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Proteins implement their functionalities when folded into specific three-dimensional structures, and their
functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis
(RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times
via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations.
Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex
homopolymer system, i.e., a single [n]polycatenane. This method can be applied to more complex heteropolymer
systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we
first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with
multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation.
Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a
2-μs molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA
method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes
and corresponding relaxation times for the principal components are much improved by the second RMA.
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I. INTRODUCTION

Biopolymers have flexible structures and various functions,
which are derived from both the biopolymer structures and
the structural fluctuation dynamics. Therefore, knowledge of
the dynamic properties of the structural fluctuations of a
biopolymer is important for understanding the interrelation
between its movement and functions. Thus, many methods to
analyze the dynamics and kinetics of protein simulations have
been developed [1–31]. In particular, the Markov state model
has been presented (see Refs. [1–7,9,15,18,19,21–23,28–31]
and references cited therein) and applied to many protein
systems.

Further, relaxation mode analysis (RMA) has been devel-
oped to aid investigation of the dynamic properties of spin
systems [32] and homopolymer systems [33,34]. In addition,
this technique has been applied to various polymer systems
[35–37] in order to investigate their slow relaxation dynamics
[38,39]. Recently, RMA has also been applied to biomolecular
systems [13,16,24].

The relaxation modes {Xp} satisfy

〈Xp(t)Xq(0)〉 = δp,qe
−λpt . (1)

Here, 〈A(t)B(0)〉 denotes the equilibrium correlation of A at
time t and B at time 0:

〈A(t)B(0)〉 =
∑
Q,Q′

A(Q)Tt (Q|Q′)B(Q′)Peq(Q′), (2)

where Tt (Q|Q′) is the conditional probability that the system
is in state Q at time t , given that it is in state Q′ at time
t = 0. Further, Peq(Q′) denotes the probability that the system
is in state Q′ at equilibrium. The relaxation rate of Xp is
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denoted by λp. The relaxation modes and rates are given as left
eigenfunctions and eigenvalues of the time-evolution operator
of the master equation of the system, respectively [24,33,34].
RMA approximately estimates the slow relaxation modes
and rates from a simulation and decomposes the structural
fluctuations into the slow relaxation modes, which characterize
the slow relaxation dynamics of the system.

In conventional RMA, {λp} and {Xp} are estimated by
solving the generalized eigenvalue problem of the time correla-
tion matrices of coordinates for two different times, C(t0 + τ )
and C(t0) (see Sec. II). Recently, dynamical analysis methods
for molecular simulations of biopolymer systems have been
developed to investigate slow dynamics. In these techniques,
which include time-structure based independent component
analysis (tICA) [14,17,19], time-lagged independent compo-
nent analysis (TICA) [18], and dynamic component analysis
(DCA) [25,27], time correlation matrices of certain physical
quantities or states are used. (Note that tICA, TICA, and
DCA are mathematically equivalent [18,25], and tICA is
a special case of RMA with t0 = 0. See Refs. [13,14] for
more details on the differences between tICA and RMA.
Further, the relationships between the Markov state model,
tICA, TICA, and RMA are explained in Refs. [18,19,24].
From the perspective that the relaxation modes and rates in
RMA are given as left eigenfunctions and eigenvalues of the
time-evolution operator of the master equation of the system,
respectively, RMA is related to the Markov state model. The
extension of a regular Markov state model by introducing t0,
which is referred to as Markov state relaxation mode analysis,
is explained in Ref. [24].) In tICA, TICA, and DCA, the time
correlation functions C(τ ) and C(0) are used.

In practice, the relaxation times obtained from the dynam-
ical analysis methods explained in the previous paragraph
depend on the selection method for the physical quantities
(or states) for the time correlation functions and the values of
the τ parameter [2,18,24]. When physical quantities (or states)
with slow behaviors are used to construct the time correlation
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functions, the slow relaxation behavior of the simulation can
be investigated. The difference between RMA and the other
dynamical analysis methods is introduction of the evolution
time t0; however, introduction of this parameter increases
the difficulty in solving the generalized eigenvalue problem.
Despite this, RMA has an advantage in that the obtained slow
relaxation modes and times are improved by choosing the
appropriate τ and t0 (two adjusting parameters).

