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Lattice diffusion of a single molecule in solution
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The ability to trap a single molecule in an electrostatic potential well in solution has opened up new possibilities
for the use of molecular electrical charge to study macromolecular conformation and dynamics at the level
of the single entity. Here we study the diffusion of a single macromolecule in a two-dimensional lattice of
electrostatic traps in solution. We report the ability to measure both the size and effective electrical charge of
a macromolecule by observing single-molecule transport trajectories, typically a few seconds in length, using
fluorescence microscopy. While, as shown previously, the time spent by the molecule in a trap is a strong function
of its effective charge, we demonstrate here that the average travel time between traps in the landscape yields its
hydrodynamic radius. Tailoring the pitch of the lattice thus yields two different experimentally measurable time
scales that together uniquely determine both the size and charge of the molecule. Since no information is required
on the location of the molecule between consecutive departure and arrival events at lattice sites, the technique is
ideally suited to measurements on weakly emitting entities such as single molecules.
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I. INTRODUCTION

Diffusion in a free-energy landscape is a phenomenon of
central importance in condensed matter physics, chemical
reactions, and molecular biology. Highly disparate natu-
ral phenomena such as atom migration on surfaces or in
crystals, molecular chemical transformation, macromolecular
interactions, and protein folding can in fact be described in
terms of common underlying statistical principles governing
transport across energy barriers. Indeed, surface science offers
a most tangible example of the phenomenon [1]. Atoms
preferentially adsorb at specific sites on the periodic surface
lattice which represent locations of the lowest potential energy
for adsorption. Driven by thermal energy, adsorbed atoms hop
in a random fashion across relatively small energy barriers
from one minimum to the next. Depending on the height
of the barrier relative to the thermal energy scale, transport
of the surface adsorbate can be substantially slowed down
or virtually unimpeded as in a fully mobile two-dimensional
gas. Direct imaging of atomic and molecular migration using
field-ion and scanning-tunneling microscopy has facilitated
the measurement of important physical parameters in the
transport process such as the activation energy and the attempt
frequency. These studies have been instrumental in exploring
fundamental features of transition state theory [2–6].

Furthermore, transport in periodic potentials is ubiquitous
in biological systems. For example, thermal migration of motor
proteins along the periodic interaction energy landscape of a
microtubule plays an important role in regulating microtubule
length in the cellular cytoskeleton [7]. DNA-binding proteins
and enzymes use diffusion along the molecular contour in
order to locate specific binding sites. This diffusive search
strategy is thought to include a “hopping” mode of transport
reminiscent of the classic lattice diffusion problem [8].

Previous experimental studies on particle motion in periodic
potentials in the fluid phase have examined diffusive and
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field-driven transport of single colloidal particles and DNA,
in spatially modulated gravitational and optical fields, and
configurational entropy landscapes [9–13]. Typically these
investigations use field-driven transport to separate a mixture
of molecular species, exploiting the nonlinear response in
object mobility to a spatially varying potential [14,15]. How-
ever, not much prior effort has been directed at quantitative
studies on purely diffusive transport of a single molecule in
a well-defined free-energy landscape. A microscopic view of
this transport process under well-controlled conditions is not
only highly relevant for direct measurements on the properties
and interactions of an isolated macromolecule in solution, as
we show in our work, but may also contribute toward an
improved understanding of molecular transport in naturally
occurring modulated systems, e.g., living cells [16,17].

Here we examine diffusive transport of single nanometer-
scale molecules in a 2D free-energy landscape in the fluid
phase. Analogous to the experiments on atom diffusion on
a surface, we use optical microscopy to study the thermal
migration of a single fluorescently labeled macromolecule in
a well-controlled electrostatic interaction free-energy land-
scape in solution. We further exploit the principles of
overdamped transport in a periodic free-energy landscape in
order to directly measure the physical properties of a sin-
gle macromolecule—namely, its size and effective electrical
charge in solution.

II. EXPERIMENTAL METHODS

A. Experimental design and measurement principle

In order to create an ordered landscape of potential wells
for a single macromolecule, we employ our recently developed
thermodynamic approach to trapping electrically charged
matter in aqueous solution [18]. The working principle of
such a trap is based on the equilibrium repulsive electrostatic
interaction between a charged object in solution and like-
charged confining parallel plates (Fig. 1). Geometric tailoring
of the parallel plates results in a local interaction potential
minimum that is capable of confining an electrically charged
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FIG. 1. (a) Schematic representation of the experimental setup displaying a single biomolecule in a lattice of electrostatic traps, observed
using wide-field fluorescence microscopy. 2h indicates the slit height while 2R is the diameter of the nanostructured surface indentations that
create local electrostatic potential minima. (b) A simulated trajectory of a diffusing molecule superimposed on a representative free-energy
landscape, W (r). (c) The same trajectory as in panel (b) superimposed on a scanning electron micrograph (SEM) of the underlying nanostructured
surface. Closed symbols denote locations of the particle at lattice sites and open symbols denote free-diffusive transport in the interwell region.
λ denotes the the lattice pitch. Scale bar denotes 1 μm.

molecule for long periods (∼30 min). Molecular residence
time scales in a trap can be tuned by the geometry of
the trapping nanostructure and salt concentration in solution
[18,19].

Briefly, in our experiment, we work with free-energy
landscapes created in a gap of typical height, 2h = 73–75 nm,
containing surface nanostructured indentations of radius, R =
150 or 300 nm [Fig. 1(a)] and depth, 150 nm, as previ-
ously described [19]. Fluorescently labeled macromolecules
or particles in solution are introduced into the lattice at a
concentration of 10–50 pM by capillary flow in a buffer
containing 1 mM Tris and 0.5–2 mM NaCl [19]. We studied
fluorescent nanoparticles and macromolecules, such as short
DNA fragments (10 b ssDNA and 40 and 60 bp dsDNA,
purchased from Microsynth AG, Switzerland) as well as an
intrinsically disordered starmaker-like protein, Stm-l [20]. The
molecules in our work are labeled with the fluorescent dye
Atto532 while the nanoparticles (FluoSpheres, ThermoFisher
Scientific) are carboxylated latex spheres labeled with Nile
Red. The flow is arrested and molecular motion in the lattice
is imaged under purely diffusive conditions by wide-field
fluorescence microscopy.

