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Nanoscale dynamics with cycles of receptor diffusion and immobilization by cell-external-or-internal factors
is a key process in living cell adhesion phenomena at the origin of a plethora of signal transduction pathways.
Motivated by modern correlation microscopy approaches, the receptor correlation functions in physical models
based on diffusion-influenced reaction is studied. Using analytical and stochastic modeling, this paper focuses
on the hybrid regime where diffusion and reaction are not truly separable. The time receptor autocorrelation
functions are shown to be indexed by different time scales and their asymptotic expansions are given. Stochastic
simulations show that this analysis can be extended to situations with a small number of molecules. It is also
demonstrated that this analysis applies when receptor immobilization is coupled to environmental noise.
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I. INTRODUCTION

Image correlation microscopy typically measures corre-
lation functions for concentration fluctuations in a small
volume of excitation [1,2]. For such volumes with a small
number of tagged molecules, fluctuations of the fluores-
cence are distinguishable from averages. Analyzing these
fluctuations through temporal correlations allows determining
the time course of the biochemical reactions occurring in
the illuminated focus. Because of these developments, these
methods have been intensively applied in cell biology where
immobilization and signaling are generic questions [3,4].
In particular, the spatiotemporal dynamics of receptors at
adhesive sites have been characterized using a wide range of
techniques to investigate key events taking place in adhesive
sites [5–11]. One advantage of the fluctuation microscopy
techniques is that they give information about the binding
and unbinding of receptors to intracellular components or to
extracellular factors, these processes being at the origin of the
mechanoregulation of cell signaling [12,13].

This paper revisits the problem of calculating noise cor-
relation functions for a 2D-diffusing receptor binding to and
unbinding from an immobile substrate, i.e., an extra or intra-
cellular factor; see Fig. 1. Integrins receptors cycling between
different affinity states are prototypical receptors [12]. They
link the extracellular microenvironment to the intracellular
cytoskeleton-associated partners in adhesive zones, which are
loosely organized into clusters [5,9–11,14]. These references
point out that the nanoscale dynamics of integrin receptors in
these adhesive zones is characterized by cycles of 2D diffusion
and immobilization with a large distribution of residence times
[9]. From the theoretical point of view, this problem has
been studied in the past; see Ref. [15] and references therein.
Working in the limit of large excess of ligands, these references
assume different asymptotic regimes where either diffusion or
reaction dominates so that the problem is computationally
simplified. The present paper goes one step further, both
from the analytical and numerical point of view. It gives a
more precise analysis in all regimes and derives simple exact
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results valid in all cases in the small time limit. The role
of boundary conditions is demonstrated for experimentally
relevant systems where adhesive disks are in contact with a
reservoir of freely diffusing particles and, to avoid introducing
artifacts, situations where neither receptors nor ligands are in
excess are considered. This approach is supported by analytical
and numerical calculations. Stochastic simulations sampling
all the configuration space are shown to give reliable results
for the autocorrelation functions. This allows us to study more
complex situations for receptors cycling between different
conformational states and where an environmental noise
induces large spatial and temporal fluctuations in the number
of ligands. The preceding analysis also applies in this case and
it is shown that the dynamics of immobilization sites can be a
powerful mechanism to regulate cell adhesive properties.

In the limit where ligands are in excess, the findings are
summarized in Fig. 2 where the diffusion time τD is defined
for a sampled region of area πw2. Using this time as a reference
time scale for the effective binding, k�

b , and unbinding, ku, rates,
the product (k�

b + ku)τD = 1 compares the two characteristic
times where the correlations regress either via reaction or
diffusion. Below this line, reaction and diffusion are not
truly separable. Analytical expressions for the autocorrelation
function are given in Eqs. (22)–(25) for parameters below this
line. In the sufficiently low binding rate regime, the signature
of this regime is a hybrid algebraic decay in the short limit
combined with a long exponential decay due to reaction in the
long time limit. I give an exact result valid in the very small
time scale limit for all regimes, see Ref. (19), as well as the
asymptotic forms for the autocorrelation functions. Stochastic
simulations show that this analysis still holds in the limit where
the ligands are not in excess if the effective rate constants are
properly defined.

The plan of this paper follows this introduction and is
followed by appendices with mathematical details.

II. THE MODEL

To introduce the notations, let I be a receptor cycling
between two conformational states I↑ and I↓,

I↑
k+
�
k−

I↓, (1)
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FIG. 1. Receptors cycling between two conformational states
diffuse on a two-dimensional membrane and they interact with
immobilized ligand. Illumination through a Gaussian point-spread
function (PSF) allows us to count the total number of receptors in the
PSF region and to evaluate their time correlation functions.

where the down arrow symbolizes the extended conformation
characteristic of integrin receptor in its active conformation.
Let us assume that receptors can interact with a fixed ligand
L and form a complex I−L via a reversible interaction. This
reaction occurs only when the receptor is in its down high-
avidity conformation I↓,

I↓ + L
kb

�
ku

I − L. (2)

Otherwise stated, the affinity of I↑ with L is so small that
only reaction is considered [Eq. (2)]. The constants kb,u, b

standing for binding and u for unbinding, are rate constants.
In both states, I↑,↓, the receptor I diffuses on the membrane
with diffusion coefficient D = D↑,↓. Typically I↑ represents
an integrin in its nonactivated state and I↓ an integrin in
its activated state with a much larger affinity for an outside

FIG. 2. Diagram for the receptor correlation function I (t) for
different sets of parameters. The two rate constants, k�

b and ku, b for
binding and u for unbinding, are renormalized by the diffusion time.
The slanted doted line corresponds to the boundary above which
reaction is faster than diffusion. The three functional forms I0(t),
I1(t), and its asymptotic form I1,a(t), are defined in the text; see
Eqs. (21), (24), and (25). The effective diffusion limit matches the
free diffusion for large unbinding rates ku as indicated by the arrows.

