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Energetics in a model of prebiotic evolution
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Previously we reported [A. Wynveen et al., Phys. Rev. E 89, 022725 (2014)] that requiring that the systems
regarded as lifelike be out of chemical equilibrium in a model of abstracted polymers undergoing ligation and
scission first introduced by Kauffman [S. A. Kauffman, The Origins of Order (Oxford University Press, New
York, 1993), Chap. 7] implied that lifelike systems were most probable when the reaction network was sparse.
The model was entirely statistical and took no account of the bond energies or other energetic constraints.
Here we report results of an extension of the model to include effects of a finite bonding energy in the model.
We studied two conditions: (1) A food set is continuously replenished and the total polymer population is
constrained but the system is otherwise isolated and (2) in addition to the constraints in (1) the system is in
contact with a finite-temperature heat bath. In each case, detailed balance in the dynamics is guaranteed during
the computations by continuous recomputation of a temperature [in case (1)] and of the chemical potential (in
both cases) toward which the system is driven by the dynamics. In the isolated case, the probability of reaching a
metastable nonequilibrium state in this model depends significantly on the composition of the food set, and the
nonequilibrium states satisfying lifelike condition turn out to be at energies and particle numbers consistent with
an equilibrium state at high negative temperature. As a function of the sparseness of the reaction network, the
lifelike probability is nonmonotonic, as in our previous model, but the maximum probability occurs when the
network is less sparse. In the case of contact with a thermal bath at a positive ambient temperature, we identify
two types of metastable nonequilibrium states, termed locally and thermally alive, and locally dead and thermally
alive, and evaluate their likelihood of appearance, finding maxima at an optimal temperature and an optimal degree
of sparseness in the network. We use a Euclidean metric in the space of polymer populations to distinguish these
states from one another and from fully equilibrated states. The metric can be used to characterize the degree and
type of chemical equilibrium in observed systems, as we illustrate for the proteome of the ribosome.
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I. INTRODUCTION

The central problem of prebiotic evolution arises because
the simplest models assuming the formation of a genome
at an early stage in the history of life encounter formidable
statistical odds, suggesting that initiation of life starting with
a genome is extremely unlikely [1] (Eigen’s paradox). For
that reason, models [1–4] such as the one considered here
[5,6] have been formulated in which the initial events do not
involve an information carrying genome. Instead, a system
of polymers, possibly proteins or a collection of proteins
and RNA, is postulated to form a metastable, autocatalytic
chemical state which grows and evolves and incorporates an
information carrying genome as an evolutionary adaptation
at a later stage. Such a picture acquires some support from
phylogenetic analysis of protein structures, which suggests
that biologically relevant proteins may have been present on
earth hundreds of millions of years before the appearance of
the ribosome [7].

Using an adaptation of such a model due to Kauffman
[3], we recently showed numerically [5,6] that, under certain
conditions, one was more likely to find nonequilibrium
dynamic steady states in such a Kauffman-like model if the
reaction network was sparse. In the model by Kauffman
[3] and here, a system of polymers interacting chemically
by ligation and scission is simulated stochastically. Starting
such simulations from a population of short polymers (the
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“food set”, here dimers and monomers whose population is
maintained constant during the simulation), one explores the
distribution of steady states achieved at long times. Sorting
these final states according to whether they have properties
deemed to be lifelike, one then obtains estimates of the
likelihood that systems with those properties will emerge.
Our work in Refs. [5,6] was distinguished from that of [3]
by exploring the likelihood that the resulting final states will
be out of chemical equilibrium, whereas the earlier work
imposed only the requirement that the system of polymers
grows to large populations of lengthy polymers. With this
change, which may be regarded as the use of a more restricted
definition of “lifelike”, we found that the likelihood of such
lifelike states was much reduced. In terms of the control
parameter p of the model, defined to be the fraction of
possible ligations and scissions which actually occur, we
found that p was required to be very small (about 0.005) if
a substantial likelihood of lifelike states was to be achieved.
Small p describes sparse networks of reactions, thus the result
gave lifelike systems only for sparse reaction networks. Both
models grossly simplify the chemistry relative to real systems,
reducing the description of the polymers to strings of digits
representing monomers. However, within the model, our result
in Ref. [5] suggests that life might be more likely to originate
in desertlike conditions or in a very dilute gas such as might
be found in the upper atmosphere of a planet, rather than
in a pond or ocean trench where the reaction network is
dense and many paths to chemical equilibrium are open. We
explored a further extension of the model in Ref. [6] in which
a spatial dimension was added, but in the present paper there
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is no spatial dimension and the reactants are regarded as well
mixed.