We use optical excitation at 532 nm from a DPSS laser
(Pusch OptoTech GmbH, Germany) and collect fluoresence
emission beyond 552 nm. Images of object motion are
acquired using a back-illuminated Electron Multiplying CCD

(EMCCD) camera (iXon, Andor Inc., United Kingdom) with
continuous exposures of duration texp = 5 ms during a total
observation time of about 1 s per molecular trajectory. The
depth of the wells, W, in this work is typically 5 kBT , yielding
trap residence times of ∼50 ms. For an object in a potential
well in the fluid phase, overdamped diffusive crossing of a
barrier is well described by Kramers’ theory in the regime
W > 6 kBT , where the average time to escape the potential
well is given by [19]

tesc = trexp
W

kBT
. (1)

Here tr is a time scale representing the position relaxation
time of the molecule, which in turn depends not only on
geometric features of the potential well but also importantly on
the molecule’s diffusion coefficient, D = kBT/6πηrH. Here,
rH is the hydrodynamic radius of an equivalent sphere that
experiences the same frictional drag as the object of interest,
and η is the viscosity of the medium [21]. Relying on this strong
nonlinear dependence, we converted the measured average
escape time tesc of a trapped molecule into a highly precise
(∼1%) measurement of the barrier height, W [19]. Note that
the barrier height in our case is in essence the interaction free
energy of the molecule with the confining parallel-plate slit
[22,23]. It is also worth emphasizing that this electrostatic
interaction energy directly reflects the molecule’s effective
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charge, qeff , which is in turn a function not only of its total
structural charge but notably also of its three-dimensional (3D)
conformation [23].

In our original proof-of-concept electrometry experiment
on single molecules, conversion of the measured escape
time to a well depth also required accurate knowledge of
the free diffusion coefficient or hydrodynamic radius rH of
the molecule [19]. This information was therefore obtained
from an independent fluorescence correlation spectroscopy
or single-molecule diffusion measurement. Furthermore, al-
though we have shown previously that the electrical charge
as well as the size of a particle in an electrostatic potential
well can be obtained in a single measurement by, e.g., high-
precision tracking of particle position [24] or alternatively
by high-temporal resolution optical monitoring of particle
fluctuations, doing so typically requires a high signal-to-noise
ratio (SNR > 10) in detection, which is generally out of reach
in experiments involving weakly emitting single molecules. In
addition, the limited photon count rate and overall photon
budget would pose a challenge for precise measurements
on molecular-scale entities where the position fluctuation
dynamics can be up to two orders of magnitude faster than
for nanoparticles.

We emphasize that in this work the Debye length, κ−1 ≈
0.3/

√
C = 10 nm, is the characteristic length scale of screen-

ing of electric fields in an electrolyte containing monovalent
salt at a concentration, C = 10−3 mol/L. Since in these
experiments, the lattice pitch, λ ∼ 300 κ−1 [Fig. 1(c)], the
interwell region of the landscape, is free of electrical fields in
the xy plane and the in-plane transport of the molecule should
be well described by free diffusion in two dimensions. We
show later using validation experiments on nanoparticles that
this is indeed the case. There are, however, strong axial forces
(in z) in these regions which keep the particle tightly confined
to the midplane of the slit. The solution-phase two-dimensional
(2D) free-energy landscapes in our present work therefore
differ significantly from those encountered in surface-atom
diffusion in that in our case the wells are local regions of
potential energy minima in an otherwise curvature-free energy
landscape [Figs. 1(b) and 2(a)].

Crucially, such a design permits us to observe molecular
transport in both the trapped and freely diffusive regimes.

Monitoring the thermal migration of a single macro-
molecule in the lattice, we indeed observe two different
regimes in molecular transport: a trapped state and a free-
diffusive state that alternate in time and whose durations can
be readily measured. The acquired images of lattice migration
are analyzed using an intensity threshold to yield “on times,”
tON, where the molecule is confined at a trap location and
a large signal accumulates locally on the detector (the same
as tesc in our previous work), and “off-times,” tOFF, where it
performs free diffusion traveling from one trap to the next
and no substantial signal is received [Fig. 3(b)]. Comparing
measurements of these two time scales with the predictions
of a Brownian dynamics (BD) simulation, we demonstrate
the ability to extract information on both the size and effective
charge of the molecule from a single transport trajectory. Inter-
estingly, the hopping motion of a molecule in the lattice yields
a telegraphic on-off signal in optical detection which permits

FIG. 2. (a) A simulated single-molecule trajectory superimposed
on a two-dimensional lattice of electrostatic traps. λ denotes the lattice
pitch, while A demarcates a single unit cell. (b) A simulated diffusive
trajectory (black trace) in a one-dimensional periodic potential (blue
vertical trace) along the solid blue line shown in panel (a). Shaded
gray regions depict the part of molecular trajectory confined to
the bottom of a given well. (c) The effective diffusion coefficient,
Deff, extracted from a mean-squared-displacement (MSD) analysis of
simulated trajectories in both one (black circles, bottom axis) and two
dimensions (red squares, top axis). The resulting D/Deff values com-
pare with the Lifson-Jackson expression, Eq. (2) (solid black line).
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FIG. 3. (a) Experimental raw fluorescence images and corre-
sponding schematic representations depicting a single 60 bp dsDNA
molecule sampling a lattice of traps. (b) A simulated temporal
trace of the total optical intensity from the lattice sites. The signal
is high for a duration �tON when the molecule is trapped at a
lattice site and sufficient photons accumulate locally on the detector
(green bands); the signal is low for a period �tOFF during free
diffusion of the molecule between lattice sites. (c) Probability density
distributions, P (�t) = Afit

t
exp(−�t/t), of experimentally recorded

times �tOFF (white bars) and �tON (green bars), for a single trajectory
of a 60 bp dsDNA molecule, where Afit ≈ 1. The distributions are
normalized such that Pn(�t) = P (�t)

Pmax(�t) . The fits yield average values
tOFF = 25 ± 2 ms and tON = 38 ± 4 ms.

precise measurements to be performed at very low SNR (∼3)
[Fig. 3(a) and Fig. 12 in Appendix B]. We thus introduce a
lattice-diffusion principle that is ideally suited to measure-
ments on weakly emitting single macromolecules in solution.

B. Interpreting the detected single-molecule signal

We define the signal received from the molecule as the
difference between the total optical intensity due to the

FIG. 4. (a) A simulated particle trajectory at a time resolution of
1 μs (gray dashed line), time averaged to a resolution of 5 ms (black
solid line) in order to reflect experiments where the exposure time
texp = 5 ms. The accompanying schematics depict the circumference
of the surface indentations (solid blue lines) and various escape
boundaries (dotted blue lines). We highlight transient rapid excursions
of the molecule out of and back into the trap which go undetected
(light gray arrow), as well as transitions of the molecule from one
trap to the next which are detected in the simulation and experiment
as a “hop” between lattice sites (black arrow). (b) Generation of a
series of optical images corresponding to molecular coordinates in
a trajectory (black trace, left axis) shows that the signal from the
lattice is high when a molecule is trapped at a lattice site and low
otherwise (green dashed trace, right axis). The location of the escape
boundary, resc, applied to the simulated trajectory data is tuned such
that the resulting on and off-time scales agree with those from the
simulated optical signal. These time scales are then compared with
the corresponding experimental measurements.

molecule and that due to the detector background. When a
weakly emitting entity occupies a potential well, its radius of
spatial confinement (∼250 nm) is comparable with the optical
point spread function. As a result, a measurable local signal
builds up on a spatially sensitive detector such as a camera. In
contrast, when the molecule leaves a well and diffuses in the
“field-free” interwell zone of the landscape, the received signal
does not exceed the local detector background and therefore
gives rise to a “dark time” during the measurement, which we
term tOFF (see the movie in the Supplemental Material [25]).