FIG. 3. Snapshot of a stochastic simulation. This plot is a
color density plot corresponding to ligated receptors I−L in each
compartment. The central disk corresponds to the adhesive region
where the ligands are immobilized. Outside this region, the receptors
freely diffuse without interacting with ligands and can exchange with
a reservoir at the boundary of the square windowpane. The region
S of width w for computing the correlation functions is inside the
adhesive disk. The mean density of freely diffusing receptors inside
and outside the disk are the same because of equal diffusion constants.

ligand, i.e., fibronectin, or an inside ligand, i.e., a cytoskeleton
element.

We work with surface densities n↓, n↑, nb, and l for
activated, nonactivated, bound receptors, and free ligands,
respectively. Assuming for the moment that most of the
integrins are in their activated state, the model is written as
a system of first-order kinetic equations,

∂tn↓ = D�n↓ − kbln↓ + kunb, (3)

∂tnb = +kbln↓ − kunb, (4)

where � is the two-dimensional Laplacian operator for diffu-
sion. The usual mean-field approximation assumes negligible
ligand fluctuations, so that one can define the effective rate
constant using the average l0 with k�

b = kbl0. For an adhesive
disk in contact with a reservoir of diffusing receptors, the
large ligand limit poses, however, problem in the long time
residence limit, since all receptors tend to accumulate at the
adhesive- non-adhesive boundary. In what follows, it will be,
therefore, appropriate to consider a finite density of ligands in
this regime.

The system of Eqs. (3) and (4) is well posed when boundary
conditions are specified. In what follows, I will use two
boundary conditions to calculate the fluctuations around the
mean. The first is the usual reflective, or zero flux, boundary
condition with a fixed number of molecules. The second is the
open boundary condition where receptors are in contact with
a reservoir with a given average density n↓; see Fig. 3. This
condition applies to heterogeneous systems where experiments
probe only adhesive sites in contact with the surrounding cell
membrane. Stationary solutions for the two cases differ, since
the population of freely diffusing receptors in the adhesive
disk is set by the density outside the disk when the diffusion
constants are equal. For reflective boundary conditions, the
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fractional population of freely diffusive particles is determined
by their interaction with the ligands and the autocorrelation
functions have different properties in the two cases.

The observable quantity in FCS-like experiments corre-
sponds to the weighted correlation function,

I (t) =
∫∫

w2
dμ(x)dμ(x′) 〈δn(x,t)δn(x′,0)〉, (5)

where the total density contributes to the fluorescence volume:

δn(x,t) = δn↓(x,t) + δnb(x,t). (6)

The symbol 〈. . .〉 refers to the average over the stationary
distribution corresponding to the problem defined in Eqs. (3)
and (4).

The long time limit of the weighted correlation functions in
Eq. (5) does not depend on the conditions of illumination. It is
usual to take a Gaussian average for the point-spread function
as

dμ(x) = e−2x2/w2
d2x. (7)

We will see, however, that the short time limit depends on the
geometry of the illuminated area. Using the Lax and Mengert
argument [16], correlation functions probe the conditional
probability to find a random walker in the illuminated region
at time t given that it was in that region at time t = 0.
When t is small compared with all other times, the correlation
function probes only random walkers at the periphery of the
illuminated region and thus the tails of the Gaussian. It is
therefore instructive to compare the Gaussian measure with
the strong cutoff measure,

dμ(x) = �(w2 − x2), (8)

where �(r) is the step function, �(r) = 1 if r > 0 and 0,
otherwise. The case of Eq. (7) corresponds to the classical
Gaussian illuminated case and Eq. (8) for the sharp circular
illuminated measure, the latter case being appropriate when
averaging is done over a region larger than the Gaussian point-
spread function.

III. SUMMARY OF THE METHOD

To compute Eq. (5), I follow the Onsager’s regression
hypothesis, which states that microscopic fluctuations cannot
be distinguished from macroscopic regressions toward equilib-
rium when the system is initially prepared in a nonequilibrium
state [17]. If we define n = n↓ + nb, we have

〈δn(x,0)δn(x′,0)〉 = 〈δn2
↓〉δ(2)(x − x′) + 〈

δn2
b

〉
δ(2)(x − x′)

+ 2〈δn↓δnb〉δ(2)(x − x′), (9)

where 〈δn2
↓〉, 〈δn2

b〉 satisfy Poisson’s statistic with 〈δn2
↓,l〉 =

n↓,l . Because n↓ is a diffusing field, the cross-correlation
〈δn↓δnb〉 is assumed to be zero.

