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Turing-like structures in a functional model of cortical spreading depression
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Cortical spreading depression (CSD) along with migraine waves and spreading depolarization events with
stroke or injures are the front-line examples of extreme physiological behaviors of the brain cortex which manifest
themselves via the onset and spreading of localized areas of neuronal hyperactivity followed by their depression.
While much is known about the physiological pathways involved, the dynamical mechanisms of the formation and
evolution of complex spatiotemporal patterns during CSD are still poorly understood, in spite of the number of
modeling studies that have been already performed. Recently we have proposed a relatively simple mathematical
model of cortical spreading depression which counts the effects of neurovascular coupling and cerebral blood
flow redistribution during CSD. In the present study, we address the main dynamical consequences of newly
included pathways, namely, the changes in the formation and propagation speed of the CSD front and the pattern
formation features in two dimensions. Our most notable finding is that the combination of vascular-mediated
spatial coupling with local regulatory mechanisms results in the formation of stationary Turing-like patterns
during a CSD event.
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I. INTRODUCTION

Cortical spreading depression (CSD) is a wave of activity
that propagates slowly across the brain cortex, which was
discovered and first described by Leao [1] more than 60
years ago. CSD along with spreading depolarization events
at stroke or injures, as well as migraine waves, is an extreme
event in brain physiology. The major phase of these events
is accompanied by excessively high neuronal activity, which
leads to massive ion redistribution and drastic increase of
metabolic demands [2].

In terms of spatiotemporal dynamics, CSD and similar phe-
nomena fall in the field of spatio-temporal pattern formation in
active media. The experimentally observed behaviors include
retracting waves [3], spiral waves [4,5], and localized moving
spots of activity [6].

It is worth mentioning that spreading depolarization events
in the brain cortex should be viewed as physiological, rather
than “information processing” events. Thus, the modeling
studies on the topic form their own research field, which in
turn can be split in two.

The first one is represented by the detailed physiological
models aimed at verifying the consistency of experimental data
and/or testing the proposed physiological pathways [7–11].
These quantitative modeling studies consider the combinations
of specific ionic currents.

The second group of modeling studies deals with a phe-
nomenological simplified description of causal pathways and
is aimed at reproducing the observed spatio-temporal patterns
and contributing to better understanding of the underlying
dynamical mechanisms. The first model of this group is the

*ffalconn@mail.ru
†allegroform@mail.ru
‡postnov@info.sgu.ru

Hodgkin-Grafstein (HG) model proposed in Ref. [12], which is
a one-component reaction-diffusion (RD) model with a generic
cubic nonlinear term allowing the propagation of an activation
wave. In Ref. [13] the retracting waves and spiral waves are
reproduced with quantitative two- and six-component RD-type
models derived from the balance of major ions. In Ref. [6] the
modification and extension of the HG model is suggested in
order to explain the experimentally observed dynamics such as
spiral waves and moving spots. In Ref. [14] a similar approach
is used to construct the four-component CSD model, based
on the previous study of the three-component RD model with
an additional variable that stands for the accumulation of an
extracellular depolarizing agent [15], which fits the needs
of CSD modeling well. Note that, unlike in Ref. [14], the
models suggested in both Refs. [12] and [6] do not describe
the neuronal spiking, being focused on spreading of the CSD
front and the formation of specific patterns (moving spots,
spiral waves).

While the diffusion in extracellular space is confirmed as the
major mechanism of the formation of a propagating CSD front,
it was found that some other mechanisms or spatial coupling
pathways should also contribute. In Ref. [6] the unspecified
nonlocal and delayed coupling are suggested to control the
observed patterns. In Ref. [14] the near-boundary dynamics
is shown to be essential for the formation of local spots of
activity with limited lifetime.

Over the last decades a considerable body of facts has been
accumulated regarding cerebral blood flow (CBF) changes
during CSD and similar phenomena. It has been shown
that arterial (but not venous) vessels show rapid response
to the propagation of the CSD front [16]. In Refs. [17,18]
it is hypothesized that the observed dilation of blood vessels
triggered in the current location of the CSD front can propagate
upstream fast. The major local mechanism of such a response
is currently understood as propagated vasodilatation [19],
utilizing the signaling mechanisms in the endothelial layer.

2470-0045/2017/96(6)/062409(11) 062409-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.062409


A. YU. VERISOKIN, D. V. VERVEYKO, AND D. E. POSTNOV PHYSICAL REVIEW E 96, 062409 (2017)

Blood flow-related perfusion changes can in turn affect the
CSD characteristics, such as the amplitude and duration of
depolarization and the propagation velocity [20,21].

The pathways described above are believed to be important
for the formation of spatiotemporal patterns of neuronal
activity during CSD. However, this problem has currently been
addressed in very few modeling studies.

In Ref. [22], a reasonably simplified model was suggested
in order to relate the changes in neuronal activity and resulted
adjustment of cerebral blood volume. In Ref. [23] basic
responses in a single neurovascular unit were modeled. In
Ref. [24] the modeling study of metabolic and perfusion
effects on CSD is presented. It is shown that different vascular
responses to CSD may alter some features of propagated CSD
wave.