Analysis of the detected optical signal from a single
molecule diffusing in a 2D lattice yields the two average
time scales: an on time, tON, and an off-time, tOFF [Figs. 3(a)
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FIG. 5. [(a), (b)] Simulated tON and tOFF values for relevant combinations of W and rH. (c) Plots of tON vs W at rH = 8 nm (black circles,
bottom and right axis) and tON vs rH for W = 6.6 kBT (red squares, top and left axis) along the contour lines shown in panel (a). tON depends
linearly on rH but is exponential in W . (d) tOFF vs rH for various values of W . The relationship is linear in the high well-depth regime
(W > 5kBT ), but starts to plateau for low rH and W < 6kBT . Dashed lines are guides to the eye. (e) The hatched regions on the plots in panels
(a) and (b) depict combinations of W and rH that satisfy a measured tON and tOFF value independently, including measurement uncertainty (here
shown for a single Stm-l molecule of tON = 0.2 ± 0.065 s and tOFF = 0.023 ± 0.005 s). The intersection of the set of solutions for both time
scales yields mean measured values of rH and W (and thus qm) (solid black lines). The statistical error on the measurements are given by the
lateral and vertical extents of the hatched regions (dashed black lines) (see Appendix D).

and 4(b)]. Similar to memoryless escape from a potential well,
we find that, as expected, off-times are also exponentially
distributed [Fig. 3(c)]. Importantly, the mean off-time, tOFF,
depends linearly on the molecular hydrodynamic radius, rH,
while tON depends exponentially on the effective charge of
the molecule and relatively weakly on rH [Fig. 5(c)]. A BD
simulation of the hopping process yields tON and tOFF times
over the {W (qeff),rH} space of interest and thereby serves to
convert an experimental measurement of the two measured
time scales into unique values of qm and rH, with respective
uncertainties for a single molecule.

III. BROWNIAN DYNAMICS SIMULATION OF PARTICLE
DIFFUSION IN A FREE-ENERGY LANDSCAPE

Analytical expressions for the average escape time for
a particle in a potential well, or transport coefficients in a
landscape, are generally only available for particular analyt-
ical functional forms of the underlying potential and entail
landscapes of infinite extent [21,26,27]. As escape times do
depend on subtle features such as local curvatures of the
landscape, e.g., at the bottom of the well and at the barrier
[28], and our experiments involve lattices of finite extent in
both dimensions, we performed BD simulations of particle
motion in periodic landscapes in order to extract quantitative
predictions that accurately reflect our experiments.

A. Generating the free-energy landscape

The first step in the simulation study is to determine the
full three-dimensional distribution of electrical potential in a
single well by solving the nonlinear Poisson-Boltzmann (PB)
equation in the fluidic trapping nanostructure [18]. We have
verified that in our work, the spatial electrostatic free energy
for a charged object can be simply obtained by multiplying
the local electrical potential ψ(r) by a parameter qeff, which is
the effective charge of the object [23]. We point out that since
the position of the particle is strongly weighted toward the
local minimum of interaction energy, the electrical potential
in the region of the midplane of the slit largely determines the
overall behavior. Thus, the electrostatic free energy, which is
the dominant contribution to W in this work, is well estimated
by qeffψm, where ψm is the electrical potential at the midplane
of the slit.

Furthermore, the problem has a free-energy contribution
of typically 30% from particle spatial fluctuations in the
axial (z) dimension. We have verified by simulation that the
dimensionality of the problem can be reduced to two by
including an entropic correction for axial fluctuations both
inside and outside the trap, and an additional ∼6% contribution
to the electrostatic energy arising from axial fluctuations in
the slit region [19]. Thus, the depth, W, of each well in the
landscape can be expressed as W = qeffψm + f , where the
first term is due to the electrostatic interaction free energy of
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a particle at the midplane of the slit and f is the contribution
to the total free energy from the finite out-of-plane thermal
fluctuations of the particle. Note that in formulating the well
depth, W , we deliberately ignore the system free energy when
the particle is at the bottom of the well, as the electrical
potential here is zero by design.

The geometry of a single potential well is further influenced
by the diameter of the surface nanostructure, height of the slit,
and the salt concentration in solution, which are all included in
the PB calculation. We thus obtain the free-energy landscape
for a single primitive cell in the lattice which we then use
to generate a 2D landscape of the required lateral pitch and
spatial extent in x and y for the simulation [Fig. 2(a)].

B. Effective diffusion coefficient of a particle in the lattice

The experiments we report here involve a square or
rectangular lattice of effectively identical radially symmetric
potential wells of depth, W, with each well occupying a single
lattice site. Analytical treatments of diffusive transport in an
infinite one-dimensional periodic arrangement of wells show
that the effective diffusion coefficient, Deff , of a molecule
strongly depends on W and in the overdamped limit is given
by the Lifson-Jackson relation [29–32]:

D = Deff

〈
exp

W (x)

kBT

〉
λ

〈
exp

−W (x)

kBT

〉
λ

, (2)

where D is the particle’s free diffusion coefficient.
We use the effective diffusion coefficient as the starting

point of our analysis of single-molecule transport in a periodic
potential. We iteratively solve the discretized overdamped
Langevin equation for particle motion in a 2D free-energy
landscape of “infinite” extent:

x(t + δt) = x(t) − μ∇W [x(t)] +
√

2D�t w(t). (3)

Here, x(t) represents the instantaneous position of a particle
at time, t , in one dimension, and μ = δt/6πηrH. w(t) repre-
sents a displacement due to the random thermal force acting
on the particle that satisfies 〈w(t)〉 = 0 and 〈w(t)w�(t ′)〉 = I
if |t − t ′| � δt , and 0 otherwise. Note that the simulation time
step, δt = 10 μs, is much larger than the momentum relaxation
time, which is ∼10 ns for a typical molecule.