As usual, Eqs. (3) and (4) are solved by Fourier transform-
ing in space,

δñ↓,l(k,t) = 1

(2π )2

∫
d2x δn↓,l(x,t)e−ik.x, (10)

where

〈δñ↓,l(k,t)δñ↓,l(k′,t)〉 = (2π )2〈δn2
↓,l〉δ(2)(k + k′). (11)

As a result, the macroscopic fluctuations �ñ±(k,t) obey
the following ordinary differential equation:

(
∂t δñ↓(k,t)
∂t δñb(k,t)

)
=

(−Dk2 − k�
b ku

k�
b −ku

)(
δñ↓(k,t)
δñb(k,t)

)
. (12)

Given initial conditions, we write the solution as

(
δñ↓(k,t)
δñb(k,t)

)
=

(
α11 α12

α21 α22

)(
δñ↓(k,0)
δñb(k,0)

)
, (13)

where [α] in Eq. (13) is a matrix with coefficients depending
on the wave vector k and on the time t . The matrix [α] is found
by using the eigenvectors and the eigenvalues of Eq. (12); see
the Appendix.

As usual, it is more convenient to work with dimensionless
quantities. We define q = w/2k and find for the Gaussian case

I (t) = π

4
w2

∫ ∞

0
qdq e−q2[

(α11 + α21)〈δn2
↓〉

+ (α12 + α22)
〈
δn2

b

〉]
. (14)

We have 〈δn2
↓〉 = 〈n↓〉 and 〈δn2

b〉 = 〈nb〉, and it is useful
to rewrite Eq. (14) as a weighted linear combination of
exp [
±(q)t] exponentials as

∑
±

∫ ∞

0
qdq e−q2

C±(q)e
±(q)t = I+(t) + I−(t), (15)

where C±(q) satisfies an equivalent condition of mass conser-
vation as

C+(q) + C−(q) = 1. (16)

Computing the integral Eq. (15) in all regimes is straightfor-
ward from the numerical point of view. It is, however, inter-
esting to derive its asymptotic forms in different asymptotic
limits. The usual procedure is to retain the dominant eigenvalue

+(q) in the small q limit and to neglect all variations for the
C±(q)’s. This leads to the so-called effective diffusion regime
with

I (t)/I (0) �
[

1 + ku

ku + k�
b

t

τD

]−1

, (17)

where ku/(ku + k�
b) is the fraction of unbound receptors. As

seen in the Appendix, this usual result is only valid if two
conditions are met. First, this fraction has to be large. Second,
the critical wave vector

q�
i = [τD(k�

b + ku)]1/2 (18)

must be larger than one so that the C±(q)’s vary slowly on
the scale set by the Gaussian factor, exp (−q2). In this case,
they can be safely approximated as constant. Plotting C±(q) as
done in Fig. 4 demonstrates that this condition for the effective
diffusion regime is equivalent to k�

bτD 	 1 as shown in Fig. 2.
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FIG. 4. Plot of C+(q) (continuous lines) and C−(q) (dotted lines)
for large and small fraction of bound receptors, ku/(ku + k�

b) = 0.99
and 0.5. Functions are steplike in the limit of small bound fraction
with a critical wave vector q�

i ; see Eq. (18).

IV. AN EXACT RESULT

To analyze Eq. (15) further for reflective boundary condi-
tions, it is useful to give an exact result valid in all regimes
of Fig. 2 and probing the very short time limit of the
correlation functions. Taking the derivative under the integral
sign, calculation shows that the slope is proportional to the
averaged fraction of freely diffusing receptors,

I ′(0)/I (0) = − ku

k�
b + ku

1

τD

. (19)

In other words, decreasing the bound fraction of receptors
shifts downwards the correlation function so that diffusion
and reaction cannot be considered as truly separable processes
even in the short time limit. This result is clearly validated
in the so-called effective diffusion limit but it holds true in
general. For open boundary conditions, the same calculation
shows

I ′(0)/I (0) = − 1

τD

. (20)

Equations (19) and (20) are signature of a Gaussian illumi-
nation. For the circular case with a sharp boundary, the slope
is minus infinity; see the Appendix. Curves are, therefore,
shifted downwards as seen from the following argument due
to Lax and Mengert [16]; see Fig. 5. Correlation functions are
equivalent to conditional probabilities that a random walker
leaving the illuminated region at time t = 0 is observed in this
region at a time t later. For small times t , only random walkers
near the boundary can influence this probability and the return
statistics depend on the way this boundary is defined.

V. ASYMPTOTIC FORMS OF THE AUTOCORRELATION
FUNCTION I(t)

Our results are more easily summarized if we define the
intermediate function I0(t) via its integral representation,

I0(t) =
∫ ∞

0
dq qe−q2+
+(q)t . (21)

FIG. 5. This figure illustrates the Lax and Mergert argument
[16] in the pure diffusion limit where the correlation I (t)/I (0) is
interpreted as the conditional probability for a random walker leaving
the illuminated region of width w at time t = 0 to be observed in this
region at a time t later. The diffusion length is (Dt)1/2. When t is
small, I (t)/I (0) probes only random walkers at the boundary of the
illuminated region. In the circular case where the boundary is much
more sharply defined than in the Gaussian point-spread function case,
one expects correlations to behave differently in the small time limit.

Explicit representations of Eq. (21) together with asymp-
totic forms are given in the Appendix. These results are valid
for both boundary conditions with effective rate constants if
necessary. In summary, we find the following cases:

(1) For τD(ku + k�
b) � 1, we find

I (t) ≈ I0(t). (22)

Compared with brute force numerical calculations, this asymp-
totic form holds even on the line (k�

b + ku)τD = 1 of Fig. 2;
see case (c) of Figs. 6 and 7. Using the asymptotic forms
of Eq. (21), we recover the effective diffusion limit with a
characteristic time

1

τeff
= ku

k�
b + ku

1

τD

(23)

and the pure diffusion limit when the unbinding rate ku

dominates over the binding rate k�
b.