Recently in Ref. [25] we have proposed the first, to our
knowledge, lumped mathematical model of CSD propagation
that takes into account spatial coupling not only via redistri-
bution of ions, but also due to vascular responses. Our goal
was to simulate the most basic responses of the blood flow
network on local changes of vessel radius during the CSD
formation. With two types of such responses, the first one
being the conducted dilation and the second one being the
flow sharing in branching points of the vascular tree, we obtain
a six-component reaction-diffusion model equipped with two
nondiffusive coupling pathways. Since the pathways newly
included in the model provide the additional local feedback
loops as well as spatial couplings, its dynamical consequences
are not evident. Namely, the biphasic nature of local vascular
response can provide both accelerating and slowing down of
CSD propagation. The potassium-mediated regulation of the
vessel radius provides backward effects not only on neural
activity, but also on perfusion rate and, thus, on the regulatory
pathway itself. In the current study we address the above issues.

The paper is organized as follows: In the “Model” section
we present the model equations with the description of the
physiological meaning and dynamical role of each term. In
this section we also illustrate the main operating regime for
both one- (1D) and two-dimensional (2D) implementation of
the model. In the “Results” section we start with the discussion
of the possible types of vessel radius response during CSD
front propagation, and sensitivity of model dynamics to the
choice of control parameters. Our main findings are described
in Sec. III C, the formation of stationary Turing-like patterns
in respect to the vessel radius and, hence, the blood flow, while
the behavior of “conventional” CSD-related variables remains
almost unchanged. We discuss the mechanisms of the observed
effects, as well as their implications, in the “Conclusions”
section.

II. MODEL

Below we describe a set of equations, focusing on the
contribution of each term to model dynamics, while more
detailed justification of this model can be found in Ref. [25].

A. Physiological basis of the model

The main physiological elements and the flowchart of the
developed model are shown in Figs. 1(a) and 1(b), respectively.

FIG. 1. The schematic representation of modeled pathways (a)
and the flowchart of the developed model (b).

In Fig. 1(a) the numbers 1, 2, and 3 label the main modeled
pathways for the CSD front propagation:

(1) Firing neurons release potassium to the extracellular
space. This in turn provides further depolarization for both
firing and neighboring neurons. Thus, neurons reach the
maximal firing rate, and this state propagates over neuronal
population.

(2) Intensive neuronal firing activity, which is known as
neurovascular coupling. In order to maintain the activity each
neuron should receive some amount of energy, primarily in the
form of oxygen and glucose that are transported from the blood
vessels located nearby. Cortical neurons are believed to send a
message to the adjacent blood capillaries by means of different
pathways, including the astrocyte calcium dynamics [26].
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Astrocytes, in turn, have the mechanism for calcium-triggered
release of potassium into the perivascular (near-the-blood-
vessel) space. This release of potassium affects the state of
the vessel smooth muscle cells. Depending on the perivascular
potassium concentration reached, both dilation and (at high
potassium concentrations) constriction of a vessel can evolve
[23,27]. The resulting adjustment of the vessel radius leads to
the modulation of the O2 and glucose amount available for the
neuron [22].

(3) There is well-established evidence that the local increase
of a blood vessel radius may propagate both upstream and
downstream [19]. Such conducted vasodilation (or in some
cases vasoconstriction) provides the spatial coupling in the
distance range up to 2 mm showing the exponential decay
with the distance [28] or the less studied nondecaying pattern
similar to the pulse transmission by neurons [29].

Being spatially synchronized over a group of small blood
vessels, dilation or constriction inevitably causes blood re-
distribution in treelike vascular structures: if some location
consumes more blood, the neighbors will receive less. It might
explain the observed antiphase alterations of CBF [30]. This
type of competitive coupling (i) should have larger spatial
scale and (ii) in turn might trigger the localized response
in distant locations. This type of flow-mediated coupling in
kidney was examined in Refs. [31,32]. In the brain cortex such
hemodynamic coupling has been studied less. However, this
pathway may be responsible for experimentally recorded va-
sodilation ahead of the propagated front of intensive neuronal
activity [33].

B. Model equations

The physiological pathways outlined above were imple-
mented with the following set of equations:

εv∂tv = v − v3/3 − w + z − μn(1 − u)n(v + 1)3

+Dξ (x0,y0,t), (1)

εw(v)∂tw = A + Bv − w + μn(1 − u)n + Iapp, (2)

εz∂tz = αzψ(v) − [1 + kz(p − pv)ρ0r
4]z + γ

(
∂2
xxz + ∂2

yyz
)
,

(3)

εr∂t r = 1 +
∑
x,y

{WR(x0,y0)q[z(x,y)]} − r(x0,y0), (4)

εp∂tp = 1 − p − (p − pv)ρ0

∑
x,y

[WP (x0,y0)r4(x,y)], (5)

εu∂tu = (1 − u)(p − pv)ρ0r
4 − βuψ(v), (6)

where

ψ(v) = 1

2

[
1 + tanh

(
v

vs

)]
, (7)

εw(v) = τl +
(

τr − τl

)
ψ(v), (8)

q(z) = c0
c1 − eφ

e−φ + eφ
, φ = (c2 z − c3)/c4. (9)

The local dynamics is described by six dynamical variables:
v, w, z, r , p, and u, the dynamics of which is attached
to the specific point (x0,y0) on the 2D surface. In spite of
the fact that our model is rather lumped and the equations
are dimensionless, in order to keep the relation with the
original problem, we will discuss the meaning of the control
parameters and variables in terms of modeled physiological
pathways.