At t = 0, the particle is located at the center of a trap in the
landscape. We then use Eq. (3) to propagate the instantaneous
position of the particle, x(t), forward in time over a typical
observation period of 30 s. A typical such trajectory in one
dimension, time averaged over the exposure time texp, is shown
in Fig. 2(b). In order to validate our simulations against the-
oretical expectations, we apply a mean-squared-displacement
(MSD) analysis to about five particle trajectories and extract
effective lattice diffusion coefficients, Deff, for the particle. We
verify that the simulated Deff values satisfy the Lifson-Jackson
relation in both one and two dimensions for values of W

ranging from 3 to 8 kBT [29,33] [Fig. 2(c)]. Experiments on
micron-scale particles in a periodic landscape have verified the
Lifson-Jackson relation [34] and demonstrated a measurement
of the effective diffusion coefficient, Deff, of a particle [9].
However, knowledge of Deff alone yields neither the well
depth, W, nor the particle’s free diffusion coefficient, D, which
reflects its hydrodynamic radius, rH.

C. Trapped and free diffusive-state lifetimes for a single particle

Our study requires us to go beyond the analysis of an
effective diffusion coefficient for molecular transport in a
lattice. Our goal is to accurately determine both the trapped
and free diffusive time scales for a single particle migrating
in a periodic lattice in order to obtain measures for both
W and D (rH) from a single transport trajectory. A recent
study on colloidal particle transport in a quasicrystalline lattice
illustrates the subtleties involved and shows how the lack of
crystalline order in the landscape introduces more complex
free diffusive behavior, thus necessitating averaging over an
ensemble of particles in order to measure both W and rH [34].

In order to correctly relate the time scales of interest
observed in experiment to those available from simulations, we
perform further analysis of the simulated trajectories involving
important additional features. One such feature is the definition
of an absorbing “escape boundary” represented by a radially
symmetric contour at resc centered on the trap [Fig. 4(a)].

When analyzing a simulated transport trajectory of an
object diffusing in the landscape, we register a trapped state
of duration �tON when the particle enters the region within
the predefined domain circumscribed by resc at time t, then
reaches the bottom of the trap - denoted by a circular region
of radius, R/2 centered on the trap - and subsequenty leaves
the domain given by resc at a time t ′ > t . Here �tON = t ′ − t .
�tOFF is then the interval between two sequential on-states.
In addition, since the imaging process involves a finite time
window of observation, the experimentally measured particle
position in fact physically reflects its location averaged over
the duration of an exposure time 〈r〉texp , rather than its
instantaneous position, r . Furthermore, in the escape-from-
a-potential well problem, it is well known that the location of
the absorbing boundary condition can strongly influence the
value of the average escape time or the trapped state lifetime
[35] (Appendix A). Simulation results presented in Fig. 4(a)
illustrate two important features: (1) The average escape time
of the instantaneous position, r, depends strongly on the
location of the escape boundary, and (2) escape times based on
a time-averaged position, 〈r〉texp , should be substantially longer
than that based on an instantaneous position, r .

We analyze via simulation the dependence of tON on resc

the location of the escape boundary (Fig. 11 in Appendix A).
Given the average diffusion length during an exposure time
of duration, texp, is ldiff = √

4Dtexp, we find that for λ < ldiff ,
the measured time scale tON does not strongly depend on the
location of the boundary. This is because the proximity of traps
ensures that escape from one well is highly likely to result
in absorption at the neighboring lattice site. When λ > ldiff ,
however, as in these experiments reported here, the simulated
escape time, tON, does strongly depend on the location of the
escape boundary (see Fig. 11 in Appendix A). This is due to
the fact that in this regime a particle that escapes a given well
and crosses resc has, on short time scales, a finite probability
of return to the same well rather than diffusion to and capture
at the neighboring well [34].

Furthermore, as already described, the experimental read-
out in the case of single molecules is not a temporally varying
particle position in the lattice but rather a high or low optical
signal at the lattice sites [Fig. 3(a)]. It is therefore essential
to determine the true location of the absorbing boundary
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condition in the simulation that would correctly reflect
the optical on-off time scales measured in experiments. In
addition, other experimental factors such as SNR and detector
background could also influence the measurement of the time
scales of interest. Since time averaging and subtle features of
the optical detection described above make it a priori unclear
where to place the escape boundary in the particle-coordinate
output of the BD simulation, resc has to be obtained by
matching particle position-based predictions of the on-off
time scales against those from simulated optical signal data.

We therefore also perform an image-based analysis of simu-
lated thermal migration of the molecule in the lattice including
most, if not all, of the important attributes of the imaging pro-
cess and system, e.g., exposure time, typical signal and back-
ground intensities, background noise, and the optical point
spread function [Fig. 4(b)]. These simulated images of molec-
ular transport are generated in an additional step after the BD
simulation, using trajectories generated for various values of
particle size and charge. An example of a particle position trace
and the corresponding optical signal are shown in Fig. 4(b).

The optical traces are analyzed in terms of intensity
thresholds on the signal, in a manner identical to the
experimental data, to yield values of tOFF and tON for a
single hopping trajectory about 30 s in length. Importantly,
the time scales obtained from this full image-based analysis
can be compared with those from the corresponding “raw”
particle coordinates in order to determine the location of
the escape boundary, resc, that accurately recovers the same
tON and tOFF values [Fig. 4(b)]. As a general rule for the
lattices in these experiments, we find that a radially symmetric
absorbing boundary located at resc = R + 300 nm yields values
of tOFF and tON within 10% of the full image-based analysis.
The advantage of working with simulations based on the
coordinates of the particle, 〈r〉texp , rather than detected optical
images is that the former approach is computationally less
demanding and faster than the image-based route.

Interestingly, we find that for strongly emitting objects
(photon count rate >10 kHz), where particle motion can
be directly tracked at all times, self-consistent results are
obtained as long as the experimentally measured position
traces are analyzed using the same escape boundary criterion
as the simulated traces, regardless of the actual location of the
boundary.

As tOFF and tON each depend on both qeff and rH, the
simulation analysis yields two surface plots for the time
scales as a function of the two measurables of interest
(Fig. 5). We note that tOFF not only depends linearly on
the molecular hydrodynamic radius, rH, but also depends
strongly on geometric parameters such as the lattice pitch,
λ, and further displays a weak dependence on the depth of
the traps, W [Fig. 5(d)]. tON in turn, as previously shown,
depends exponentially on W (or qeff) and only linearly on rH

[Fig. 5(c)]. The simulation result thus serves to convert an
experimental measurement of the two time scales tON and
tOFF into unique values of the two unknowns, namely the
measured effective charge, qm, and hydrodynamic radius, rH,
with respective uncertainties for a single molecule.

Finally, we point out that the precision on the inferred
value of qm is ultimately limited by the statistical uncertainty
inherent to determining the diffusion coefficient, D, of

a single molecule from a temporally limited migration
trajectory in the lattice. Measurement precision improves with
the number of recorded transitions, Nhop. For example,
Nhop = 100 in a measurement with tOFF = tON =
25 ms implies precision of 9% and 17% in the charge
and size measurements, respectively, in a total measurement
time of ∼2 s (see Appendix D). Armed with a full-fledged
simulation-based quantitative analysis of the problem, we
then proceed to an experimental validation of the predictions
as well as measurements of the properties of single molecules.