(2) Below the dotted diagonal of Fig. 2, i.e., for τD(ku +
k�
b) � 1, we find

I (t) ≈ I1(t) ≡ k�
b

ku + k�
b

I0(t) + ku

ku + k�
b

1

1 + t/τD

, (24)

which is in general valid for sufficiently large t ; see case (d) of
Figs. 6 and 7. In the small t regime, it suffices to use condition
Eq. (19).

When k�
bτD � 1, Eq. (24) still holds; see cases (a) and (b)

of Figs. 6 and 7. Algebra can be simplified further in this limit,

I (t) ≈ I1,a(t) = 1

1 + t/τD

+ k�
b

ku + k�
b

t/τD

1 + t/τD

exp [−kut], (25)

062403-4



FLUCTUATION CORRELATION MODELS FOR RECEPTOR . . . PHYSICAL REVIEW E 96, 062403 (2017)

FIG. 6. Plots of the autocorrelation functions in different regimes
according to Fig. 2. In all cases, the dotted line corresponds to the
numerical evaluation of I (t)/I (0) versus t/τd , τd = 1, using Eq. (15).
In case (a), kbτD = 0.1, kuτD = 0.5 and in case (b), kb = 0.01, ku =
0.01. These two limit cases correspond to the regime where I (t) is
well approximated by the asymptotic form I1,a(t); cf. Eq. (25). The
apparent plateau in the long time limit of case (b) is due to the small
value of ku. The dashed line gives the slope at the origin and the dotted
line for the apparent value of the plateau is the fractional population
of receptors in the bound state kb/(ku + kb) = 0.5.

which differ from the result of Michelman-Ribeiro [15] by a
few percent in this limit. The exponential factor exp [−kut]
is responsible for the apparent plateau in the long time limit
for case (b) of Figs. 6 and 7. This asymptotic form satisfies
to condition Eq. (19) as evidenced by the coincidence of
the two plots of Figs. 6 and 7. This asymptotic form also
makes apparent that pure diffusion dominates the correlation
function in the small t limit but that reaction gives the
dominant behavior for larger t 	 τD . This expression is simply
interpreted. The factor k�

b/(ku + k�
b) accounts for the fractional

population of receptors bound to a ligand with a residence time
1/ku, and this term dominates in the long time limit when ku is
small compared with 1/τD . This is the characteristic property
of the hybrid regime.

VI. STOCHASTIC MODELING

For a small number of molecules, every chemical scheme
such as Eqs. (3) and (4) is probabilistic per nature [18]
and can be rewritten in terms of occupancy probabilities for
compartments paving the 2D plane simulating the membrane;
see Fig. 8. When this probability distribution is generated by
stochastic numerical methods we can calculate the autocorre-
lation functions by sampling the system over enough time. All
information is contained in the joint probability distribution

FIG. 7. Plots of the autocorrelation functions in different regimes
according to Fig. 2. Case (a) corresponds to the dotted diagonal
of Fig. 2 with k+τD = k−τD = 0.5. The continuous line is I0(t)
of Eq. (21). In case (b), kbτD = kuτD = 0.2, and we have applied
Eq. (24) for I1(t) (continuous line).

for observing n↑,↓,b(xi) molecules in the compartment i. I will
employ a compartment-based version of Gillespie’s algorithm,
which implements stochastic modeling of a diffusion reaction
process [19]. Each compartment is considered as homoge-
neous and compartments are coupled via diffusion. An event
is a chemical reaction taking place in a box or a stochastic jump
from one compartment to one of its neighbors. In the Gillespie
algorithm, kinetic rate constants are conditional transition
probabilities per time unit. From the sum of rates, the algorithm
generates the distribution of times for the next event and each
event is simulated with a probability proportional to its relative
propensity.

To illustrate this method, it is useful to consider Fig. 3 and
to represent the number of immobile integrins as a density
plot. In this example, the algorithm generates the probability
distribution for an equivalent biochemical scheme of Eqs. (3)
and (4). Introducing a finite density of ligands as a model
parameter, I consider systems of 50 × 50 boxes with a given
number of ligands per compartment. As before, I will consider
reflective and open boundary conditions.

Defining the equivalent illuminated surface as the partial
sum over a subset S of N boxes, the weighted time correlation
function equivalent to Eq. (5) is

I (t) =
∑
i,j∈S

〈n(i,t0)n(j,t0 + t)〉t0 , (26)

where the “intensity” n(i,t0) is the sum of the number of free
and ligated receptors in compartment i,

n(i,t0) = n↑(i,t0) + n↓(i,t0) + nb(i,t0). (27)
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FIG. 8. Schematic of the compartment-based model used in the
stochastic simulation. The system of size L is divided into L/h ×
L/h compartments playing the role of pixels. Diffusing receptors
(red dots) can jump from one compartment to its neighbor with a
rate D/h2, where D is the continuous space diffusion constant. Each
compartment is treated as an homogenous system where interaction
between molecules occurs according to first-order kinetics. Crosses
schematize fixed ligand molecules, the spatial distribution of which
is to choose to mimic the contact area. In the simulation presented
Fig. 3, 20 ligand molecules are distributed in the compartments
located near the center to mimic a circular illuminated volume.
Compartments located at the boundaries of system x, y = −10,+10
are periodically reshuffled with a multinomial distribution to mimic
an infinite reservoir.