1. Model counterpart of neuronal activity:
The spiking subsystem

The first two equations (1) and (2) describe an excitable unit
based on the FitzHugh–Nagumo model with the modifications
suggested in Ref. [14]. Variables v and w play the roles of
an activator and inhibitor, respectively, describing the fast
changes of transmembrane voltage and slower recovery of
ionic currents. Parameters εv , εw and A, B set the time scales
and the excitability threshold, respectively. Nonlinear terms
rated by parameter μn introduce the changes in the model
behavior depending on the current metabolic stores (variable
u). Namely, at low u values the spiking subsystem (1)–(2)
becomes nonexcitable, possessing single stable equilibrium at
negative v [14].

In Eq. (1), the location-specific and time-dependent func-
tion ξ (x0,y0,t), scaled by D, provides random uncorrelated
fluctuations for each location and serves as a surrogate sub-
stitution for a real random-like informational signal processed
by a neuron. This term describes the net effect of a large
number of spikes received by a neuron. All these signals are
the short impulses, which are essentially faster then evoked
postsynaptic responses. That is why this “spiking noise” could
be considered as (i) “white,” i.e., high-frequency noise [34]
and has the Gaussian statistics [35]. Thus, we assume that
ξ (x0,y0,t) is a zero-mean and δ-correlated random process for
each point (x0,y0):

〈ξ (x0,y0,t)〉 = 0, (10)

〈ξ (x0,y0,t),ξ (x0,y0,t + τ )〉 = δ(τ ). (11)

The recovery variable w is essential to provide the spiking
behavior of a model neuron (1)–(2) by driving this subsystem
back to the resting state, thus being the inhibitor using the
terms of activator-inhibitor dynamics. During the formation
and propagation of the CSD front, the action of w appears to
be effectively blocked since the high value of z clamps the
variable v in the positive (excited) state. When the metabolic
variable u falls below some critical level, this locking becomes
broken, and w can drive the system back to rest.

For a mathematical description of the stimulus that trig-
gers the CSD wave, we use the additive term Iapp in (2).
Experimentally, CSD can be triggered by different methods,
so it can be introduced differently in the model. For exam-
ple, electrostimulation, which depolarizes a neuron, can be
modeled as the displacement of its resting state towards the
excitation threshold. This is what the additive term Iapp in
Eq. (2) does. Note that the model is capable of spontaneous
formation of CSD even at vanishing Iapp, since there is
a persistent spiking process provided by term Dξ (x0,y0,t).
However, at the standard set of parameters the probability of
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such an event is rather small. With introduced negative Iapp the
probability of spontaneous formation of CSD increases since
the spiking subsystem approaches the excitation threshold and
becomes more sensitive to the noisy term Dξ (x,y,t). Note
that essentially the same result can be achieved by means
of local increase of variable z; the latter mimics the focal
administration of, say, KCl. In terms of model dynamics, the
resulted CSD pattern is essentially independent of the specific
triggering method, since all of them activate the same positive
feedback loop between the v and z variables.

The equation for z describes the accumulation and reuptake
of extracellular potassium and in turn affects the excitability of
the model neuron acting opposite to w in Eq. (1). The increase
of z occurs during each neuronal spike when v becomes
positive and ψ(v) ≈ 1. In other words the term αzψ(v) with
activator parameter αz could be considered as the rate of
z increasing during neuron firing activity. The reuptake of
potassium is modeled with the term [1 + kz(p − pv)ρ0r

4]z,
which accounts for both background mechanisms and the
contribution from tissue perfusion (see the description of the
equations for u and p below). The perfusion value is deter-
mined by the parameter kz. The diffusion term γ (∂2

xxz + ∂2
yyz)

describes the diffusion of potassium from the extracellular
space to other locations; here γ is the diffusion coefficient for
z variable.

The essentials of the noise-driven dynamics of a three-
component reaction-diffusion model similar to (1)–(3) were
analyzed in Ref. [15].

2. Modeling of blood vessel responses

One of the most notable pathways of neuronal regulation
of the local blood flow supply is based on transporting
of excessive extracellular potassium by astrocytes to their
endfeet with subsequent release into the perivascular space.
This pathway was implemented in the model studies [22,23].
Note that while the CSD formation is accompanied by a
calcium wave propagating in parallel through the astrocyte
network, it has been shown that this is an attribute, rather
than the mechanism, of CSD propagation [36,37]. It has
also been demonstrated that vessel radius changes follow the
extracellular potassium changes showing quite a small delay
[38]. In view of the above, in our model we omit the mediating
role of astrocytes and assume that perivascular potassium
concentration changes instantly and in fixed proportion to the
changes of z. This allows us to describe the potassium-induced
changes of blood vessel radius r with empirical function q(z)
[Eq. (9) and Fig. 2], which shape resembles the simulation
results [23].

Considering the value q(z) at the point (x0,y0) as a local
“vascular driving force,” the total “vascular forcing” received
at this location is provided by the net contribution from
nearby located vessel segments. We describe it by means
of the term

∑
x,y{WR(x0,y0)q[z(x,y)]} in Eq. (4), being the

weighted sum of q(z) values within some area calculated
using the window function WR(x0,y0) with width WR0 . In this
way we implement short-distance coupling via the conducted
vasoreactivity, which describes the resulted changes in the
radius of the blood vessel by means of simple first-order
kinetics.