RMA requires relatively high statistical precision of the
time correlation matrices because the generalized eigenvalue
problem is treated; thus, it is difficult for RMA to handle
a large number of degrees of freedom directly. We must
reduce the number of degrees of freedom automatically.
Therefore, to reduce the degrees of freedom, we previously
proposed principal component RMA (PCRMA) using two
evolution times [16]. In the proposed technique, principal
component analysis (PCA) is first implemented. Then, RMA
is applied to a small number of principal components with
large fluctuations. (Note that PCRMA using all principal
components is mathematically equivalent to RMA.) This
method can systematically reduce the degrees of freedom.
Recently, we also developed a different RMA, which is
referred to as “two-step RMA with multiple evolution times”
[40]. We have applied two-step RMA using multiple evolution
times to a single [n]polycatenane, which is a homopolymer
system consisting of n ring polymers topologically interlocked
with neighboring rings, in order to investigate its dynamics.
This technique uses a similar approach to PCRMA.

In this paper, we have applied this method to a protein,
i.e., a complex heteropolymer system. The effectiveness of
the method was first demonstrated for a single homopolymer
system, as mentioned above. However, its effectiveness for
a protein system is not trivial at all because the structural
fluctuations of proteins are considerably more complex than
those of single homopolymers. A process chart of the method
is shown in Fig. 1(a). In this method, RMA with a single
evolution time using small t0 and τ is first implemented and the
relaxation modes and times are roughly estimated. Then, we
again apply a second RMA to a small number of the obtained
slowest relaxation modes. This approach not only reduces the
number of degrees of freedom automatically, but also uses the
physical quantities that exhibit slow relaxations to construct
time correlation functions in the second RMA. For the second
RMA, we also use the recently presented RMA with multiple
evolution times [40] because the relaxation modes obtained
from the first RMA each have different relaxation times. The
evolution times for the second RMA can be estimated from
the relaxation times obtained from the first RMA. Hence, we
can automatically determine the evolution times. Using this
method, the estimation accuracy of the relaxation modes and
times can be improved.

In this paper, we briefly describe the method for the case of
a molecular dynamics (MD) simulation satisfying the detailed
balance condition and considering position coordinates only
(for details, see Ref. [24]). In order to compare the results of
the present method with those yielded by the PCRMA [16], we
apply this two-step RMA method to PCA results. First, PCA of
a 2-μs MD simulation of hen egg-white lysozyme in aqueous
solution is conducted. Then, the two-step RMA method with
multiple evolution times is applied to the obtained principal

FIG. 1. (a) Process chart of two-step RMA with multiple evolu-
tion times. (b), (c) Schematics showing t0, τ , and ti selection using
semilog plot of time-displaced autocorrelation function C(t) versus t .

components. [This means that, in Fig. 1(a), R is replaced with
principal components, i.e., the �c of Eq. (24) in this work.] The
slow relaxation modes and corresponding relaxation times for
the principal components are much improved following use of
the second RMA.

II. METHODS

A. Conventional RMA

We consider a biopolymer composed of N atoms. Further,
we assume that R is a 3N -dimensional column vector that
consists of a set of atomic coordinates relative to their average
coordinates

RT = (
r ′

1
T
,r ′

2
T
, . . . ,r ′

N

T) = (x ′
1,y

′
1,z

′
1, . . . ,x

′
N,y ′

N,z′
N ), (3)

with

r ′
i = r i − 〈r i〉, (4)

where r i is the coordinate of the ith atom of the biopolymer
in the center-of-mass coordinate system and 〈r i〉 is its average
coordinate. In conventional RMA, Xp is approximated by a
trial function, which is constructed as a linear combination of
relevant physical quantities that are time evolved for t0/2:

Xp(Q) =
3N∑
i=1

fp,iRi(t0/2; Q) (5)

with

Ri(t ; Q) =
∑
Q′

Ri(Q
′)Tt (Q

′|Q). (6)

Here, Ri(Q) is the ith component of R in state Q. The quantity
Ri(t ; Q) is the expectation value of Ri after a period t , starting
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from state Q. The evolution time t0/2 is introduced to reduce
the relative weight of the faster modes contained in Ri , and to
estimate slow relaxation times with greater precision.