The subset S plays an equivalent role of the characteristic
width w of the illuminated region and the partial sum in
Eq. (26) corresponds to the circular case of the preceding
section. Compared with the Gaussian cases that necessitate
updating partial sums, this is the fastest numerical method to
update, store, and save data while running the program. To
compute the correlation functions, we update Eq. (26) at each
time step and record the result if the new sum differs from the
preceding one. The time interval between two events is also
stored so that mean values and the variance can be computed
separately by considering I (t) as a stochastic variable.

As before, it is useful to define the diffusion time over the
equivalent illuminated area. For a subset of N compartments
in S, Nh2/π is the square of the equivalent disk radius. Thus,

τD = Nh2

πD
, (28)

where D/h2 is the renormalized diffusion coefficient for a
compartment of size h used in the stochastic simulator. In
what follows, Eq. (28) serves as a suitable reference time for
our simulations, since Fig. 9 demonstrates that we recover the
1/(1 + t/τD) law for free diffusing molecules.

Finally, since each compartment is treated as homogeneous,
the diffusion coefficient must obey

D/h2 � k�
b + ku, (29)

where k�
b is taken as its mean-field value, k�

b = kbl0.

0
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FIG. 9. Plot of the autocorrelation functions in the free diffusion
limit. The two sets of data are renormalized by Eq. (28) and collapse
on the universal 1/(1 + x) curve (w2 = 16,52 compartments). Nu-
merical corrections are only perceptible at very short time where the
numerical tangent is vertical.

To illustrate the numerical method, it is appropriate to go
beyond the mean-field approximation and to take into account
fluctuations in ligand concentration. The stationary solutions
of Eqs. (3) and (4) are easily found by solving an algebraic
system. Let n↓,0, nl,0, l0 be these solutions. The fluctuations
obey to linear order an equivalent system,

∂tδn↓ = Dδ�n↓ − kbl0δn↓ + (ku + kbn↓,0)δnb, (30)

∂t δnb = +kbl0δn↓ − (ku + kbn↓,0)δnb, (31)

where we have made use of mass conservation δl = −δn↓.
Since the system has the same functional form as for
reflective boundary conditions, it is easy to transcribe the
preceding results using effective rate constants (ku,eff = (ku +
kbn↓,0), kb,eff = k�

b).
Figure 10 presents our numerical date for the receptor corre-

lation function in the three cases of small, equal, or large ligand
concentration compared to receptor concentration. The from
the top to the bottom, the ratio between the two concentrations
varies from 1.5 to 0.5 with reflective boundary conditions.
First, the strong dissimilarities between the plots and the fast
convergence to the zero slope regime suggest that the asymp-
totic limit of large excess easily reached. Second, comparison
with the mean-field data demonstrates that our preceding
results remain valid for a small number of molecules but with
appropriate effective rate constants as defined in Eqs. (30) and
(31). Redefinition of rate constants due to ligand fluctuation
may, however, alter the interpretation strongly of the autocorre-
lation function as the sum of two parts, one for the free and the
other one for the bound fraction of receptors. This is also illus-
trated in Fig. 11 where we recover the long time tail limit of the
small ku hybrid regime. For all these curves with equal number
of ligands and receptors, almost all ligands are bound to
receptors with a very small fraction of free receptors in marked
contrast with the naive 1/2 result suggested by the plots.
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FIG. 10. Plots of the autocorrelation functions for different values
of ligands and receptor densities. From the top to the bottom curve
L = 30, 20, 10, with an average of 20 receptors per compartment
(kb = 10−3, ku = 5.0 10−5). The thin lines correspond to the mean-
field result using effective rate constants as explained in the text;
see Eqs. (30) and (31) with Eq. (25). Data correspond to reflective
boundary conditions.

VII. EFFECT OF NOISE

The usefulness of the stochastic simulator is to allow us
to consider limits where neither ligands nor receptors are in
excess. It is also the only way to study the biologically relevant
problem of noise due to environmental fluctuations. For the
receptor-ligand situation, this problem arises naturally when
the number of ligands in each elementary compartment is a
stochastic variable.

FIG. 11. Plot of the receptor correlation function
〈δn(t)δn(0)/δn(0)2〉 in the hybrid regime of part I. These
plots evidence the presence of two time scales in the small and long
time limit. The short time limit is characterized by the effective
diffusion time defined in Eq. (19). The long time limit exhibits,
however, an apparent plateau when ku is sufficiently small. From the
top to the bottom, ku = 5.0 10−a, a = 7, 6, 5, 4, with kb = 10−3. For
these simulations, the average number of ligands per cell equal the
average number of receptors per cell, i.e., 20 (reflective boundary
conditions).

FIG. 12. Figure illustrating the birth and death process by which
immobile ligands with symbol X are created with rate c and destroyed
with rate d in the adhesive disk; see Eq. (32). I−L complexes are
snapped with same probability.