0.0 0.5 1.0 1.5 2.0 2.5
z

-0.4

-0.2

0

0.2

0.4

q(
z)

FIG. 2. Function q(z) [see Eq. (9)] describing the biphasic
response of a blood vessel radius to the value of perivascular
potassium concentration. The depicted specific curve was calculated
at c0 = 0.5, c1 = 1.78, c2 = 20.0, c4 = 2.0, c3 = 23.0, 25.0, 35.0
(dotted, solid, dashed lines), respectively. The vertical dashed line
shows the typical z value during the active stage of the CSD pattern

3. Blood flow sharing

Equation (5) describes the local changes of blood flow
governed by changes of the vessel radius in the given and
neighboring locations. It has been derived using the following
assumptions:

(1) For each point (x0,y0) there is some upstream branch-
ing point B of blood vessels that feeds this location.

(2) This branching point receives the blood flow from the
upstream large arterial vessel and feeds the bunch of smaller
vessels, including the current location.

(3) The relative contribution of vessels in the bunch is
maximal for the current location (x0,y0) and decreases with
the increase of the distance from that point [39].

(4) The downstream venous pressure is constant and the
same for all vessels in the bunch.

On the basis of the above stated, pressure PB in the
branching point is governed by the simple flow balance

CB

dPB

dt
= (Part − PB)/Rart − (PB − Pven)/RB, (12)

where CB is compliance, Part is constant upstream arterial
pressure, Rart stands for hydrodynamic resistance from arterial
vasculature to B, Pven is constant downstream venous pressure,
and RB denotes total hydrodynamic resistance of the bunch of
adjustable vessels.

To simplify Eq. (12) we multiply it by Rart/Part, denote
CBRart/Part as εp, and introduce the dimensionless pressures
p = PB/Part, pv = Pven/Part. Since hydrodynamic resistance
R according to the Poiseuille law is inversely proportional to
the fourth power of the radius, one can denote R(x0,y0) =
R0(x0,y0)(r4

0 /r4), where R0 corresponds to the rest value of
vessel radius r0. For the sake of simplicity, we assume that
r0 and, hence, R0 are the same for all vessels, and denote
ρ0 = Rart/R0. With this, the total downstream flow from the
branching point reads

J = (p − pv)ρ0

∑
x,y

[WP (x0,y0)r4(x,y)]. (13)

Here the relative contribution of vessels in the bunch is
determined by the window function WP (x0,y0) with width
WP0 .
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With all the above, we get Eq. (5), where the input and
output flows are represented by terms (1 − p) and Eq. (13),
respectively. Note that the expression J(p − pv)ρ0r

4(x0,y0)
gives the flow through the considered location (x0,y0) and
thus can be used to estimate the perfusion rate in Eq. (3).

4. Metabolic stores

Equation (6) describes the process of expenditure and refill-
ing of metabolic resources. It is derived from the assumption
that the current location receives primary metabolic substances
(oxygen, glucose) by means of ingoing flow with concentration
C0, and consumes some amount Cspike per unit time during
each neuronal spike. The resulting local concentration C is
washed out from the attached volume L by the outgoing flow
(which is the same as the ingoing one).

In terms of our dimensionless model, we define a
new variable u = C/C0 and denote εu = LRart/Part, βu =
CspikeRart/Part. With this, the maximal (unity) concentration
of primary metabolic resources is brought by the input flow
(p − pv)ρ0r

4(x0,y0). Then the output flow washes out the
resources with current concentration of u. The consumption is
quantified by βu multiplied by the total duration of time that a
neuron spends in a high-v state when ψ(v) ≈ 1.

As has already been mentioned above, at u ≈ 1, the value of
u has little effect on the dynamics. When it drops to a certain
critical level, the spiking subsystem [Eqs. (1)–(2)] turns to
the nonexcitable regime, which mimics what happens for a
real neuron if the ATP pump fails to maintain normal ionic
gradients.

C. Computational implementation of the model

The set of equations described in the previous section
was integrated numerically by the explicit method (the fourth
order Runge-Kutta method adopted for SDE) both on a 1D
(linear) grid and on irregular-bounded and inhomogeneous 2D
patterns. The numerical algorithm to perform such simulations
has been chosen according to Ref. [40] and previously used
in Refs. [14,41]. In brief, this method allows us to prepare the
hand-drawn pictures in indexed colors and assign the specific
model equations or the specific parameter choice, as well as a
coupling type, to each of these colors.

The typical set of control parameters used in simulations
is shown in Table I. The adequate choice of the window
functions WR and WP is actually an issue, since with it we

TABLE I. Set of parameter values for model 1–5.