IV. EXPERIMENTAL VALIDATION USING
FLUORESCENT NANOSPHERES

The simulations reveal a linear dependence of tOFF on
rH in the large-W regime, reflecting the fact that tOFF is
nothing but the average diffusion time of the object over a
distance given by an effective lattice pitch, λ′ [Fig. 6(a)]. In
order to experimentally test the accuracy of the relationship
between tOFF and rH predicted by the simulation, we performed
measurements of nanoparticle diffusion in a free-energy
landscapes created in slits of height 2h = 200 nm.

In contrast to molecules, nanoparticles emit strong signals
in optical excitation and can therefore be spatially tracked with
high precision during the entire transport trajectory. A mean-
squared-displacement (MSD) analysis of nanosphere motion
in the free-diffusive regime directly yields its hydrodynamic
radius, rH. The same data can also be used to extract average
interwell travel times, which we have referred to as tOFF for
a weakly emitting molecule. Thus we compare the value of
rH obtained from tOFF measurements in a given lattice, with
a parameter-free, direct determination of the same quantity
in the same measurement via the MSD approach and find
good agreement [Fig. 6(d)]. This result validates our rH

measurement principle and warrants its further application to
measurements on single molecules. Note that at a particle
diameter to slit height ratio of a/h 	 0.2 the viscous drag
on the particle is expected to increase by 20% [37,38]. The
slightly inflated value of particle radius, rH, obtained in the
lattice MSD measurement compared to bulk measurements is
in fact in line with this expectation.

For the measurements on macromolecules, described in
the following section, assuming the molecules behave as hard
spheres of radius, rH, we expect drag enhancement factors due
to confinement ranging from 6% for 10 base DNA to 23% for
the disordered protein Stm-l [39]. The measurement averages
for rH (Table I), however, reveal no systematic departure
from the free solution measurements, suggesting that the true
reduction in diffusion coefficient is probably much smaller
than the above estimates for hard spheres.

V. MEASUREMENTS ON SINGLE MACROMOLECULES
IN SOLUTION

We now focus on measurements of effective charge and
hydrodynamic radius on single macromolecules in solution.
We have verified using simulations that quantitatively identical
escape times are obtained by replacing the spatial electrical
potential distribution in the slit from the nonlinear PB equation
by an axial potential given by the superposition of two simple
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FIG. 6. (a) A representative trajectory of a fluorescent nanosphere of nominal radius a = 24 nm diffusing in a square lattice of pitch,
λ = 2 μm and R = 150 nm, overlaid on an SEM image of the nanostructured surface. The effective pitch λ′ inferred from the fit in panel (c)
is close to the value λ − 2R, which corresponds to the edge-to-edge distance of two neighboring traps. The trapped (solid green symbols)
and free-diffusive regimes (open symbols) of the particle trajectory are identified. Scale bar denotes 2 μm. (b) Single-particle trajectories in
the free-diffusive regime (open symbols) are used to evaluate the mean-squared displacement (MSD), �r(�tlag), as a function of lag time,
�tlag, in two dimensions. A fit of the form 〈[(�r(�tlag)]2〉 = 4D�tlag + ε2, where ε represents the particle localization uncertainty, yields D

[36]. Here, �tlag = 5.5 ms and each symbol represents a different nanosphere. (c) Normalized probabilty distributions Pn(�tOFF) are presented
for two particles in panel (b). The open bars correspond to circular symbols and solid bars to square symbols in panel (b). The simulated
tOFF vs rH is linear in the large W regime (inset, gray symbols). The intercept of the linear fit (black line) corresponds to the exposure time,
texp, used in the simulation and experiment, while the slope, as expected, carries information on the effective pitch λ′. Here we find from the
experimental dataset λ′ = 1.6 ± 0.01 μm. (d) Both MSDlattice and tOFF approaches yield independent measures for rH for individual particles
that are in good agreement. Data for individual nanospheres (left to right) correspond to the data series in panel (b) from top to bottom. (e)
The hard sphere radius of the beads was characterized via atomic force microscopy (AFM). The height of a sample of spheres spin coated
on a glass slide averaged over 90 particles agrees well with the nomimal diameter of the sample. (f) Comparison of size values measured by
different approaches including dynamic light scattering (DLS) are in excellent mutual agreement. Please note that while AFM measurements
provide information on the hard sphere radius of a particle, the other four approaches directly measure rH.

TABLE I. Measurements of hydrodynamic radius, rH, and ef-
fective charge, qm, averaged over all single-molecule measurements
reported for each species in Fig. 7. For comparison, we include
independent rH measurements using ensemble-averaging techniques,
and theoretically expected values of effective charge, qc, including
the contribution of the dyes.

rH

(nm) qc qm

FCS/DLS tOFF (−e) (−e)

Nanospheres 23.4 ± 10 20.9 ± 4.8 181.7 ± 12.6
Stm-l 8.7 ± 0.5 7.9 ± 2.1 89.6 105.5 ± 21.6
60 bp 4.5 ± 0.2 4.7 ± 0.9 43.4 37.9 ± 4
40 bp 3.2 ± 0.2 2.4 ± 0.4 32.7 32.1 ± 5.1
10 base 1.8 ± 0.1 1.5 ± 0.8 10.9 8.3 ± 1.9

exponentials of the form

ψ(z) = ψs{exp(−κz) + exp[−κ(2h − z)]}, (4)

where ψs is an effective surface potential at each surface of
the slit and 2h is the height of the slit. This approximation
works well because the Boltzmann distribution ensures that
the molecule essentially never samples the region very close
to the surfaces, where differences in the electrical potential
between the nonlinear PB solution and the equivalent linear
theory could arise.

We know from our previous measurements in this
system that setting ψs = 2.8kBT/e in Eq. (4) yields
qm = −88.8 ± 3.5e, which is nearly identical to the theoreti-
cally expected effective charge qc = −89.6e for the disordered
protein Stm-l [19,23]. Stm-l thus serves as the “calibration
molecule,” which determines the value of the surface potential
in Eq. (4) that should hold for all measurements under the same
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FIG. 7. Measurements of hydrodynamic radius and effective
electrical charge of single biomolecules in solution. Each data
symbol corresponds to the information obtained for a single object,
from top to bottom: 24-nm-radius FluoSpheres (light blue), an
intrinsically disordered protein, Stm-l (gray), 60 bp dsDNA (blue),
40 bp dsDNA (red), and 10 base ssDNA (green). Error bars are
standard error of the mean (s.e.m.) and are presented for one molecule
of each species. Vertical lines denote the theoretically expected
charge, qc, while horizontal bands correspond to radius measurements
from fluorescence correlation spectroscopy (FCS) on molecules and
DLS for particles (band thickness indicates measurement standard
deviation). On the right, structural representations of the measured
species are reduced by the scaling factor noted.

conditions. Note that an effective surface potential of 2.8kBT/e

corresponds to a value of pKa = 9.5 in a charge regulation
model of the silica-water interface surface, excluding the Stern
layer [23,40]. This value is consistent with trends emerging
from the most recent experimental and theoretical work on
amorphous silica surfaces [41,42].