The model used in Ref. [5] was purely entropic and did
not take any account of bond energies. In a sense, that neglect
corresponded to assuming an infinite temperature, although
that description is imprecise. It is unlikely that an abstracted
model of the chemistry like that in Ref. [5] can capture
all the relevant qualitative features of the problem of the
emergence of lifelike properties in nonbiological chemical
systems without including some account of the energetics.
Therefore, we here report results from an extension of the
model of Refs. [5,6], which includes bond energies. We
include only the largest energy in the problem, namely, the
bond formation energy associated with the bonds between
monomers which are formed during ligation and broken during
scission. (If our polymers were proteins, then the associated
bond energy would be of the order of 0.1 eV.) We take the
bond energies to be independent of monomer type, with the
view that the differences between bond energies are usually
smaller than the average bond energy so that we are taking
account of the biggest energy in the problem and neglecting
the rest. Of course, smaller energy scales associated, for
example, with hydrogen bonding and folding are known
to be enormously important in terrestrial biochemistry, so
such effects should eventually be taken into account. In the
implementation reported here, the bond energies only enter
the computations in the dynamics, where they determine
appropriate reaction rates consistent with detailed balance
as described in the next section. As in the earlier work,
the goal is to determine the nature of the resulting final
steady states and to determine the likelihood that they will
have various lifelike characteristics. We find here that when
bond energies are introduced, several kinds of nonequilib-
rium states may emerge and we numerically estimate their
likelihood.

The introduction of energy into the problem requires
specification of the degree of energetic isolation which will
be imposed on the system during the simulated dynamics.
Our earlier model was already open with respect to polymer
and monomer number, because we maintained a constant
population of food (monomers and dimers) throughout the
simulation and, for numerical reasons, limited the total number
of polymers to a maximum. Once we introduce a bonding
energy and start the system from a population of only food,
one sees that we have started the system near its maximum
energy and at a very low entropy, because the entropy is
associated with the fact that there is a number of possible
polymers which increases exponentially with polymer length.
Bonding (ligation) results in lowering of the net bonding
energy and scission raises it. At the same time, as bonds
are introduced, the polymers grow longer and the entropy
rises. As the population grows, more high-energy, low-entropy
food is added to maintain a constant food supply until the
system reaches an entropically steady state. If that state has
maximized the entropy, then we deem it “dead”. Otherwise,
we call it lifelike, subdivide the lifelike systems into various
categories, and determine their frequency of appearance, as
discussed below and in [5,6]. Since we are interested in
systems not in chemical equilibrium, the polymer systems of
interest will not be characterized by a temperature, because

temperature is only defined for systems in local thermal
equilibrium. However, the rates of reactions (if they are
allowed at all by the small p) will act to drive each system
toward maximum entropy consistent with its coarse-grained
description.

If the system is in thermal contact with a reservoir
characterized by a positive temperature, then we assume that
the rates of reaction have a dependence on the reservoir
temperature given by the usual detailed balance condition as
described in more detail in the next section. Under conditions
in which such a reservoir does not exist or is sufficiently
weakly coupled to the system, then we can also define a
maximum entropy state toward which the reactions are driving
it, provided that the total energy and polymer number are
slowly varying relative to the reaction rate. We term these
two conditions thermally connected and thermally isolated.
The thermally connected case is intended to roughly model
situations, as in aqueous solvent in an ocean trench, in which a
thermal bath is strongly coupled to the system. We envision the
thermally isolated case as a rough approximation for situations,
such as those in the upper atmosphere of early earth, where an
ambient temperature might not even be well defined and the
system is weakly coupled energetically to its surroundings.

In the thermally connected cases we impose a finite positive
temperature in the detailed balance condition, but we compute
the chemical potential μ on the fly from the polymer number
N , taking account of bond energies in the expression for N . We
find that in this thermally connected case, we can define and
study three kinds of nonequilibrium (deemed lifelike) steady
states and measure their properties and likelihoods within the
model as a function of p. If no account is taken of the nature
of the collective dynamics in the metastable final state, then
the probability of occurrence of nonequilibrium entropically
steady-state systems mainly increases with decreasing ambient
temperature (increasing β). However, when we select as
lifelike only those systems which remain dynamically active
by a criterion based on the time Fourier transform of a
polymer-polymer time correlation function as defined earlier
[5] we find that the probability of producing systems which are
both dynamically and entropically lifelike is nonmonotonic in
the temperature variable with peaks in the neighborhood of an
ambient temperature equal to the bonding energy.

In the thermally isolated case, we determine, at each
reaction step, an instantaneous value of the inverse temperature
β and chemical potential μ from the instantaneous values of
the energy and polymer number and use those to fix the detailed
balance conditions for the next step. In those cases, we have
often found that the isolated equilibrium (not reached in the
states of interest) is characterized by a negative temperature.

In each case, we explored another lifelike property by
selecting those systems generated by the model that were
growing exponentially in population while remaining dynam-
ically active and out of equilibrium entropically. Imposing
that constraint with the others discussed above resulted in a
diminution of the number of dynamical states which satisfied
all the criteria. However, statistically significant numbers of
such states appeared and further study of their nature is left for
future work.

We have found in all cases that the likeliest nonequilibrium
states are closer to, though separated from, the corresponding
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isolated equilibrium state characterized by a negative temper-
ature than from a thermal equilibrium state characterized by
a positive temperature of the order of the bonding energy.
The same analysis used here to measure the separation of
the nonequilibrium states from the corresponding equilibria
can also be used to characterize living biological systems of
proteins as we illustrate for the ribosome. We discuss the
possible usefulness of this method of analysis for studying
nonequilibrium systems in extraterrestrial environments to
determine if they have lifelike characteristics.