εv μ n τl αz WR0

0.04 3.0 4.0 1.5 1.25 3

A B εz τr c0 WP0

0.5 1.1 2.5 1.0 0.5 10

εr εu pv βu c2 D
5.0 800.0 0.1 0.2 20.0 0.003

εp γ c1 c3 kz

1.0 0.07 1.73 23.2 0.32

ρ0 c4 Iapp

0.5 2.0 −1.0

0 200 400 600 800 1000 1200 1400
t

-2

-1

0

1

2

160 180 200 220 240
t

-2

-1

0

1

2

1360 1380 1400 1420 1440 1460
t

-2

-1

0

1

2

u

z

v

FIG. 3. The time courses of variables v, z, and u showing the
CSD-like behavior at the selected location (10th unit of 20) for
1D implementation of model (1)–(9). Inserts show the details of
transitions at the leading and rear edges of the CSD front passing this
location. kz = 0, c3 = 35, D = 0.004, other parameters are according
to Table I.

actually map the complex topology of the brain vasculature
on the continuous medium of the model. In this study we
simply assume that mutual contribution of the two points of
the model medium decreases with increasing distance and
becomes negligible if the distance between points exceeds
a certain value. To meet these assumptions we use the Bartlett
window functions (triangular window) in Eqs. (4) and (5):

W1D(x) = 1 − |x − x0|
w0

, (14)

W2D(x,y) = 1 −
√

(x − xo)2 + (y − y0)2

w0
, (15)

where x0,y0 define the center of the window and w0 is the
window width (see Table I).

D. Main operating regime

Below we will illustrate the core of model behavior. In Fig. 3
we show representative time courses of variables recorded at
the selected location in the center of 1D implementation of the
model. The top panel shows the complete course of evolution
of the modeled CSD event, while the two bottom panels
provide the detailed view of what happens during its formation
and decay. One can see that the CSD event is characterized by
the high level of variables v and z being maintained during long
enough time ≈1200, while variable u slowly decreases. Let us
term it an “activated state,” since it represents the maximal
achievable level of neuronal activity. The development of this
activated state is precursored by the gradual rise of z (the
left bottom panel) provided by its diffusion from the nearby
area already occupied by the approaching CSD front. Since
the increase of z reduces the excitation threshold, at some
moment the spiking subsystem (1)–(2) of the model switches
to self-sustained oscillations (three peaks are visible) and then
to a permanent activated state. The termination of the activated
state (the right bottom panel in Fig. 3) is caused by changes
of the dynamical features of the spiking subsystem, which, in
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(a) (b) (c)

(d) (e) (f)

0.0

1.2

Z

FIG. 4. Full-scale simulations using model (1)–(9). (a) An
artificial manually created 2D template is used for simulations.
Light and dark blue areas correspond to different choices of kz:
kz = 0 and 25, respectively. Red shows the stimulation sites, where
Iapp = −1.0 during t = 10.0 (otherwise Iapp = 0). (b) An example
of experimentally recorded whisker stimulation response in mouse
brain that provides the motivation for stimulation sites’ configuration.
(Image courtesy of D. D. Postnov, Univ. of Copenhagen.) (c) Color
bar for the variable z. (d, e, f) Three representative snapshots taken
at t = 15, 700, and 1560, respectively. c3 = 24.7, D = 0.0043,
αz = 1.15, εu = 300; other parameters are according to Table I.

turn, are governed by the slow decrease of u. As discussed
in Ref. [14], at this transition both excitable and bistable
features of the spiking subsystem disappear, so no oscillations
occur and all model variables converge to the single and stable
equilibrium state.

In Fig. 4 the representative simulation course on an
irregular-bounded 2D template is given in order to show
the similarity of model behavior with the experimental
observations of CSD. Specifically, in Fig. 4(a) we show the
computational template, which resembles the shape of a rat
brain and uses its natural sectioning to illustrate the variants of
model behavior with and without additional stimulus applied
to trigger the CSD pattern. The stimulated area is given in
red (medium gray), while the simulated areas with normal and
increased value of perfusion (parameter kz) are colored in light
and dark blue (light and dark gray).

The left and right “hemispheres” differ in (i) kz inhomo-
geneity patterns and (ii) the shape of stimulated area, since we
believe it might be important at the stage of initiation of the
CSD pattern. Some argumentation to use such a fragmented
stimulus area is provided in Fig. 4(b), where the experimentally
recorded CBF response in mice brain is visible as a group of
scattered spots.

The bottom row of panels in Fig. 4 exemplifies simulation
results showing the snapshots of z on the (x,y) plane taken
subsequently at time moments t = 15 (d), 700 (e), 1560 (f) and
depicted according to the color bar in panel (c). One can find
that in the absence of stimulation all the template segments
show the uncorrelated noise-induced firing pattern: multiple
small spots covering the template segments visualize the small
splashes of z caused by irregular and not propagated noise-
triggered spikes of the fast subsystem. This is an image of a
“normal” cortex state, when no large-scale patterns of neuronal
dynamics occur.

An additional stimulation applied to the depicted areas by
means of setting Iapp = −1.0 during t = 10.0 (otherwise
Iapp = 0) triggered the formation of a CSD-like event: the
front of switching to an activation state propagated far beyond
the activation sites and occupied all available space. Note that
in those template segments that have no spatial connection
with stimulated sites, no such behavior occurred during a
long simulation time. Another important observation is the
completely dark zones in the rear of the moving activity
area, being the image of “exhausted” (or depressed) neuronal
tissue, that temporarily lost the excitable features. The visible
difference between the shape of the left and the right wave
front segments is caused by passing the areas with a different
perfusion rate (different kz value); the underlying behavior is
discussed below.