For this trial function, we consider the variational problem:

δR = 0, (7)

with

R[Xp] = 〈Xp(τ )Xp(0)〉
〈Xp(0)Xp(0)〉 , (8)

where the stationary value of R gives the value exp(−λpτ ).
The variational problem becomes a generalized eigenvalue
problem of the time correlation matrices of the physical
quantities for two different times, t0 and t0 + τ . In practice,
the time correlation matrices for the two different times
are calculated through simulations. Then, by solving the
generalized eigenvalue problem, the {λp} and {Xp} are
obtained from the eigenvalues and eigenvectors, respectively.
In order to examine the validity of the present analysis,
the autocorrelation functions Ci,i(t) are reproduced from the
estimated eigenvalues and eigenvectors and compared with
those directly calculated via simulation. We refer to this
method as the “RMA method with a single evolution time,”
which is t0/2.

The relaxation times {1/λp} and the {Xp} obtained via
RMA depend on the manner in which t0 and τ are selected
in practice. For simple understanding, we consider the case
of one physical quantity R. From the variational problem of
Eqs. (7) and (8), the relaxation time 1/λ is obtained from
the gradient of the straight line connecting two points at t =
t0 and t0 + τ in the semilog plot of the correlation function
C(t) = 〈R(t)R(0)〉 − 〈R〉2 versus t , as shown in Fig. 1(b). If
the time correlation function of the physical quantity contains
several {1/λp}, and if we choose t0 = 0 (tICA case) or small
t0 and small τ as shown in Fig. 1(b), the obtained 1/λ does not
correspond to the slow relaxation behavior of log C(t) at long
times. To investigate the slow relaxation, we wish to choose
values of t0 and τ that are as large as possible. On the other
hand, the choice of longer t0 and τ is also limited because of
the decreasing accuracy of the time correlation function at long
times. Therefore, we must choose the appropriate t0 and τ .

When the relevant physical quantities {Ri} in the trial
function exhibit different relaxations, it is preferable to use
different evolution times for the different physical quantities,
as shown in Fig. 1(c). That is, if we know the characteristic
time scales of the relevant physical quantities, we can choose
a specific evolution time ti for each relevant physical quantity
Ri based on its characteristic time scale. This RMA method is
referred to as the “RMA with multiple evolution times,” and
we describe its formulation in the next section.

B. RMA with multiple evolution times

In this section, the RMA with multiple evolution times
{ti/2} is explained. We use the following function as an
approximate relaxation mode:

Xp(Q) =
3N∑
i=1

fp,iRi(ti/2; Q). (9)

The parameter ti is introduced in order to reduce the relative
weight of the faster modes contained in Ri . Further, it is
expected that Eq. (9) yields a superior approximation for
larger ti .

We now consider the variational problem of Eqs. (7) and
(8). Then, the variational problem becomes a generalized
eigenvalue problem:

3N∑
j=1

Ci,j

(
ti + tj

2
+ τ

)
fp,j

= exp(−λpτ )
3N∑
j=1

Ci,j

(
ti + tj

2

)
fp,j . (10)

Here, Ci,j (t) = 〈Ri(t)Rj (0)〉 and the orthonormal condition
(8) for Xp is expressed as

3N∑
i=1

3N∑
j=1

fp,iCi,j

(
ti + tj

2

)
fq,j = δp,q . (11)

Equations (9), (10), and (11) determine the relaxation rates
λp and the corresponding relaxation modes. We choose the
indices of λp such that 0 < λ1 � λ2 � · · · holds. The inverse
transformation of Eq. (9) is given by