II. DESCRIPTION OF THE MODEL

As in Ref. [5] and elsewhere [3,4], artificial chemistries
associated with abstracted polymers consisting of strings of
binary digits undergoing scission and ligation are generated.
The parameter p controls the probability that, in a given
realization, any reaction possible involving polymers up to
a maximum length lmax is included in the network. From the
resulting chemical networks we select, as we did previously
[5], those which are “viable”, by which we mean that there is
at least one reaction path from a “food set” of small polymers
to at least one polymer of maximum length. The probability
that a network is viable is then found as the ratio of the number
of realizations of the network which are viable divided by the
total number of realizations. As in Ref. [5] but differently from
the model described by us in Ref. [6], we assume here that the
system is well mixed and no effects of spatial diffusion are
considered. (The study could be extended to include spatial
variations of local temperature as well as population.)

The difference between the model used here and that used
in the work reported in Ref. [5] is in the simulation of
population dynamics in the generated networks. Previously,
we selected fixed rates for each reaction from a uniform
distribution between 0 and 1 (in units of the inverse time
step) and left them invariant as we implemented the reaction
model using the Gillespie algorithm [8] as described in more
detail in Ref. [5]. Such a procedure took no account of any
difference in energy between reactants and products. Instead,
in the work reported here, to any polymer (binary string)
of length l we attribute an energy −(l − 1)�, where � is a
positive real number which is the bonding energy between
two monomers. The total energy E of any population {nm} of
polymers in which nm is the number of polymers of type m is
E = −∑lmax

L=1(L − 1)NL�. Here the NL = ∑
m of length L nm is

the same set of macrovariables used in Refs. [5,6]. The total
number of polymers N is N = ∑lmax

L=1 NL.
We first describe the method used to take account of the

energy in the case that the system is isolated except for the
addition or removal of polymers to the food set to keep its
total population fixed and the removal of polymers to keep
the total number below a fixed maximum value. We consider
the configurational entropy associated with a coarse-grained
prescription of the state given by the number of molecules NL

for each length L between L = 1 and L = lmax. Using the fact
that, in the model, there are 2L possible molecules of length L,
counting possible states for a given state specification {NL} is
the same problem that occurs in the boson statistics problem
[9] (though of course this is not to imply that this model has

any quantum features). The result is

S/kB =
∑
L

(ln[(2L + NL − 1)!] − ln(NL!) − ln[(2L − 1)!]).

(1)

For fixed E and N , it is a standard textbook exercise to write
down the values NL of the populations which maximize this
entropy, giving

NL = 2L − 1

exp[−β(E,N )μ(E,N ) − β(E,N )�(L − 1)] − 1
,

(2)

in which the parameters β(E,N ) and μ(E,N ) are determined
from the total energy E and polymer number N by the implicit
equations [with (2)]

E = −
lmax∑
L=1

(L − 1)NL� (3)

and

N =
lmax∑
L=1

NL (4)

and Stirling’s approximation has been used. (In the similar
case in Refs. [5,6] � = 0 and the remaining equation for
the chemical potential is trivial to solve.) In this model the
equilibrium population nm of any polymer of length L is
NL/2L.

Though we are interested in dynamical states which do
not reach such an equilibrium state, the chemical dynamics
will drive any reaction toward it. (In Kauffman-like models,
such equilibrium states are not always achieved because many
of the reactions have zero rate, so equilibrium distributions
cannot always be reached.) To describe how we take account
of this, we recall the master equation used earlier to describe
our implementation of the polymer dynamics,

dnl/dt =
∑
l′,m,e

[
vl,l′,m,e

(−kdnlnl′ne + k−1
d nmne

)
+ vm,l′,l,e

(+kdnmnl′ne − k−1
d nlne

)]
, (5)

where nl is the number of polymers of species l, vl,l′,m,e is
proportional to the rate of the reaction l + l′ e

→m, e denotes
the catalyst, l and l′ denote the polymer species combined
during ligation or produced during cleavage, and m denotes
the product of ligation or the reactant during cleavage. (In
terms of this description, kinetic blocking can occur because
some of the rates vl,l′,m,e and vm,l′,l,e are set to zero when the
network is formed.)

The parameter kd was described in Refs. [5,6] as a rough
proxy for temperature and was set to 1 in the reported
simulations. From the form of Eq. (5) one sees that, in general,
kd parametrizes the difference between the forward and reverse
reactions. For example, in the first line of (5) k2

d is the ratio of
the rate of the reaction l + l′ → m to the rate of the reaction
m → l + l′. Here we do not regard kd as a parameter, but
recompute it on the fly at each time step in the dynamical
simulation so that the rates implied by the master equation
would drive the system to equilibrium at the current values of
E and N in the absence of kinetic blocking and if E and N

were not changing in time. The latter condition is not trivially
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satisfied in our simulations. Both E and N are changing as
we start the simulations from a food set of small polymers, so
the assumption that they are approximately fixed during many
reaction steps is an adiabatic approximation which can be
checked as discussed in Appendix A. Given those assumptions,
our condition is related to the condition of detailed balance: If
the system were to achieve equilibrium, the summand of the
first line in Eq. (5), for example, would have the form

−kdnl nl′ ne + k−1
d nm ne, (6)

where the overline on the n’s indicates equilibrium values and
the standard detailed balance condition (which is sufficient
but not always necessary for achievement of equilibrium in
the absence of kinetic blocking) requires that this be zero,
giving

k2
d = nm/nl nl′ . (7)

Within the framework just described, kd is therefore a function
of the current values of E and N through the solution of the
implicit equations (2)–(4) for β and μ as well as of m, l,
and l′. The dependence on m, l, and l′ is simplified by the
fact that the equilibrium populations depend only on polymer
lengths. However, the implicit equations are not analytically
soluble and we solve them numerically on the fly during the
dynamical simulations.