III. RESULTS

The simulated behavior described above confirms that the
core part of the model (1)–(9) is capable of reproducing the
main dynamical features of the CSD event, including the un-
correlated noise-induced firing pattern in a “normal” state,
the spreading area of persistent neuronal depolarization, and
the depressed state afterwards. Below we focus on dynamic
consequences of the blood-flow related part of the model,
Eqs. (4), (5), and (6), in order to reveal the actions and features
of the introduced pathways.

A. Vessel radius response types

First, we consider how the blood vessel radius r can respond
to the approaching CSD front. For this purpose we (i) block
influence of the flow on z dynamics selecting kz = 0 in order
to break the possible feedback contribution, and (ii) select the
set of c3 values at the full-scale activation of z.

According to Eq. (3), if v switches to a persistent activated
state, v > 0, then z reaches a value ≈αz. However, the resulted
changes of r essentially depend on the specific q(z) shape.

We consider the numerical solution of the model (1)–(9)
in a 1D distributed system, so it is suggested that the CSD
process occurs in the homogeneous medium which consists
of 100 elements. In Fig. 5 i is an element number. Here
and below (Figs. 5–8) the diffusion operator of z in Eq. (3)
for each element i was calculated in the form of finite
differences γ (zi−1 + zi+1 − 2zi). We choose the Neumann
boundary condition for such a 1D system, i.e., there is no
diffusion of z through the boundaries and no contribution to
the coupling terms in Eqs. (4) and (5).
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FIG. 5. 1D model implementation. Spatial profiles of variables
z, u, r , and p for different c3 values at the same position (i = 50)
of the leading edge of the CSD front that moves from the left to the
right and is visible as a sharp rise of z. c3 = 35.0,25.0,23.9,23.0 for
(a), (b), (c), and (d), respectively. kz = 0, c3 = 35, D = 0.004, other
parameters are represented in Table I.

In Fig. 5 different variants of r response to the rise of z

(depicted with open circles) are shown versus c3 value:
(a) At c3 = 35.0 the radius variable r practically does not

react to a z rise; there is no pronounced vascular response
[Fig. 5(a)].

(b) At c3 = 25.0 [Fig. 5(b)] r increases to r ≈ 1.6, since
the function q(z) is positive (see Fig. 2) at the reached z

values. In terms of the original physiological problem it means
that the blood vessel dilates. The close inspection of curves
shows that the rise of r starts slightly before the depolarization
wave reaches this location, which is pretty consistent with
experimental findings.

(c) At c3 = 23.9 the reached value of q(z) is equal to zero,
so the vascular response is neutral: we observe a short radius r

dilation caused by the transition through the positive segment
of q(z), but then r returns to its original value [Fig. 5(c)].

(d) At c3 = 23.0 r decreases to r ≈ 0.5, since at this
parameter selection the negative segment of q(z) is reached
[Fig. 5(d)]. In terms of the cerebral blood flow it means
considerable vasoconstriction, which might complicate the
tissue recovery. As was hypothesized in Refs. [22,23], it might
be caused by the excessive potassium release into perivascular
space.

B. Parametrization of CSD pattern

In this section we investigate how the introduced model
pathways affect the main features of CSD pattern: the propaga-
tion speed for the leading and rear edges as well as the resulted
duration of a hyperactive state of the neuronal medium. We
select the perfusion rate kz, resources consumption rate βu,
and noise intensity D as the control parameters that affect the
dynamics of CSD wave.

Note that our model is essentially stochastic, and at
vanishing D the CSD front will simply not appear. Moreover,
specific features (say, nucleation time) of a triggered front are
also dependent on a specific random sequence Dξ (x0,y0,t).
Thus, we consider the model behavior at different values of

FIG. 6. Model parametrization. In each panel, the set of lines
of the same type exemplifies the set of simulation runs at different
random sequences; see the text for details. Three rows characterize
the sensitivity of simulated CSD pattern for three essential model
parameters: βu, kz, and D. Two panels in each row describe the
measured velocities if the leading and the rear fronts of the CSD
pattern (left) and the corresponding duration T of the active phase
are calculated in a selected location. The parameter set is according
to Table I.

parameters using the same set of time series of Dξ (x0,y0,t).
The simulations are performed using 1D implementation of
the model consisting of 300 units.

The obtained results for different values of βu, kz, and D

parameters at different random ξ (x0,y0,t) sequences are shown
in Fig. 6.

The left column in Fig. 6 represents the velocities of the
leading and rear fronts of the CSD wave. The velocity values
are given in a number of units traversed by the wave during
one dimensionless unit of time; for example, the velocity
value 0.02 means that the wave passes 100 units over 5000
dimensionless units of time. Solid and dashed lines taken for
different random sequences correspond to the leading and the
rear edge propagation speeds, respectively. The right column
of the figure shows the dependence of the CSD wave duration
(i.e., its active phase) on the control parameters. In all cases
the horizontal axis shows the decimal share of the basic βu0 ,
kz0 and D0 parameters from Table I.