Ri(ti/2; Q) =
3N−6∑
p=1

gi,pXp(Q) (12)

with

gi,p =
3N∑
j=1

Ci,j

(
ti + tj

2

)
fp,j . (13)

Note that the number of meaningful relaxation modes is 3N −
6 because we remove the translational and rotational degrees of
freedom in the calculation of {〈r i〉} [13]. The time correlation
functions of Ri are given by

〈Ri(t)Rj (0)〉 =
∑

p

∑
q

gi,pgj,q

〈
Xp

(
t − ti + tj

2

)
Xq(0)

〉

�
∑

p

gi,pgj,p exp

[
−λp

(
t − ti + tj

2

)]

=
∑

p

g̃i,pg̃j,p exp(−λpt), (14)

for t � (ti + tj )/2. Here,

g̃i,p = gi,p exp(λpti/2). (15)

Because we are considering position coordinates only, the
detailed balance condition [41] yields the following conse-
quences: C(t) is a symmetric matrix, Ci,j (t) = Cj,i(t); the {λp}
are real and positive, which corresponds to pure relaxation.

C. Two-step RMA with multiple evolution times

In this technique, RMA with a single evolution time using
small t0 and τ is first implemented and the {Xp} and {λp}
are roughly estimated. Note that all the {ti} in the previous
subsection are set to t0/2. Then, we apply the second RMA

062408-3



N. KARASAWA, A. MITSUTAKE, AND H. TAKANO PHYSICAL REVIEW E 96, 062408 (2017)

to a small number of the obtained slowest {Xp}. We denote
the number of {Xp} used in the second RMA as Nm. In the
second RMA, we use the previously presented RMA with
multiple evolution times technique because the characteristic
time scales of the {Xp} obtained from the first RMA are
known to correspond to their {1/λp}. We use the following
trial function:

X′
u(Q) =

Nm∑
p=1

f ′
u,pXp(t ′p/2; Q). (16)

Here, Xp(Q) is the relaxation mode obtained from the first
RMA. Then, the generalized eigenvalue problem (10) becomes

Nm∑
q=1

C ′
p,q

(
t ′p + t ′q

2
+ τ ′

)
f ′

u,q

= exp(−λ′
uτ

′)
Nm∑
q=1

C ′
p,q

(
t ′p + t ′q

2

)
f ′

u,q, (17)

where

C ′
p,q(t) = 〈Xp(t)Xq(0)〉 =

3N∑
i=1

3N∑
i=j

fp,iCi,j (t0 + t)fq,j (18)

is the time correlation matrix of the relaxation modes obtained
from the first RMA. The orthonormal condition (11) becomes

Nm∑
p=1

Nm∑
q=1

f ′
u,pC ′

p,q

(
t ′p + t ′q

2

)
f ′

v,q = δu,v. (19)

The original time correlation matrix Ci,j (t) is reconstructed
from the results of the second RMA as

Ci,j (t) �
Nm∑
u=1

γ̃i,uγ̃j,u exp(−λ′
ut), (20)

with

γ̃i,u =
Nm∑
p=1

exp[λ′
u(t0 + t ′p)/2]gi,pg′

p,u, (21)

where

gi,p =
3N∑
j=1

Ci,j (t0)fp,j (22)

and

g′
p,u =

Nm∑
q=1

C ′
p,q

(
t ′p + t ′q

2

)
f ′

u,q . (23)

The evolution times t ′p for the second RMA are estimated from
the {1/λp} obtained from the first RMA. The relaxation modes
{X′

u} and times {1/λ′
u} are improved in the second RMA.