To investigate this effect we can generalize the preceding
model by adding point (c) to points (a) and (b) as follows. (a)
Receptor I have two conformational states, I↑, ↓, and diffuse
on the membrane with diffusion constant D↑,↓, respectively.
(b) Receptors in state ↓ bind and unbind from ligands with
rates kb,u. Receptors bound to ligands form a complex I − L.
Receptors in state ↑ cannot bind to ligands. (c) The number
L of free ligands is a stochastic variable and follows the
statistics of a molecule experiencing a birth-death process,
which controls their number and their lifetime. This scheme
can be summarized as follows, see Fig. 12:

∅

c
�
d

L

I − L
d→I↓

, (32)

where c and d are kinetics rates for creation and destruction.
The ratio c/d fixes the mean density of ligands by 〈L〉 = c/d.
This ratio is constant under rescaling of both c and d. Thus,
varying c and d at constant ratio interpolates between a
fast fluctuating regime compared with the integrin binding-
unbinding cycle and a slow turnover regime where integrins
experience many cycles before a change in the number of
ligands takes place.

A first point is that these fluctuations regulate the number of
integrin-ligand complexes by a simple mechanism. The plots
of Fig. 13 give the instantaneous number of complexes I↓ − L
in a region of width w for three typical numerical runs all
starting at time 0 with the same initial condition with zero
complex I↓ − L. The ratio c/d being the same in the three
cases, the average ligand concentration is the same for all
plots with the top curve corresponding to a slow and the bottom
one to a fast ligand turnover. After a transient period of time
corresponding to the first binding-unbinding events, all the
three curves sample their stationary distribution and fluctuate
around their mean. Increasing the dynamics for the fluctuations
of the number of ligands L leads to the following observations.
(a) The mean number of receptor-ligand complexes I−L
decreases with increasing c and d at fixed ratio c/d. (b) The
fluctuations in the number of I − L do not scale with the mean
as they do if statistics were Poissonian, i.e., 〈δn2〉 ∝ 〈n〉. Point
(a) is easily understood, since if the number of ligands varies
to rapidly in each compartment, only a small subset of them
can form a complex with the receptors. The limit of very fast
turnover of ligand is thus equivalent to the large unbinding
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FIG. 13. Number of receptor-ligand complexes I−L in a circular
domain of size w2 = 52 compartments. The time t = 0 coincides with
initial conditions with zero number of ligand-receptor complexes.
The three cases shown correspond to slow (top curve) and fast ligand
turnover. After a transient period the number of ligand-receptor pairs
fluctuate around a mean and the mean decreases with increasing this
rate. (a) 5.0 10−3s−1, (b) 10−2s−1, (c) 5.0 10−2s−1.

rate limit for receptor-ligand complexes and it matches in an
asymptotic way the free diffusion limit.

Compared with what precedes, the intrinsic noise due to
conformational changes of receptors has a minor effect. Here,
the short time limit of the correlations is fixed by diffusion of
non-activated receptors. This point is also illustrated in Fig. 14,
which demonstrates that correlations decrease as the turnover

FIG. 14. Correlation function for the total number of receptors
[Eq. (27)] in a circular domain of size w2 = 52 compartments.
From the top to the bottom curve, the characteristic rate for the
fluctuations of the number of ligands per compartment increases.
When this rate is large enough, the system is equivalent to the pure
diffusion case (continuous blue line at the bottom). For a slower
rate, top curve, correlations regress according to Eq. (25) with a
long time tail (top continuous line in green adjusted to the mean
filed value k�

b = kb〈L〉). The characteristic frequency at which the
system crosses over to the pure diffusive regime corresponds to the
frequency of the binding-unbinding cycle of a receptor with its ligand
(k�

b = ku = 0.01 s−1). Top curve (a) 5 10−4 s−1, (b) 5.0 10−3 s−1, (c)
7,5 10−3 s−1, (e) 5.0 10−2 s−1, the continuous line almost coinciding
with curve (e) corresponds to the pure diffusion problem. The
effective diffusion constants for activated and nonactivated integrins
are 0.1/h2 and 0.05/h2, where h is the compartment size. The apparent
slope at the origin is 1 as stated in the text. Data correspond to open
boundary conditions.

of ligands increases. In the large turnover regime, fluctuations
and means in the number of integrins are therefore controlled
by the number of ligands and not by diffusion nor reaction.
This shows that not only spatial fluctuations of ligands but also
the characteristic time scale impacting the cadence at which
ligands appear and disappear is an efficient way to regulate
adhesive complexes.

VIII. DISCUSSION AND CONCLUSION

Visualizing protein dynamics to characterize localization
and adhesion turnover by a range of microscopy techniques
calls for a better modeling of the first events following
immobilization and engagement of integrin receptors in
adhesion sites. This work presents a quantitative study for
the time correlations for receptors subject to diffusion and
to reaction immobilization. Other approaches such as FRAP
analysis [20] give rate constants, but we have shown that
correlation spectroscopies give information on molecular
concentrations. The principal result formulated in Fig. 2
is the presence of an hybrid domain for a large set of rate
constants where diffusion and reaction cannot be considered
as separable processes. The landmark of this regime is a
rapid decrease of the correlation at short times followed by
a long exponential tail when diffusion and reaction operate
at very different time scales. Stochastic simulations have
shown that this regime survives in more realistic models
with multiconformational states for receptors and subject to
environmental noise such as time fluctuations in the number
of ligands serving as substrate immobilizing the receptors.