Inspection of Fig. 6 shows that the velocity of the leading
CSD front depends on the random ξ (x0,y0,t) sequences, but
not on βu values. It can be explained by the fact that slowly
varying energy variable u after the CSD wave formation is still
close to its initial value u ≈ 1 and cannot considerably alter
the behavior of “neuronal” equations of the model. In contrast,
the velocity of the rear edge appears to be scattered over the
value for the leading edge since the deactivation of a neuron
is mainly determined by variable u, but can be accelerated or
slowed down due to additional activator v fluctuations caused
by ξ (x0,y0,t).
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Duration T of the whole CSD wave decreases exponentially
with the increasing of parameter βu [Fig. 6(b)], since in
activated state ψ(v) = 1 the dynamics of u is essentially
governed by the fist-order linear ODE [Eq. (6)].

Variation of parameter kz has no direct impact on the veloc-
ity of the neuron energy change, but contributes considerably
to the front propulsion by means of the z variable equation.

For the leading edge increased kz prevents fast accumula-
tion of z in the units ahead of the front position. Since during
an activated state z is fixed and the duration of this phase is
governed by decreased u, specific kz has little effect on time
lag T between the leading and rear fronts. Thus, both velocities
show similar dependence: the increase of kz slows down both
the leading and rear edges as can be seen in Fig. 6(c).

The increase of parameter D directly affects fluctuations
of variable v and thus leads to the increase of the leading
and rear edge velocities [Fig. 6(e)], as it accelerates both the
depolarization of a neuron and its return to the rest state. Thus,
T appears to be scattered and does not show any specific trend
[Fig. 6(f)]. The dependence of the velocities on the intensity
parameter D is close to linear. The range of wave duration
values and values of the leading and rear edges velocities is
associated with the stochasticity of the process, and this range
increases with the increase of D.

C. Perfusion rate and CSD pattern features

The specific feature of our model is that it counts not
only local neurovascular regulatory pathways, but also spatial
coupling mediated by the blood vessels and blood flow sharing.
Above we have shown that the same rise of z can trigger
different responses of r . The observed behavior looks quite
similar to experimentally observed response patterns [33,42].
Note that this is the direct consequence of the specific choice of
function q(z), so it might be considered as a model verification,
rather than a prediction.

There are, however, less evident features provided by the
vascular-related model pathways. If one examines Fig. 1 again,
neuronal activity controls the change of r; the latter affects
the flow, which, in turn, controls both the energy supply for
a neuron (arrow pointed to u in figure) and washing out
the extracellular potassium (arrow pointed to z). Thus, this
pathway forms two feedback loops: the first one includes the
slowest model variable u and has well-predictable features (the
higher the flow, the better the energy supply and the longer
the active phase of CSD pattern). The other feedback loop
has a less evident effect. In real brain cortex the relaxation
of the elevated extracellular potassium level is provided by
the variety of pathways, including the uptake by neurons and
glial cells and the diffusion and the washing out by the tissue
perfusion. In our model the latter mechanism is implemented
by means of the term kz(p − pv)ρ0r

4, which mediates the
degradation rate for z. This, in turn, can either decrease or
increase r , depending on the specific z value and the specific
parameters of q(z).

The performed simulations using the individual model
(1)–(9) do not reveal any substantial changes of dynamical
regimes due to this mechanism. However, for 1D and 2D model
implementations the situation is different.
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FIG. 7. Standing pattern formation. (a) Time courses of z and r

for two elements of a 1D array: the 15th (solid lines) and the 22th
(dashed lines). Both r curves show oscillations which are, however,
finally converged to different values. (b) In spatial domain, the 1D
array shows the formation of a wavelike stationary pattern in respect
to r , which is also reflected in spatial profiles of flow f and z. Arrow
indicates the direction of SCD-front propagation. D = 0.0025; other
parameters are according to Table I.

Figure 7 illustrates the obtained results using a 1D array
of 60 units. Figure 7(a) shows time series of z and r obtained
for the 15th and 22th units of the array. The moment of time
when the propagating CSD front approaches a unit is indicated
by a sharp rise of z. One can see that the response of r on
this sharp rise looks similar for both units, being the damped
oscillations converging to the new value of r . However, the
achieved new values are substantially different for the 15th
and the 22th units. Figure 7(b) shows what happens in the
spatial domain. One can find that the propagating CSD front
is tailed by the spatially periodic profile of vessel radius r and
flow f . We have found that the spatial scale of this periodic
profile is approximately equal to the doubled width of the
window function in Eq. (6). The key role of spatial coupling is
confirmed by means of simulation runs with blocked coupling
via r: no spatially periodic patterns have been found.

Figure 8 illustrates how the revealed behavior depends on
parameter ρ0, which physiological meaning is the ratio of
upstream and local blood vessel resistance, while dynamically
this parameter quantifies the response of p to flow modulation.
In order to improve the visualization of CSD wave propagation
we perform simulation runs using the 300-unit 1D array. At
ρ0 = 0.25 (top panel) both temporal and spatial periodicity are
not pronounced, while r transients are attached to the leading
and rear edges of the CSD front. At higher ρ0 = 0.4 (middle
panel) both temporal oscillations and a spatial periodic pattern
can be detected, as was discussed above. Finally, at high ρ0 =
0.7 (bottom panel) no temporal oscillations can be observed,
but a spatially periodic structure appears immediately after
transients on the leading edge of the front and persists during
the active phase of the CSD event.