In the thermally isolated case in which the dynamics are
driven through Eqs. (3)–(5) and (7) by quantities depending
on β(E,N ) and μ(E,N ), there is only one equilibrium state
of interest, namely, that which maximizes the entropy at the
system’s total energy and polymer number. In this isolated
case of a thermally isolated system, a consequence of Eq. (7)
is a strong dependence of the results of the dynamics on
the detailed composition of the food set which was not
present in our previous simulations. Previously, Refs. [5,6],
and following [3], the boundary condition on the food set
was set to be N1 + N2 = Nf . (In the single-site simulations
reported [5], Nf was set to 500.) However, with the running
value for kd given by (7), if only the sum N1 + N2 = Nf in
the food set is fixed, then the number of dimers N2 is rapidly
depleted to zero so that there are only monomers in the food
set (see Appendix D). Here we report simulations in which
the ratio of N1 to N2, as well as their sum, is fixed at various
values, to explore the dependence of the resulting systems on
that effect.

In the thermally connected case, the formulation is the
same, but, instead of treating the inverse temperature β as
a Lagrange multiplier to be determined from E, we treat β

as a (positive) parameter. This corresponds physically to the
assumption that the network is in contact with a thermal bath
which exchanges energy rapidly, on the reaction time scale,
with the polymers in it. (The latter condition can be satisfied
even if the total energy E is changing slowly, because the
net interchange of energy with the ambient environment can
be small even though many small interchanges of both signs
are occurring. However, we do not need to assume that E is
changing slowly in the second case.)

We have only one implicit equation (4) to solve for the
chemical potential in the thermally connected case and it is
a function of N and β. However, the equilibrium population
depends on the bonding energy and the implicit equation must

still be solved numerically for μ(β,N ) at the current value of
N and the fixed value of β. The results are strikingly different
from the isolated case, because we find that, using the usual
Kauffman initial condition of a population of food polymers,
the assumption of thermal isolation leads in most cases to
a dynamics driving the more isolated system not in contact
with a thermal bath toward an equilibrium characterized
by large negative temperatures (small negative β). (The
relevant parameter is actually β�. If we measure energies
and temperatures in units of �, then the � disappears from the
formulation, but we have kept it here.) In the thermally isolated
and thermally connected cases, the numerical solution of the
implicit equations is carried out on the fly using Newton’s
method as described in Appendix B.

When the dynamics are driving the system through
Eqs. (2)–(7) toward a predetermined temperature in the
connected case, there are two macrostates of interest in
determining whether the system is behaving in a lifelike
manner or not. The first of these occurs when the populations
{NL} maximize the entropy in steady state at values of energy
E and polymer number N in the steady state. The second
state of interest occurs when populations {NL} maximize the
entropy associated with the assigned ambient temperature
1/kBβ and polymer number N . If the system is found in
the first state but not in the second, it means that it has
attained a local thermal equilibrium different from that it would
have if it were in equilibrium with the external thermal bath
parametrized by β. We term this locally dead but thermally
alive (LDTA). There are two relevant temperatures in that
case: one associated with the local equilibrium and the other
associated with the ambient bath. As noted earlier, in that case
the local temperature can be negative and we find such cases.
Once the system is in the equilibrium state associated with
the externally applied temperature, the internally equilibrated
state will be the same as the externally equilibrated one and we
judge such a state both locally and thermally dead (LDTD).

States in which neither type of equilibrium has been reached
are termed locally and thermally alive (LATA). In such states,
three entropies can be calculated, namely, the (i) instantaneous
entropy S computed by inserting the instantaneous values of
the quantities {NL} into Eq. (1), (ii) the local equilibrium
entropy SL computed from the current N and E by solving
(3) and (4) for β� and μ and inserting the result into (2)
and the resulting values of {NL} into (1), and (iii) the thermal
equilibrium entropy ST computed in the same way from the
fixed β and N and the solution to (4). The relation S < SL is
always obeyed, but there are no general inequalities relating
S to ST or ST to SL. In practice, because the temperature
associated with SL is usually large and negative, whereas
the temperature associated with ST is chosen to be positive
and moderate (e.g., β� ≈ 1), it is frequently the case that
SL > ST and S may be larger than ST. Negative temperatures
associated with SL arise because, with the Kauffman-like initial
conditions which we use in the dynamics, the system starts in a
state of very high energy and very low entropy, associated with
maximum entropy characterized by a negative temperature
near infinity. Instead of using entropy ratios, we determine how
close each simulated steady state is to each of these possible
equilibria by computing the Euclidean distances RL and RT of
the steady state from the corresponding equilibrium states in
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computed on the fly during a simulation of the model in which the
dynamics were continuously driven toward equilibrium determined
by the instantaneous energy E and polymer number N through
Eq. (7). Note that the ratio N1/Nf as well as Nf was fixed during this
and similar runs.

the macrospace {NL} as described in the next section [Eqs. (8)
and (9)].