We introduce solutions of each molecular species into
the free-energy landscape and record typically 10 molecular
migration trajectories in each case. We report measurements on
10 base single-stranded (ss) DNA, 40 bp double-stranded (ds)
DNA, 60 bp dsDNA, and and the starmaker-like intrinsically
disordered protein (Stm-l, molecular weight 40 kDa) [20].
The effective charge and hydrodynamic radius values for
these molecular species span a range of about one order of
magnitude. The combination of measured tON and tOFF values
for each molecule together determines its measured effective
charge qm as well as its hydrodynamic radius, rH, as shown in
Fig. 7. qm and rH values averaged over about 10 molecules for
each species are shown in Table I.

Note that since the data on each molecular species were not
averaged over several independent experiments, the accuracy
on all the reported charge values in this work is not expected
to be better than within ∼20% due to the ca. 1 nm uncertainty
in determining the slit height, 2h, in a single experiment.
The accuracy at the level of the single measurement can be
improved using sequential measurement in the same lattice that

FIG. 8. (a) SEM images of two lattices of pitch λ = 2 μm and
nanostructure radius, R1 = 150 nm (left) and R2 = 300 nm (right).
Solid circles represent the circumferences of the surface nanos-
tructures and the effective lattice pitch, λ′

i = λ − 2Ri , is indicated
in blue. (b) The plot compares the experimentally measured time
scales (circles) for the Stm-l molecule with those expected from the
simulation (squares), where qeff = qc = −89.6e and rH = rH,FCS =
8.7 nm. Filled symbols represent tON and open symbols give tOFF

values. Reported experimental values are averages over data from
five molecules. The errors on the simulated values are smaller than
the symbols.

entails first measuring a known standard and then the molecule
of interest, or by parallel measurement on spectrally resolvable
molecules [19]. Doing so would permit highly accurate single
measurements with statistically limited precision.

We further subjected the measurement concept to a test of
robustness with respect to the choice of landscape parameters,
namely effective lattice pitch and radius of the potential wells.
We report measurements performed on the Stm-l molecule
in lattices with different nanostructure radii, R1 = 150 nm
and R2 = 300 nm, but identical pitch λ = 2 μm [Fig. 8(a)].
We expect both time scales to respond to this change in
lattice geometry: on-times, tON, depend on the area of the
trapping nanostructures, while off-times, tOFF, are expected to
scale with the area of the “field-free” region of the lattice.
In fact, we find that tON values measured in lattice 2 are 3.6
times larger than in lattice 1, close to the expected value,
(R2/R1)2 = 4. Conversely, in lattice 2, the measured tOFF is
smaller than the value in lattice 1 by a factor 2. Here, the ratio
of off-times is expected to correspond to the squared ratio of
the effective lattice pitch values, (λ′

1/λ
′
2)2 = 1.8 ± 0.1, where

λ′
i ≈ λ − 2Ri . The measured data are in remarkable agreement

with the simulation predictions for a molecule of effective
charge, qeff = qc = −89.6e and rH = rH,FCS = 8.7 nm, which
correspond to the properties of Stm-l [Fig. 8(b)].
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FIG. 9. (a) Measurements of tOFF (empty symbols) and tON (solid
green symbols) for representative single 60 bp dsDNA molecules.
Error bars denote s.e.m. over the number of hops, Nhop, indicated
by each symbol. (b) Inferred rH and qm values for each molecule in
panel (a). (c) Plots of measured fractional errors on rH and qm vs
Nhop for the data in panel (a). The lines represent fits of the form
|xe/x| = Ax/

√
Nhop, where x denotes the measurable: either qm or rH.

For rH, we find Ar = 1.7 ± 0.1, in good agreement with the expected
value of 1.9 ± 0.15, while for qm we obtain Aq = 0.87 ± 0.05, close
to the expected value of 0.82 (see Appendix D for error propagation).

Next we focus on the experimentally attained precision
in our single molecule measurements. Data acquired on
representative single molecules of 60 bp dsDNA with the
values of Nhop ranging from 5 to 100 are shown in Fig. 9.

FIG. 10. (a) Measurements of tOFF and tON compared for ∼5
molecules of 40 bp (red symbols) and 60 bp dsDNA (blue symbols).
While the values of tOFF are nearly indistinguishable (〈tOFF,40bp〉 =
24.4 ± 3 ms and 〈tOFF,60bp〉 = 25 ± 4 ms), the simultaneously mea-
sured on-times, tON, are well resolved (〈tON,40bp〉 = 15 ± 2 ms and
〈tON,60bp〉 = 32 ± 3 ms). (b) A surface plot of tOFF = f (W,rH) reveals
nonmonotonic behavior of tOFF in the low (W,rH) regime which results
in similar 〈tOFF〉 values for the two species, despite their different
hydrodynamic radii. Overlapping isobands of measured 〈tOFF〉 for 40
and 60 bp dsDNA molecules are demarcated by dotted (60 bp) and
solid (40 bp) contour lines. Including information on tON, however,
permits unique values of W and rH to be assigned to each species
(square symbols). (c) Tabulated averages of measured qm and rH

reveal good agreement with the theoretically expected values of qc

and rH, independently measured via FCS.

Figure 9(c) shows that the precision we obtain on measure-
ments of both qm and rH is statistically limited, with Nhop

currently determined by the field of view in the imaging
system. Clearly, improvements on this front will lead to more
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precise measurements on a single molecule, approaching at
least the precision shown in the measurements in Table I.

Finally, we demonstrate an interesting effect in the ex-
periment that can arise in the measurement of two similar
molecular species. We observe that the comparatively weak
trapping of a smaller, less charged molecule—say, species 1
(40 bp DNA)—can result in a measured tOFF value comparable
in magnitude to that obtained for the larger, more highly
charged, and more stably trapped molecule of species 2
(60 bp DNA) [Fig. 10(a)]. An intuitive conclusion from the
magnitudes of the measured (tON, tOFF) data would point to
different effective charges but the same hydrodynamic radius
for both species. Notably, however, the simulation analysis
assigns (qm, rH) values to the measured (tON, tOFF) data
that are in very good agreement with expectations for both
molecules, where not only the effective charge values but also
the hydrodynamic radii are significantly different [Fig. 10(c)].