The described results clearly show that both r and p

variables, each with an attributed spatial coupling pathway,
contribute to the formation of a periodic standing pattern. The
natural question arises, “How will this effect manifest itself
for 2D model implementation?” Figure 9 shows representative
snapshots taken from a 100 × 100 lattice with the CSD front
triggered at the left edge. The boundary conditions are set as
an “anatomical block,” being “no-flux” (Neumann) boundary
for z and “empty area” (no contribution to coupling terms) for
r and p. The parameters are set as in Fig. 7, except kz which is
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FIG. 8. Space-time plots for r showing the formation of Turing-
like stationary patterns. (a), (b), and (c) have been obtained at D =
0.0025, ρ0 = 0.25, 0.4, and 0.7, respectively. Other parameters are
according to Table I.

set to be increasing linearly from kz = 0.1 at y = 0 to kz = 0.8
at y = 100.

The top row (a) shows the just-triggered CSD front at t =
100. While z shows uniform stitching to the high-value state
(left panel), r first rises but afterwards falls to the values lower
than those at the rest. The second (b) and third (c) rows show
the snapshots taken at the moments t = 500 and t = 1000
when the CSD front propagates about half the distance and
almost all available space, respectively. While z behavior is
essentially the same as in (a), r forms the 2D counterpart of
1D periodic structure, being the population of spots of high
values which fills the space already occupied by the CSD front.
Clearly, this self-organized pattern is not perfectly periodic, but
rather fills the space in some “optimal” way. The gap between
the continuous line of transients at the leading edge of the
CSD front and the spots population means that spots start to
grow only after z is switched to its high (≈αz) value. The
introduced gradient of kz manifests itself via different sizes
of spots, as well as via behavior at the boundaries: at y = 0,
where kz is low, there is no formation of r structure at all,
while at y = 0, where kz is high, r has persistent high values.
The bottom row (d) taken at t = 1750 illustrates the “washing

FIG. 9. Formation of Turing-like stationary pattern in two dimen-
sions. Left and right columns show the snapshots of z and r , respec-
tively, calculated on a 100 × 100 grid and taken simultaneously. Four
rows correspond to four selected moments of time, t = 100, 500,
1250, and 1750 from the top to the bottom, respectively. Parameters
are set as in Fig. 7: kz = 0.4, αz = 1.22, ρ0 = 1, εu = 400; the
other parameters are according to Table I. An additional stimulation
was applied to the left edge of the template by means of setting
Iapp = −1.0 during t = 10.0 (otherwise Iapp = 0). This and similar
examples are provided in the Supplemental Material [39].

out” of spatio-temporal structures by the rear egde of CSD
front. After a transient rise r values return to their original
level r = 1.

Speaking in terms of dynamics, the emergence of self-
organized patterns described above might be explained by the
combined action of the following:

(1) Since function q(z) has the negative slope at medium z

values, it can support instability being included into feedback
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loop: rise (fall) of z can induce the decrease (increase) of
perfusion term and thus support the further rise (fall) of z.

(2) Spatial coupling via r supports cooperative behavior
for the nearest neighbors.

(3) Spatial coupling via p is of competitive type and
involves more remote locations than coupling via r .

As we have shown in Figs. 8 and 9, the discussed pattern
formation can be observed for the ranges of relevant control
parameters, rather than at their unique combination, so it
appears to be structurally stable; see also Ref. [39].

IV. CONCLUSIONS

To summarize, we have shown that the model reproduces
the main dynamical mechanisms of the formation and evo-
lution of spatial temporal patterns during cortical spreading
depression, namely, (i) uncorrelated noise-induced firing in
rest, (ii) persistent neuronal depolarization during the “active”
phase of CSD, and (iii) a depressed state afterwards, when
the model medium temporarily losses excitability and does
not respond to noisy stimuli. The simulated types of vascular
response are also in qualitative agreement with the known
experimental findings.

From the dynamical viewpoint, we have shown that newly
modeled pathways form the additional feedback loops, and
thus they are capable of the new types of behavior. The most
notable finding is the formation of spatially periodic Turing-
like structures, which are the result of combined action of two
nonlocal coupling pathways.

From the physiological point of view, the obtained results
suggest that a certain combination of involved pathways,
namely, potassium-mediated regulation of the arteriolar radius

and washing out of extracellular potassium by means of
perfusion, defines the specific pattern of blood flow changes
during CSD. Although our results can hardly be experimentally
tested directly (due to the strong spatial inhomogeneity of
the spatial parameters), nonmonotonic oscillating intensity of
the blood flow or the vessel radius during a CSD regime are
reported in a number of experimental studies of CSD, and it
appears to be an established fact.

Our main conclusion in terms of physiological interpre-
tation can be formulated in the following way: In addition
to actual neural activity, there are dynamic mechanisms that
significantly influence the formation of CBF patterns, which
are therefore not uniquely related to neuronal activity.

Currently it is difficult to say to what extent the revealed
effect is relevant to real dynamics of cerebral circulation, since
the gap between the flat and homogeneous model environment
and the structure of a real cortex is too large. Nevertheless, we
believe that our findings contribute to understanding which
mechanisms can cause the uncertainness of the relationship
between measured changes of the cerebral blood flow and
underlying neuronal activity, which can be so ambiguous and
variable under different conditions, as becomes increasingly
evident for neurophysiologists and clinicians.
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