To determine whether the states resulting from simulation
using the dynamics algorithms we have described have lifelike
properties we successively apply the following selection
criteria to the simulation results. First, we require that the final
state be an entropically steady state. For thermally isolated
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given that the food population (N1 and Nf ) was fixed. The data are
from the same set of simulations which were used to generate Fig. 2.

simulations, instantaneous entropy is computed from Eq. (1)
using the instantaneous values of the quantities NL and the
history of that entropy over 10 000 time steps into the past
is used to determine if the system is in a steady state as
described in Ref. [6]. Second, we determine, for isolated
systems, whether the ratio of the average entropy to the
maximum entropy [determined by inserting (2) into (1)] is
sufficiently below 1 to be deemed lifelike. For the systems
simulated with an ambient positive temperature we determine
how close they are to the two described equilibrium points
by use of the normalized distances RL and RT [defined in
Eqs. (8) and (9) in Sec. III below] in the macrospace {NL}
and classify the state as LATA, LDTA, or LDTD. Third, in
both thermally isolated and thermally connected simulations,
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we apply a dynamics criterion to determine whether the steady
state is showing any chemical activity over the time scale of the
steady-state period. The criterion is based on the time Fourier
transform of a population correlation function as described
in Ref. [5] and is reviewed in Appendix C. The criterion
is parametrized by a frequency ωm. Large ωm means that
the system is more dynamically active than small ωm. The
dynamics criterion turns out to be significant in excluding
states associated with low ambient temperature, because many
of those, though out of equilibrium, turn out to be dynamically
quite inert and glasslike. Finally, we here introduce a fourth
criterion, namely, that the population continues to grow, though
the normalized distance of the state from the entropic equilibria
is not changing in time as described in Appendix A. We report
results of successively imposing these four criteria.

III. SIMULATION DETAILS AND RESULTS

A. Thermally isolated systems

To carry out meaningful simulations in the thermally
isolated case described in the preceding section, in which the
dynamics is driven toward the equilibrium associated with
the current values of the total energy and polymer number,
we find that, beginning, as we do, following the literature on
these types of models, with a set of monomers and dimers
(the food set), the very high initial energy leads, through
Eqs. (2)–(4) and (7), to driving the system toward negative
temperatures. Because the model’s energy is bounded from
above (by zero), negative temperatures are well known to
be thermodynamically consistent in the system when it is
thermally isolated [9]. One may think of this as arising because
the thermal distribution of polymers requires an energy near
its maximum. We illustrate in Fig. 1 with a display of the
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FIG. 6. Scatter plot of values of the mean and standard deviation
of the nonfood polymer length produced from simulations driven
toward equilibrium at fixed positive temperature for p = 0.002 26,
�β = 0.316, and lmax = 8. The colors indicate the values of the
distances (a) RL and (b) RT . Points which are red in both plots
are LDTD systems. Blue in both plots indicates LATA systems. Blue
in (b) and red in (a) indicate LDTA systems. The data are from 9116
simulations.

instantaneously determined values of β� in such a case. The
details of the dynamics vary from run to run in such data but
the temperatures are often negative. The chemical potentials
are also negative but β�/βμ is greater than 1 and often 10 or
larger.

Note that in addition to fixing Nf = 500, we have here
fixed N1/Nf , where Nf is the number of polymers in the food
set taken here to be the polymers of length 1 and 2. It turns
out to be necessary to fix N1/Nf in these thermally isolated
runs because, if we do not, the dimers are almost immediately
all dissociated into monomers and the likelihood of finding a
kinetically trapped nonequilibrium state gets small (see also
Appendix D). We illustrate this in Figs. 2 and 3. We see there
that if we do not select for nonequilibrium states, then there is
very little dependence on the ratio N1/Nf . However, when we
do select for nonequilibrium steady states, then there is a strong
dependence, with the probability of finding a nonequilibrium
steady state going essentially to zero as N1/Nf → 1.

We get some insight into the nature of the states produced
from the scatter plot in Fig. 4, which shows the standard
deviation in the polymer length versus the mean polymer
length in the steady states arising from this model for a
particular value of p. The “scars” in this scatter plot arise
from states in which polymers of just two lengths are active,
as shown in Appendix E.
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FIG. 7. Probabilities of producing an entropically steady state at the indicated values of the Kauffman parameter p determining the reaction
network sparseness as defined in the text and the ambient inverse temperature β�. Here lmax = 8 and states were deemed LATA if RL and
RT were both greater than 0.35. (a) No cut was made to exclude states with no dynamic activity or which were not growing exponentially in
population. (b) Result of subjecting the states counted in the data of (a) to the dynamics cut described in Appendix C. Here we required that
ωm > 10( 2π

δtGillespie
). (c) Result of requiring that the states counted in (b) also have exponentially growing populations. Here we required that the

final states be exponentially growing at a rate of one inverse Gillespie time steps or greater (see Appendix A). All probabilities shown take
account of the probability that an artificial chemical network generated by our algorithm as described in Ref. [5] is viable as defined there and
in Sec. II.