The reason behind this counterintuitive observation is due to
a well-depth-dependent effect on the dynamics. Free-diffusive
transport terminates once a molecule is absorbed or trapped
at a lattice site. If the field at the periphery of the potential
well is strong, which generally implies that W is large, the
capture probability is high, which means that a molecule that
samples this region will very likely be rapidly drawn to the
bottom of the well and free diffusive transport terminates. For
low values of W, however, the force toward the bottom of
the well is smaller, and on short time scales the molecule is
statistically highly likely to return to the free diffusion zone;
this inflates the measured tOFF in an experiment (Fig. 13 in
Appendix C). In general, we find that return probabilities
broadly defined, within the finite observation window, strongly
influence measured time scales. Correctly accounting for the
time-averaged dynamics and well-depth-dependent effects is
therefore critical for accurate conversion of the measured time
scales into physical parameters of interest.

VI. CONCLUSIONS

Our study introduces lattice diffusion in an electrostatic
landscape as a new experimental route to simultaneously
measure both the hydrodynamic radius and the effective
electrical charge of a single molecule in solution. The approach
relies on standard wide-field optical microscopic observation
of single fluorescently labeled molecules and also lends
itself well to label-free imaging and measurement techniques
[43,44]. Although our initial effort to establish the concept
required an in-depth simulation-based analysis of Brownian
motion in a 2D landscape, we point out that such studies
yield simple functional dependences of the expected time
scales on the magnitudes of the relevant physical properties
of interest [Figs. 5(c) and 5(d)]. These relationships can then
be broadly and directly applied to future measurements with
simple rescaling to account for variations in experimental or
system parameters.

Our combination of experiment and simulation in a periodic
landscape has further revealed interesting features relevant
for interpreting and understanding experimental observations
on diffusive transport in a periodic potential. For example,
while for large values of W, tOFF decreases monotonically with
decreasing rH and is independent of well depth, as intuitively

expected, we find interesting nonmonotonic behavior for small
W (< 5 kBT ). Here the measured time spent by an object of a
given rH in the field-free region of the lattice can be larger than
that expected for high W [Figs. 5(d) and 10(b)]. We find that
this effect is due to the finite return probability of the molecule
spatially sampling the edge of the well (Appendix C). In other
words, the behavior in the regimes of high and low W (or
equivalently, effective charge, qeff) are qualitatively delineated
by the gradient of the potential at the periphery of the trap.

Further, the experiment we report holds significance for
single-molecule studies, both in terms of direct optical mea-
surement of static and dynamic molecular structural properties
as well as in order to understand and interpret experimental ob-
servations of molecular transport in natural periodic systems.
Since both the hydrodynamic radius and effective charge of
a macromolecule depend on molecular 3D conformation, our
new measurement principle paves the way toward experiments
that explore static 3D conformation, or slow temporal changes
of conformation, in a single macromolecule in solution.
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APPENDIX A: DEPENDENCE OF ON-TIME ON
THE LOCATION OF THE ESCAPE BOUNDARY

We analyzed the dependence of tON on the location of the
the escape boundary, resc using BD simulations. For a lattice
of pitch λ = 2 μm, we examine molecular residence times in
two different regimes: ldiff � λ, corresponding to a molecule
of rH = 1 nm, and ldiff < λ for a molecule of rH= 20 nm. In
the former regime, we find that tON is nearly insensitive to resc

while in the latter we note up to a factor 2 variation in tON

depending on resc [Fig. 11(b)].

APPENDIX B: DETECTED OPTICAL SIGNAL FROM
MOLECULAR MIGRATION IN THE LATTICE

A lattice area of 100 μm2, typically containing ∼20 lattice
sites, is monitored via wide-field fluorescence microscopy.
Figure 12(a) shows a subset of a typical array that can be
sampled by a single molecule during 1–10 s of observation
time. The mean fluorescence intensity of each trap is monitored
separately in time. The traces are then rescaled, binarized, and
superimposed on each other in order to obtain the overall
temporal lattice intensity signal [bold black line in Fig. 12(b)].
The high-intensity bursts in the trace give the time spent at
a lattice site and the average thereof yields tON. The average
“dark time” in the trace in which none of the lattice sites
appears occupied gives tOFF.
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FIG. 11. (a) An SEM image of two trapping nanostructures of
radius, R = 150 nm at a pitch λ = 2 μm. The solid circle denotes the
circumference of the nanostructure, while the broken circle of radius
resc indicates the escape boundary. The red solid line in the lower
panel represents the radial electrostatic free energy profile along the
red line in the image above. (b) The simulated value of tON obtained
for each resc is normalized by the value obtained for resc = 800 nm.
The simulated dataset for rH = 1 nm (λ ≈ ldiff ) shows a weak
dependance on resc (black symbols). For rH = 20 nm, we find a strong
variation in this time scale, as the average molecular diffusion length is
smaller than the lattice pitch (gray open symbols). The vertical dotted
line indicates the resc used for the analysis of the single-molecule
transport for the depicted lattice geometry.

APPENDIX C: DEPENDENCE OF OFF-TIME
ON WELL DEPTH

In order to study the dependance of tOFF on well depth
W and in particular its nonlinear behavior for W < 5kBT ,
we performed BD simulations. We studied the probability
of capture of a molecule at traps in the lattice. The capture
probability is defined as the ratio of the number of trapped
events, n(�tON) to the total number of events capable of
resulting in capture. The latter quantity is given by the number
of instances in the trajectory that satisfy 〈r〉texp < resc, with
reference to each trap in the lattice.

For a molecule of rH = 3 nm, we find than the probability of
being captured by a well decreases with decreasing well depth

FIG. 12. (a) Wide-field fluorescence images of a lattice of four
trapping nanostructures of R = 150 nm and λ = 2 μm. The average
intensity of each circular region of interest (ROI) (black), centered
on the lattice sites, is monitored in time. (b) Temporal intensity
traces corresponding to three individual lattice sites are denoted by
a different color. When the molecule occupies a lattice, the intensity
recorded in the corresponding ROI is high, while the others appear
dark. Each recorded trace is rescaled and binarized in order to com-
pensate for heterogeneity in the illumination across the entire field of
view.

[Fig. 13(b)]. This is due to the fact that when the trapping
force is weak, a small rapidly diffusing molecule sampling the
edge of the potential well can evade escape and return to the
“field-free” zone, all within a time period < texp. This gives
rise to a longer lived tOFF state. By contrast, at greater well
depths a molecule sampling the edge of the well is very likely
to reach the bottom and remain trapped for at least t = texp, as
reflected in the increased capture probability. In general, for
larger molecules [e.g., rH= 9 nm, Fig. 13(b)], given the same
exposure time in the observation, the influence of well depth
on the capture probability is weaker, as the diffusive dynamics
is slower.

