 17 16 16 16
28 16 16 17 16
35 16 16 16 16

4 4 7 – – 7
8 8 – – 7

12 11 – – 10
28 14 – – 15
35 14 – – 15

5 4 11 10 11 8
8 11 13 14 15

12 11 14 13 13
28 7 15 16 15
35 6 16 16 16

temporal, parietal, and occipital areas, those signals in the
case of iEEG recordings were taken in different brain areas
depending upon the patient’s syndrome, but in all cases the
electrodes were located in the same brain hemisphere period.

2. Analysis of recordings in coma

Table III shows the nJLZC (mean and standard deviation)
for two patient in coma compared with a healthy control
group of 10 subjects, all recorded with scalp EEG. These
data corresponding to the Fig. 3. The sampling frequency
was 256 Hz. Scalp EEG channels were taken for the analysis,
covering the whole cortex.

3. Analysis of sleep recordings

Tables IV and V shown the nJLZC at the indicated central
frequencies during wakefulness and sleep stages correspond-
ing to REM and slow wave sleep (sws) 2, 3, and 4, in scalp or
iEEG recordings. The sampling frequencies differed in some
cases; they were for patients 1 and 5, 500 Hz, for patient 2,
250 Hz, for patient 3, 200 Hz, for patient 4, 1000 Hz, and for
patient 6, 256 Hz. In the case of the scalp EEG 20 channels
spread over the scalp were chosen, and for the intracranial
EEG 20 electrodes were taken, places in both hemispheres.
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