B. Systems with dynamics driven toward a fixed positive
temperature

As discussed in Sec. II, in this case there are two possible
equilibrium points of interest. To determine whether the
system has achieved either local or thermal equilibrium
with the ambient thermal bath we compute the Euclidean
distance of the final steady-state population distribution in the
macrospace {NL} from the corresponding equilibrium points.
Namely, we calculate

RL =
√∑

L

(NL − NL(β(E,N ),μ(E,N )))2/
√

2N (8)

for the distance from the locally equilibrated state and

RT =
√∑

L

(NL − NL(β,μ(β,N )))2/
√

2N (9)

for the distance from the thermally equilibrated state in
the case of simulation at a fixed ambient temperature. The
numbers of polymers in the food set (here N1 and N2) are
fixed and variations in their contributions to the entropy are
small and not of interest.

We show scatter plots of values of RL and RT for a series
of runs at fixed positive ambient temperature in Fig. 5. Scatter

plots of standard deviation of the polymer length versus the
mean polymer length for this positive temperature ensemble
have a structure similar to that shown for the isolated case in
Fig. 4. An example is shown in Fig. 6.

We have a large data bank of such systems. Their prop-
erties are very diverse and the scatter plots show structure
corresponding to classes of states which have not been fully
analyzed. However, we note in Fig. 6 that many of the
nonequilibrium steady-state systems involve predominantly
only two polymer lengths outside the food set as identified
(Appendix E) by the scars in the plot. These may be less
lifelike than the systems that do not lie on scars.

Here we focus on features which we deem of particular
interest for study of prebiotic evolution, namely, dynamical
behavior and population growth. We proceed with the analysis
in a series of steps. As described in the preceding section,
we first sort states into LATA, LDTA, or LDTD categories by
introducing cutoffs on the values of RL and RT . The cutoffs
are somewhat arbitrary, but the results are not qualitatively
affected by the values chosen. In Figs. 7 and 8 we show
probabilities of finding LATA and LDTA states as a function
of p and β�. Probabilities are calculated as the product of the
probability that a network at the given p is viable (as defined
in Sec. II and [5]) times the ratio of the number of times a final
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FIG. 8. Same as Fig. 7 except that RL < 0.35 and RT > 0.35 which we here term LDTA states. The data are from at least 1 101 877
simulations. More details are in Appendix F.

entropically steady state of the relevant (here LATA or LDTA)
type appears divided by the total number of simulated viable
systems. Probabilities of LDTD states are not shown, since
they are regarded within our definitions as dead. Locally alive
and thermally dead systems do not occur (as one can see, for
example, in the scatter plot in Fig. 5) because no distinct local
equilibrium can be defined once the system has equilibrated
to an external thermal bath. We illustrate what is happening in
these simulations with Fig. 9 showing the history of a run at
an ambient inverse temperature of β� = 10, which resulted
in a state which passed all four criteria for lifelike.

IV. DISCUSSION AND CONCLUSIONS

We have considered two conditions in this study of a
Kauffman-like model modified to take account of bonding
energies. In the first condition, the system is energetically
isolated (though it is open with respect to polymer number).
In that first case, the chemical dynamics drive the system
toward the equilibrium associated with its current values of
total energy and polymer number. We find in that case, with
simulations starting with only polymers in a food set of
monomers and dimers, that the temperature equilibrium toward
which the dynamics drive the system is negative and large.
Further, if the composition of the food set is not controlled,
the system contains an instability which prevents any evolution
from occurring. Controlling the ratio of monomers to dimers
in the food set however, we find evolution to lifelike states
by our previous criteria that such states be out of chemical

equilibrium, with the probability of occurrence of such states
strongly dependent on the fixed value of the monomer to dimer
ratio in the food set. Analysis of the nonequilibrium states
realized in this case shows that many of them are found to be
dynamical states in which polymers of only two lengths outside
the food set are active (Fig. 4 and Appendix E). The internal
effective temperature toward which the dynamics drive the
system remains negative in these nonequilibrium steady states.
Applying a dynamics cut to the ensemble of nonequilibrium
steady states to select those with more than a minimal amount
of dynamical activity reduces the number of surviving states
by about an order of magnitude.

In the second condition, the dynamics drive the system
toward equilibrium at a fixed positive temperature, modeling
a system in energetic contact with a thermally equilibrated
environment. In that case, two kinds of nonequilibrium steady
states are found. In the first, the system is out of equilibrium
both with respect to the temperature associated with its
current values of the total energy and total polymer number
and also with respect to the equilibrium associated with the
fixed external temperature and the current polymer number.
We term such states locally and thermally alive. We also
find states which are in equilibrium with respect to their
internal temperature (as determined from their total energy
and polymer number) but out of equilibrium with respect to
the externally fixed temperature and current polymer number.
We term such states locally dead and thermally alive. The
likelihood of LATA and LDTA states, as a function of p and the
external inverse temperature β�, was numerically estimated
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FIG. 9. History of a run which produced a lifelike state according
to the criteria applied. (a) Computed value of the chemical potential
βμ and the total polymer population N as a function of simulation
time. (b) Values of RL and RT as a function of simulation time.
(c) Macrospace polymer distribution for the final state (red), popula-
tion distribution of a locally equilibrated state at the same energy and
total polymer number (blue), and population distribution of a globally
equilibrated state at the ambient temperature used in the dynamics
algorithm (green). This was a single run with lmax = 6, p = 0.002 26,
and β� = 10.

as shown in Figs. 7 and 8. We found that the likelihood of
both kinds of nonequilibrium rose with decreasing external
temperature (increasing β�).