APPENDIX D: ESTIMATING MEASUREMENT
UNCERTAINTIES

The measurement error, xe on a quantity x, which is a
function of the variables f , g, h, etc., each with uncertainties
fe, ge, he, etc., can be expressed as follows:

xe =
√(

∂x

∂f

)2

f 2
e +

(
∂x

∂g

)2

g2
e +

(
∂x

∂h

)2

h2
e + · · · (D1)

In our experiment, the main source of error in the determina-
tion of both molecular effective charge, qeff , and hydrodynamic
radius, rH, arises from the statistical uncertainty in measuring
tON and tOFF in a temporally limited experiment. Here both
time scales, �tx (where x is either ON or OFF) are exponentially
distributed. Thus, the measurement error tx,e on their average
value, tx, is function of the number of detected events or hops,
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FIG. 13. (a) Schematic of a particle sampling a lattice of four
traps. The blue solid line indicates the circumference of the surface
indentations of radius R, while the dotted blue line shows the escape
boundary resc. The molecule is considered “captured” if its trajectory
results in a trapped state for a period � texp once it traverses resc.
(b) The probability of a molecule being trapped once it samples the
area within the escape boundary of a given pocket increases with
increasing well depth for a molecule of rH = 3 nm (black squares),
while the response is less pronounced for a molecule of larger radius
(rH = 9 nm, gray circles). Dashed lines are guides to the eye.

Nhop, as follows:

tx,e = tx√
Nhop

. (D2)

First, we consider the measurement error on rH. The
measurement uncertainty on rH is nearly entirely due to
the statistical error in measuring an average off-time from
a limited number of hops. We have established that the
relationship between tOFF and the diffusion coefficient of the
molecule of interest, D, is well described by tOFF = λ′2/4D,
where λ′ is the effective lattice pitch. This expression can be
rewritten in terms of rH using the Stokes-Einstein relation as

follows:

rH = 4kBT

6πηλ′2 tOFF = a1tOFF. (D3)

Equation (D1) then gives the uncertainty on the hydrody-
namic radius, rH,e:

rH,e =
√(

∂rH

∂tOFF

)2

t2
OFF,e = a1tOFF,e. (D4)

Using the expression for tOFF,e given by Eq. (D2), we have
for the fractional uncertainty on rH

rH,e

rH
= a1

rH

tOFF√
Nhop

= Ar√
Nhop

. (D5)

Holding other parameters constant, the measurement error
may be decreased by tuning the parameter a1, which is
inversely proportional to the squared effective pitch λ′. Clearly,
a large lattice pitch would improve the accuracy of the method;
however, the lattice pitch is limited by the field of view
in the measurement. On the other hand, for very small λ′,
the molecule would see a landscape of contiguous potential
wells and never appear in the off-state, thus hindering the
measurement. For the conditions of the experiment illustrated
in Fig. 9, we determine the value of Ar = a1tOFF/rH to be
1.9 ± 0.15 (λ′ = 1.6 ±0.05 μm, rH = 4.7 nm, and tOFF =
25.5 ms). This is in good agreement with the experimental fit
value 1.7 ± 0.1 in Fig. 9(c). Thus, 10% measurement error on
tOFF (Nhop = 100) would correspond to ∼17% error on rH.

Next, we estimate the error on the measured effective
charge, qm, of the molecule. As described in the Supporting
Information of our previous work [19], qeff , hereafter referred
to as q, depends on the measured time scale tON as follows:

qψm + f = kBT ln

(
tON

tr

)
. (D6)

Here ψm denotes the electrical potential at the midplane of
the slit and f is a particle fluctuation contribution to the total
trap depth, W . This contribution is almost entirely entropic in
origin and is essentially independent of q. tr in turn reflects
a position relaxation time of the particle, which again can be
written in terms of a diffusion time scale, tr = L2/4D. Here
L is a length scale on the order of resc, the radius of the
escape boundary. The position relaxation time can therefore
be rewritten in terms of rH as tr = L2

4kBT
6πηrH = a2rH.

Equation (D6) now reads

qψm + f = kBT ln

(
tON

a2rH

)
. (D7)

Thus the fractional error qe/q according to Eq. (D1) is

qe

q
=

√(
1

q2

)(
∂q

∂ψm

)2

ψ2
m,e +

(
1

q2

)(
∂q

∂tON

)2

t2
ON,e

+
(

1

q2

)(
∂q

∂rH

)2

r2
H,e. (D8)

The first term in Eq. (D8) represents the uncertainty in
the determination of the midplane potential. This aspect has
been discussed at length in our previous work [19], and arises
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from the uncertainty in determining the slit height with an
accuracy better than he = 1 nm. For a molecule whose radius
is known a priori from an independent measurement, and
where the escape dynamics is well sampled (Nhop > 100), as
in our previous work, this first term would be the main source
of error, and is estimated at about 6% when averaging over
four to five independent experiments. In a single experiment,
however, where the height of the slit maybe depart from the
mean value by as much as 2 or 3he, this (single) measurement
inaccuracy can be as large as 18%.

In the current experiment, short single-molecule trajectories
are also affected by the statistical noise on tON (second term). It
turns out that the total measurement error is in fact dominated
by the measurement error on rH (third term), which is measured
simultaneously here.

As reflected in Eq. (D5), rH,e itself is a function of the
number of hops, Nhop. The second and third terms thus
essentially represent the error due to statistical noise, (q/qe)N,
and can be written as follows:(

qe

q

)
N

=
√(

1

q2

)(
kBT

tONψm

)2

t2
ON,e+

(
1

q2

)(
− kBT

ψmrH

)2

r2
H,e,

(D9)

which simplifies to

(
qe

q

)
N

= 1√
Nhop

kBT

qψm

√
1 +

(
a1tOFF

rH

)2

= Aq√
Nhop

. (D10)

The first term in Eq. (D9) represents the contribution of
statistical noise on tON to the overall measurement error. As
noted in previous work, the logarithmic dependence of q on
the escape time (on-time) means that poorly sampled dynamics
will still give a relatively precise charge measurement. Also,
as the electrostatic well depth qψm is larger, the attenuation of
the statistical noise, 1/

√
Nhop, is greater. In this experiment,

we have 〈qψm〉 = 2.6 kBT . Thus 10% error in determining
tON corresponds to only ∼4% error on q. However, the
second term in Eq. (D9)—which arises from the uncer-
tainty on rH—contributes predominantly to the overall error.
Under the experimental conditions concerned, we calculate
Aq = 0.82, which is very close to the fit value 0.87 ± 0.05
from Fig. 9(c).

To conclude, given Nhop = 100, we expect ∼9% error
on the measured q value arising from statistical uncertainty
alone. Including the contribution from the uncertainty on the
midplane potential, ψm, we estimate an overall uncertainty or
measurement inaccuracy of ∼20% in a single measurement.
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