III. COMPUTATIONAL DETAILS

In this study, an MD simulation is performed using the
AMBER package (AMBER 14.0) with GPU, along with the
ff14SB force field and TIP3P model [42]. A hen egg-white
lysozyme, which consists of 129 amino acid residues, is

considered. The lysozyme [Protein Data Bank (PDB) iden-
tification (ID): 6LYZ [43]] is solvated with a 10-Å buffer
of TIP3P water around the protein in each direction. The
numbers of atoms in the lysozyme and water molecules are
1960 and 28 923 (9641 water molecules), respectively. Eight
chloride ions (Cl−) are also included in the system, yielding
a net-neutral system. Thus, the total number of atoms in the
system is 30 891. After energy minimization and heating, with
equilibration at a constant pressure (1 atm) and at 298.15 K,
a 2-μs MD simulation is performed at 298.15 K. A 2-fs
time step is employed. Further, for the production run, a
Berendsen thermostat is used to generate a constant-pressure,
constant-temperature (NPT) ensemble. The cutoff is 10 Å,
which is used to limit the direct space sum for the Particle
Mesh Ewald (PME) method of AMBER. For the equilibration
and production run, the pmemd code with GPU for MD
simulations is used [44–46]. For analysis, the coordinates are
saved in 1-ps intervals. The number of samples is 2 × 106.
We use the coordinates of the heavy atoms, and the number
of the degrees of freedom is 3003 (=1001 × 3). While a few
months are required to implement several microsecond MD
simulations in aqueous solution on GPU, the simulation time
is shorter here because the large conformational changes of the
protein systems occur on the millisecond time scale. However,
many MD simulations of protein systems are conducted on
the microsecond time scale and the rare events occurring
during the limited simulations are interesting. In the authors’
experience, even when RMA is applied to a limited-time
simulation, the rare events occurring during the simulation are
extracted. In the simulation, a few conformational changes are
observed. Thus, we can show the effectiveness of the improved
analysis method in the simulation system.

The first RMA is applied to the principal components with
large fluctuations �c reported in Ref. [13], instead of R. Here,
�c = (�1,�2, . . . ,�Nc )

T and

�n = FT
n R =

3N∑
i=1

Fn,iRi, (24)

where Fn is the orthonormal eigenvector of the correlation
matrix (〈RiRj 〉), with the eigenvalue Λn obtained via PCA.
We set the eigenvalue indices such that the relation Λ1 �
Λ2 � · · · holds. Note that C(t) in the previous section now
represents the Nc × Nc time correlation matrix 〈�c(t)�T

c (0)〉.

IV. RESULTS AND DISCUSSION

After removing the translational and rotational motions
from the coordinates [47,48], PCA is first implemented for
the heavy atoms. The number of total modes yielded by the
PCA is 2997 (=3003 − 6). Further, the relative contributions
of the variances of the first 10, 30, and 100 principal
components to the total variance are approximately 30%,
60%, and 80%, respectively. The normalized time-displaced
autocorrelation functions of the principal components with
the ninth-largest fluctuations are shown in Fig. 2. Note that
each of the principal components includes different relaxation
processes. In particular, for a short time region, we observe
fast relaxation processes, and the principal component with the
largest fluctuation does not correspond to the mode with the
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FIG. 2. Normalized time-displaced autocorrelation functions of
�n(t), 〈�n(t)�n(0)〉/〈�2

n(0)〉 (n = 1, . . . ,9), obtained via PCA.

slowest relaxation. From Fig. 2, the seventh and ninth principal
components seem to have slow relaxations at long times.

The first RMA is applied to Nc principal components with
larger fluctuations, with �c in place of R in Eq. (9), where
Nc = 100. The number of degrees of freedom is then reduced
from 3N − 6 to Nc. Here, we set t0 = 0 ps and τ = 700 ps for
the first RMA (this corresponds to tICA because t0 = 0). The
{Xp} and {1/λp} are obtained from the generalized eigenvalue
problem of principal components �c (instead of R) of Eqs. (10)
and (11), where all evolution times {ti/2} are set to t0/2. The
10 slowest {1/λp} are listed in the second column of Table I.