However, when we applied the dynamics cut to exclude
systems with little dynamical activity, the ensemble of sur-
viving states was less likely to be lifelike at the lowest
temperatures. Thus we find an optimum external temperature
for the appearance of lifelike states which is of order β� ≈
1. In this condition in which the system is driven toward
equilibrium at a finite fixed positive temperature we again find

that many of the nonequilibrium states contain polymers of
just two lengths outside the food set (Fig. 6 and Appendix E).
We applied a final cut (Appendix A) to this ensemble of
nonequilibrium states to select those exhibiting exponential
population growth. This final growth cut further reduces the
number of surviving members of the ensemble. However, we
find a significant number of such LATA states. The peak in
probability as a function of temperature is weakened and the
peak as a function of p is quite sharp [Fig. 7(c)]. Locally dead
and thermally alive states are found to be much less probable
than LATA states (Fig. 8). Overall, these results show that
lifelike characteristics are most likely to emerge within the
model in an ambient temperature bath when the sparseness of
the network, parameterized by p, is small (around 1%, as in
our previous work) and the ambient temperature is of the order
of the bond energy.

The model provides some insight into the nature of
nonequilibrium steady states which are most likely to be
achieved in prebiotic evolution. In particular, it is noteworthy
that in the thermally isolated case, the finite upper bound on
the energy results in dynamics which drive the system toward a
large negative temperature. We see in data like that in Fig. 9 that
the polymer distributions in LATA states are in fact far from
either the population distribution toward which the dynamics
are driving the system (shown in green) or the distribution
which would maximize the entropy associated with the total
energy and polymer number (shown in blue and associated
with a negative temperature).

The measures used here to evaluate the degree to which
the simulated systems are lifelike can also be determined
from data on real living, nonliving, and indeterminate poly-
mer systems. In preliminary work, for example, we found
the chemical potential and temperature associated with the
isolated equilibrium of a system with the protein distribution
found in the ribosome [10] in E. coli. We solved Eqs. (2)–(4),
suitably modified to take account of the fact that 20 monomers,
rather than 2, are available in the proteins. Using the observed
fact that there are N = 52 proteins in the ribosome, the value
of −E/� = 6561 obtained from within the model from the
observed population distribution, and the observed lmax = 393,
we found βμ = −4.09 and β� ≈ −3.00. Evaluating the
Euclidean distance RL from the local equilibrium point gave
RL = 0.01 and an entropy value of S = 19 806 compared
to the locally equilibrated entropy of SL = 19 918. On the
other hand, we also evaluated the chemical potential for the
thermally equilibrated state associated with a temperature of
20 ◦C, assuming � = 0.1 eV and the same value of N giving
βμ = −2725, β� = 3.958, RT = 0.70, and ST = 61 067.
Thus, somewhat unexpectedly, the protein distribution in this
ribosome is much closer to isolated chemical equilibrium
associated with a high-energy initial state than to chemical
equilibrium expected from equilibrium with an ambient
temperature of the order to be expected at the surface of the
earth. The three population distributions for the ribosome are
shown (with a histogram bin size of 10) in Fig. 10. Further
studies applying these measures to experimental and natural
systems to evaluate their usefulness in determining the extent
to which a system of unknown provenance (for example, on
an exoplanet) might be regarded as lifelike are left for future
work.
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FIG. 10. Polymer length distribution for the proteins in the
ribosome of E. coli (red) compared with the local equilibrium
distribution associated with the energy of those proteins within the
model (blue) and with the thermal distribution associated with the
same number of polymers at an ambient temperature of the order of
that to be expected at the surface of the earth (green). In the thermal
distribution, all the 52 polymers are in the largest bin, so the number
of monomers is much larger and the height of the green peak is not
to scale.

ACKNOWLEDGMENTS

This work was supported by the United States National
Aeronautics and Space Administration (NASA) through Grant
No. NNX14AQ05G and used the computational resources of
the Minnesota Supercomputing Institute, the Open Science
Grid, the University of Minnesota School of Physics and As-
tronomy Condor cluster, and the NASA Advanced Supercom-
puting division Pleiades supercomputer. We thank A. Wynveen
for many helpful discussions and for reading and helpfully
commenting on a preliminary version of the manuscript. We
thank Professor Niels Fischer for assistance in locating the
data on the ribosome which was used to produce Fig. 10.

APPENDIX A: TEST OF THE ADIABATIC
APPROXIMATION AND SELECTION FOR EXPONENTIAL

POPULATION GROWTH

The use of detailed balance as expressed in Eq. (7) can
only be approximately correct in the isolated case if the rate
of change of the total energy E and the total polymer number
N is much slower than the rate of individual reactions. (The
latter is of the order of the inverse of the time step.) In the case
of contact with a thermal bath, the approximation is justified
if just the rate of change of N is much slower than the reaction
rate. To check if these conditions are satisfied we estimated
the logarithmic time derivatives of the polymer number N and
system energy E by sampling their values every 1000 simula-
tion steps over the entire run (typically at least 105 simulation
steps). We calculated N (t) and E(t) and from them the average
of the discrete logarithmic time derivative of N and E,

(1/N )dN/dt = (1/N )
N∑

τ=1

(Nτ+1 − Nτ )

(1/2)(Nτ+1 + Nτ )
, (A1)
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FIG. 11. Logarithmic reaction time derivative of the polymer
number and the energy for isolated systems during the entire run with
p = 0.002 26 and N1/Nf = 0.33. The data are for 7174 systems.