In living cells, the nanoscale dynamics of integrin recep-
tors in adhesive sites results from a complex hierarchy of
processes involving extra and intracellular factors. External
ligand binding of receptor triggers integrin clustering and
integrin-actin linkages [21]. These linkages are finely regulated
through proteins such as talin and covalent modifications [22].
It is likely that these processes may not result in one but
rather in a broad distribution of residence times which are
typically larger than the diffusion time of a receptor [5,23].
Under the general assumption of statistical independence,
the resulting receptor autocorrelation function is the averaged
autocorrelation function over the distribution of residence time
and the results derived in this paper may apply.
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APPENDIX

1. Notations in the Gaussian case

In the Gaussian case, the following integral gives the
correlation function:

I (t) =
∫ ∞

0
kdk e−k2[

(α11 + α21)〈δn2
↓〉 (A1)

+ (α12 + α22)
〈
δn2

b

〉]
. (A2)
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For reflective boundary conditions, the stationary solutions
are given in terms of the free and bound fractions,

〈δn2
↓〉 = 〈n↓〉 = ku/(k�

b + ku), (A3)

〈
δn2

b

〉 = 〈nb〉 = k�
b/(k�

b + ku). (A4)

For open boundary condition, we have 〈δn2
↓〉 = 〈n↓〉 = ne,

where ne is fixed by the reservoir. In this case, nb must be
calculated as in the text. It is also convenient for typographic
reasons to use the notation

De = 1/τD, (A5)

so that De has the dimension of the inverse of a time. The k

appearing in Eq. (A1) are dimensionless quantities.

Result 1

Let (1,b±) be the eigenvectors associated with the eigen-
values 
±(k). Define

�(k) = (k�
b + ku + Dek

2)2 − 4k2Deku. (A6)

We have


±(k) = 1
2 [−(k�

b + ku + Dek
2) ± [�(k)]1/2] < 0, (A7)

with

b+ = [
+ + k�
b + Dek

2]/ku, (A8)

b− = [
− + k�
b + Dek

2]/ku. (A9)

The matrix elements αi,j appearing in Eq. (A1) are
functions of k and t :

α11 = (b+ exp [
−t] − b− exp [
+t])/(b+ − b−), (A10)

α12 = (exp [
+t] − exp [
−t])/(b+ − b−), (A11)

α21 = −b−b+α12, (A12)

α22 = (b+ exp [
+t] − b− exp [
−t])/(b+ − b−). (A13)

For what follows, it will be useful to consider the two
functions:

I±(t) = 2
∫ ∞

0
dk kC±(k) exp [−k2 + 
±(k)t], (A14)

where C±(k) are functions of the αij ’s. In the notations of
Ref. [15], we find

C−(k) = 1
2 [1 − φ(k)], (A15)

C+(k) = 1
2 [1 + φ(k)], (A16)

with

φ(k) = 1√
�(k)

[
k�
b + ku + k�

b − ku

k�
b + ku

Dek
2

]
. (A17)

A direct calculation shows that

I (t = 0) = 1, (A18)

since

I (t = 0) = I+(0) + I−(0) = 1. (A19)

Using the functional form given above, the following limits
are useful to discuss the small and large k�

bτD limits,

lim
k→0

φ(k) = 1 lim
k→+∞

φ(k) = k�
b − ku

k�
b + ku

. (A20)

For open boundary conditions, the expression of C±(k)
must be recalculated using Eq. (A10) with analogous
properties.

2. General properties

a. Result 1

From Eq. (A7), the two eigenvalues behaves in the limit
k � 1 as


+(k) � − ku

k�
b + ku

Dek
2, k � 1, (A21)


−(k) � −(k�
b + ku) − ku

k�
b + ku

Dek
2, k � 1. (A22)

In the other limit, k 	 1, 
+(k) tends to off rate for unbinding
ku, but 
−(k) is unbounded,


−(k) � −Dek
2, k 	 1, (A23)


+(k) � −ku + k�
bku

Dek2
, k 	 1. (A24)

Thus, 
+(k) is steplike, but 
−(k) is parabolic with for any k


−(k) < 
+(k) < 0. (A25)

It is also useful to consider the derivative of I (t) in Eq. (A1).
From definition Eq. (A10), the αi,j ’s are functions of t . Taking
the derivative with respect to t is straightforward. For t = 0,
algebra shows:

b. Result 2

d

dt

[
(α11 + α21)〈δn2

↓〉 + (α12 + α22)
〈
δn2

b

〉]∣∣
t=0

= −Dek
2 ku

k�
b + ku

, (A26)

from which we get

I ′(t) = −Deku/(k�
b + ku) (A27)

as quoted in the text. For open boundary conditions, a similar
calculation gives −De.

3. Comparison with the sharp circular case

For a circular hole, we substitute∫
ddxe−2x2/w2

eik.x →
∫

�(w)
ddxeik.x. (A28)

We have ∫ 2π

0
dθeikr cos θ = 2πJ0(kr) (A29)

and ∫ w

0
dr rJ0(kr) = w

k
J1(kw), (A30)
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FIG. 15. Plot of the correlation function for a sharp circular
illuminated domain as a function of t/τD . The doted line is the
result of a stochastic simulation and the continuous line is a fit using
reflective boundaries and a sharp circular domain. The inset details the
neighborhood of the origin where the tangent is parallel to the vertical
axis for both curves (w2 = 3 (52 pixels), k�

b = 0.02 and ku = 0.001).

and we find

I (t) = (4π )2ω2
∫ ∞

0
dk

1

k
J 2

1 (kω)
[
(α11 + α21)〈δñ2

↓〉

+ (α22 + α12)
〈
δñ2

b

〉]
. (A31)

Pure diffusion leads to the integral

I (t)/I (0) = 2
∫ ∞

0

dq

q
J 2

1 (qw)e−Dq2t . (A32)

In the limit t → ∞, we can expand the Bessel function
J1(x) � x/2 + . . . and the previous integral gives

1/4Dt, (A33)

so that circular diffusion autocorrelation function have the
same asymptotic behavior as t → ∞, as the Gaussian circular
autocorrelation function.