In the authors’ experience, the slow {Xp} obtained from
the conventional RMA with small t0 and τ contain the true
slow {Xp} [13], although the {1/λp} are underestimated. This
can be seen by calculating the time-displaced autocorrelation
function C ′

p,p(t) of the pth slow relaxation mode Xp directly
from simulations. The autocorrelation C ′

p,p(t) exhibits slow
relaxation at long times. The relaxation time estimated from
the long-time behavior of C ′

p,p(t) is usually significantly longer
than 1/λp, which is estimated from the short-time behavior of
C ′

p,p(t), as C ′
p,p(τ ) = exp(−λpτ ) with small t0 and τ . The

time-displaced C ′
p,p(t) of the nine slowest Xp obtained from

the first RMA are directly calculated from the simulation
and shown in Fig. 3(a). Note that C ′

p,p(t) is calculated from

TABLE I. 10 slowest relaxation times obtained from first and
second RMAs.

Mode number Relaxation time Relaxation time
p or u 1/λp (1st RMA) (ns) 1/λ′

u(2nd RMA) (ns)

1 2.8 × 10 4.1 × 102

2 2.5 × 10 1.5 × 102

3 2.1 × 10 8.3 × 10
4 1.5 × 10 6.9 × 10
5 1.4 × 10 5.0 × 10
6 1.0 × 10 3.6 × 10
7 8.1 3.1 × 10
8 7.5 2.5 × 10
9 6.5 2.4 × 10
10 4.7 1.8 × 10

FIG. 3. Time-displaced autocorrelation functions (a) 〈Xp(t)
Xp(0)〉 (p = 1, . . . ,9) obtained via first RMA and (b) 〈X′

u(t)X′
u(0)〉

(u = 1, . . . ,9) obtained via second RMA.

Ci,j (t0 + t) using Eq. (18) and that C ′
p,p(0) = 1 is obtained

from the orthonormal condition (11) with ti = tj = t0. These
C ′

p,p(t) exhibit slow relaxation processes at long times. The
relaxation times estimated from their long-time behavior,
which, for example, can be the time at which C ′

p,p(t) becomes
0.5, are significantly longer than the 1/λp values shown in
Table I. For the first mode, the time at which C ′

1,1(t) becomes
0.5 is approximately 200 ns (data not shown), while 1/λ1 is
28 ns, as shown in Table I. The slow {Xp} yielded by the first
RMA indeed contain the true slow {Xp}, even if we choose
small t0 and τ .

To improve the relaxation mode accuracy and to obtain
more accurate relaxation times, the second RMA is applied to
Nm of the slowest {Xp} obtained from the first RMA. Here, we
set Nm = 20. The number of degrees of freedom is reduced to
Nm. The evolution times {t ′p} are estimated from the results of
the first RMA and chosen as t ′p � rt/λp with rt = 0.03. Note
that we can also estimate {t ′p} from the long-time behavior
of the autocorrelation functions of {Xp}, C ′

p,p(t), directly
calculated from the simulation. The time interval τ ′ is chosen
to be τ ′ = 10 000 ps. Note that we can select a τ ′ that is longer
than τ because the number of degrees of freedom is reduced
and the physical quantities {Xp} exhibit slow relaxations. The
relaxation times 1/λ′

u obtained from Eq. (17) are listed in
the third column of Table I. By comparing the second and
third columns of Table I, we find that the relaxation times
are improved significantly. The time-displaced autocorrelation
functions of the relaxation modes yielded by the second RMA
{X′

u} are shown in Fig. 3(b). The relaxation of 〈X′
u(t)X′

u(0)〉
gradually accelerates as u becomes large. The second RMA
also improves the relaxation mode accuracy.

In order to examine the validity of the RMA techniques, the
time-displaced autocorrelation functions of principal compo-
nents reproduced from the first and second RMAs are shown
in Fig. 4. We also show results yielded by the PCRMA, which
was previously introduced in Ref. [16]. Here, the PCRMA
parameters are chosen to be Nc = 20, t1 = 40 ps, t2 = 1000 ps,
and τ = 350 ps. Note that the time-displaced autocorrelation
functions reproduced from the first RMA are in disagreement
with those obtained from the simulation directly because
the {1/λp} are underestimated, as seen previously. How-
ever, the time-displaced autocorrelation functions reproduced
from the second RMA are in good agreement with those
obtained from the simulation directly. In particular, the slow
relaxation processes of the seventh and ninth principal compo-
nents are also well reproduced by the second RMA. The {X′

u}
and {1/λ′

u} obtained from the second RMA are more accurate
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FIG. 4. Time-displaced autocorrelation functions of 〈�n(t)
�n(0)〉 for n values of (a)–(f) 1, 2, 3, 4, 7, and 9, respectively,
calculated directly via simulation (circles) and reproduced by first
RMA (dashed lines), second RMA (solid lines), and PCRMA
(dashed-dotted lines). The values for the seventh and ninth principal
components are shown because they exhibit slower relaxation
processes. For the PCRMA introduced in Ref. [16], we set Nc =
20, t1 = 40 ps, t2 = 1000 ps, and τ = 350 ps.

than those yielded by the first RMA. Comparison of the results
of the PCRMA presented in Ref. [16] and those of the present
method (two-step RMA) indicate that the present method can
better reproduce the long-time behavior of the time-displaced
autocorrelation functions. These results demonstrate that we
obtain relatively accurate relaxation modes and times from the
simulation using the two-step RMA.

In Fig. 5, the time series and probability density function
(PDF) of the first slowest relaxation mode for the PCRMA, the
first RMA, and the second RMA are shown. The fluctuations
for the second RMA are reduced to a greater extent than
those for the PCRMA and first RMA. The second RMA
clearly extracts a rare event during the simulation. The large
change near 1200 ns relates to local structural changes near
Asn46, Arg73, and Asn103. The dynamics of proteins on
the microsecond time scale usually corresponds to local
conformational changes of the residues [49]. The second RMA
extracts the rare conformational changes of these residues
during the simulation.

V. CONCLUSIONS

In this paper, we have demonstrated the effectiveness of
two-step RMA with multiple evolution times for a protein
system. In this method, RMA with a single evolution time
using small t0 and τ is first implemented, yielding rough
estimates of the relaxation modes and rates. Then, the second
RMA is applied to a small number of the slowest relaxation

FIG. 5. Time series and probability density function (PDF) of
first relaxation mode for (a) PCRMA, (b) first RMA, and (c) second
RMA.

modes obtained in the previous stage. In the second RMA, we
use RMA with multiple evolution times because the relaxation
modes obtained from the first RMA each have different
relaxation times. Herein, we applied this method to the results
of a PCA. That is, PCA was first applied to a 2-μs MD
simulation of hen egg-white lysozyme in aqueous solution.
Then, the two-step RMA method with multiple evolution times
was applied to the principal components obtained via that
method. The time-displaced autocorrelation functions of the
principal components reproduced from the second RMA were
in good agreement with those obtained from the simulation
directly. Further, the slow relaxation modes and corresponding
relaxation times for the principal components were much
improved by the second RMA. Note that, if the slow modes
and times are not sufficient to represent the dynamics of
the system, we can also repeat the RMA, i.e., implementing
three-step RMA, and so on. We can calculate the motions of
proteins along the obtained modes using the relations between
the modes R, �c, {Xp}, and {X′

u}. The free energy surfaces
obtained using the relaxation modes can also be calculated,
in the same manner as in Ref. [13]. The directions of the
slower relaxation modes will reflect the transitions between
the free energy minimum states. A combined method featuring
the Markov state model and tICA or TICA was proposed
in Refs. [18,19]. In that approach, a Markov state model is
constructed from clustering in the subspace determined by
the tICA or TICA. For a simulation of a 10-residue small
protein, chignolin, near its transition temperature, Markov
state relaxation mode analysis, which is the extension of a
regular Markov state model obtained by introducing t0, was
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also applied to several characteristic states: native, misfolded,
intermediate, and unfolded states. These states were classified
by an original RMA [24]. The refined slow relaxation modes
obtained via the present method can be also used to cluster
states in order to construct several kinetic models, such as
Markov state models and milestone methods [50]. This method
is a powerful technique for investigating the dynamics and
kinetics of a system through long simulations.
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