To evaluate the derivative of I (t), we differentiate directly
Eq. (A31) under the integral sign and retain the dominant
power for the wave vector k. This leads us to evaluate integral∫ ∞

0
dk kJ1(k)2, (A34)

which diverges in the small wavelength limit. Thus, we have
shown that the slope of I (t) in the circular case must be
tangent to the vertical axis. As seen in Fig. 15, the numerical
simulations reproduce correctly this result.

4. Some results

a. Result 1

We evaluate the integral

I0(t) = 2
∫ ∞

0
dk ke−k2+
+(k)t . (A35)

Since 
+(k) is a strictly decreasing function of k, the inverse
function k(
+) is well-defined. We make the change of

variable k → 
+(k) in Eq. (A14). Defining a = k�
b + ku, we

get

I0(t) = −
∫ −ku

0
du

d

du

[
u(u + a)

De(ku + u)

]

× exp

[
u(u + a)

De(ku + u)

]
exp [ut], (A36)

which is integrated by parts with the change of variable u →
−u,

I0(t) = 1 − t

∫ ku

0
du exp

[
− k�

b

De

u

ku − u

]

× exp [−u(t + τD)]. (A37)

Because of the first exponential, the integral is dominated
by the neighborhood of the origin. Expanding the second
exponential, the integral becomes a series,

I0(t) = 1 − t
∑
n�0

(−1)n

n!

∫ ku

0
du exp

[
k�
b

De

u

ku−u

]
un(t+τD)n.

(A38)
Next, we make the change of variable

s = u/(ku − u) (A39)

and get

I0(t) = 1 − kut
∑
n�0

(−1)n(t + τD)nkn
uU (1 + n,0,k�

bτD),

(A40)
where U (a,b,z) is a special function (hypergeometric U ); see
Ref. [24].

b. Result 2

We have

I (t) = I+(t) + I−(t), (A41)

where we have defined

I±(t) = 2
∫ ∞

0
kC±(k)e−k2+
±(k)t . (A42)

In this section, we show the following:

I+(t) + I−(t) � k�
b

k�
b + ku

I0(t) + ku

k�
b + ku

1

1 + t/τD

, (A43)

when

(ku + k�
b)τD � 1. (A44)

In practice, Eq. (A43) works well even if Eq. (A44) approxi-
mately holds; see case (a) of Figs. 6 and 7.

(1) We split I+(t) in two as follows:

I+(t) = 2
∫ +∞

0
dk kC+(k)e−k2+
+(k)t

� 2
∫ q��

i

0
dk k(C+(0) − C+(∞))e−k2+
+(k)t

+ 2
∫ +∞

0
dk kC+(∞)e−k2+
+(k)t , (A45)
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where the inflexion point q�
i is defined in Eq. (18). We have

C+(0) = 1 C+(∞) = k�
b

k�
b + ku

. (A46)

The first integral is easily evaluated as

ku

k�
b + ku

1

1 + t/τD

[
1 − e−q2

i (1+t/τD )
]
, (A47)

and the second integral is simply the definition of I0(t); see
Eq. (A35).

(2) In this regime, I−(t) can be evaluated in a similar way.
We have

C−(0) = 0 C−(∞) = ku

k�
b + ku

(A48)

so

I−(t) � ku

k�
b + ku

1

1 + t/τD

e−q2
i (1+t/τD ). (A49)

Summing both contribution Eqs. (A45) and (A49), the
exponential term cancels out and we get Eq. (A43).

c. Result 3

It is useful to derive the asymptotic expansion of Eq. (A35)
in two limit cases. We use formula (13-5-11) and (13-5-2) of
Ref. [24],

U (1 + n,0,z) ≈ 1/(n + 1)!, z � 1, (A50)

U (1 + n,0,z) ≈ 1/zn+1, z 	 1, (A51)

which leads to

I0(t) ≈ 1 − t

t + τD

[1 − e−ku(t+τD )], k�
bτD � 1, (A52)

I0(t) ≈
[

1 + ku

k�
b + ku

t/τD

]−1

, k�
bτD 	 1. (A53)

Using Eq. (A43), Eq. (A52) gives the asymptotic expansion
stated in the text. In particular, k�

bτD � 1 is compatible with
condition Eq. (A44) so that

I (t) = I+(t) + I−(t)

� 1

1 + t/τD

+ k�
b

ku + k�
b

t

1 + t/τD

exp [−kut]. (A54)

Taking the derivative with respect to t at t = 0, this asymptotic
form satisfies to the exact result Eq. (19) of the text. The
exponential term in the first equation is responsible for the
slow long tail limit seen in case (b) of Figs. 6 and 7 and the
second equation corresponds the effective diffusion limit with
a diffusion constant rescaled by the rate constants.

d. Result 4

In the other limit,

(k�
b + ku)τD 	 1, (A55)

we have

I (t) � I0(t). (A56)

In practice, the last approximation works even if Eq. (A55)
holds only approximately; see case (c) of Figs. 6 and 7.
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