(1/E)dE/dt = (1/N )
N∑

τ=1

(Eτ+1 − Eτ )

(1/2)(Eτ+1 + Eτ )
, (A2)

in which τ labels data every 1000 reaction steps and N is the
number of data points.

Figure 11 is a scatter plot showing the average logarithmic
reaction time derivatives for 7174 thermally isolated systems.
Note that the fastest change in polymer number or energy is
of the order of 10−5, giving a time scale of variation of both
quantities of order 105 reaction steps, satisfying the adiabatic
condition.

Figure 12 is a typical scatter plot of the logarithmic reaction
time derivatives of the energy and polymer number for systems
coupled to a positive temperature heat bath. As noted, only
the logarithmic derivative of N is relevant in this case. It
is also generally less than or of order 10−5 inverse reaction
time steps, again giving a time scale of 105 reaction time
steps, which is much greater than 1 as required. For both
N and E there are large variances about the average values
of the logarithmic derivatives with respect to reaction time,
indicating that exponential growth is not a good model for
these quantities as a function of reaction time. However, these
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FIG. 12. Logarithmic derivative of the polymer number and the
energy for systems coupled to a thermal bath with p = 0.002 26 and
β� = 3.16. The data are for 9343 systems.
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FIG. 13. Example of time variation of N , E, S, β�, βμ, and kd during an isolated run ending in a nonequilibrium entropically steady state.

derivatives do give an estimate of the numbers of reactions
required to change N and E, which is what is required for the
adiabatic approximation.

Further evidence for the validity of the adiabatic approx-
imation is provided by the actual computed values of kd for
which we supply an example in Fig. 13. Though details of the
time dependence of E and N vary widely from run to run, we
consistently find the type of slow variation of kd shown there.
Here kd (L : M) is the value of kd used for ligation of polymers
of lengths L and M .
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FIG. 14. (a) Average logarithmic Gillespie time derivative of the
polymer number N and the ratio of the standard deviation of that
quantity divided by its average for a series of runs at fixed ambient
temperature given by β� = 0.1, with p = 0.002 26 and lmax = 8.
The data are for 9600 systems. (b) Same quantities for the energy E.

To test whether the systems generated are exponentially
growing in time, the relevant measure of time is not reaction
step time, as it is for evaluating the validity of the adiabatic
approximation, but our approximation to real experimental
time, which is given by the Gillespie algorithm as reviewed
for this application in Ref. [5]. In Fig. 14 we show an example
of the average values of the logarithmic derivatives of N and
E calculated as before, but with the Gillespie time interval
between each step in the denominator of the summand in
Eqs. (A1) and (A2) for a run at ambient temperature given as
β� = 3.16. Characteristically we find variances which are
large for small logarithmic derivatives, indicating that the
log-derivative is measuring noise and not actual exponential
growth, but much smaller variances at larger growth rates,
indicating systematic exponential growth. In those cases
in which exponential growth emerges from the noise, the
difference between Gillespie time and reaction step time is
usually large, with each unit of Gillespie time including many
reactions steps. In the selection for exponentially growing
systems (constraint four) which gives the frequencies of
exponentially growing systems in Figs. 7(c) and 8(c) we
counted systems with an average logarithmic N derivative
with respect to Gillespie time greater than 1 as exponentially
growing.

APPENDIX B: DYNAMICS ALGORITHM—COMPUTING
μ AND β ON THE FLY

Before a simulation is started a coarse-grained table is made
so that for given N and E values the values of μ and β can be
quickly determined by linear interpolation from the values in
the table. To construct the table, we use Newton’s method to
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FIG. 15. Fourier transforms and the power spectrum of C(τ ) of a run at fixed infinite ambient temperature (β� = 0). (a) and (b) Values of
N , E, RL, and RT over the entire history of the run, indicating that it is rather close to equilibrium. (c) Plot of C(τ ) calculated for the last 105

steps of the run. (d)–(f) Real and imaginary parts and the power spectra of the Fourier transform of C(τ ), with point weighting as described in
the text, near the origin. Here p = 0.002 26 and lmax = 6.

solve Eqs. (3) and (4) as follows. Let �v be the two-dimensional
vector

�v =
(

βμ

β�

)
. (B1)

Let N (�v) and E(�v) be the values of the right-hand sides of
(4) and (3) for that value of �v and N and E be the values of
the left-hand sides of (3) and (4). Define the two-dimensional
vector �F by

�F =
(

N (�v) − N

E(�v) − E

)
. (B2)

Consider a small variation δ�v from an initial guess for �v and
expand to first order about �v, giving

�F (�v + δ�v) = M · δ�v + �F (�v), (B3)

where the matrix M is the Jacobian

M =
(

∂N
∂βμ

∂N
∂β�

∂E
∂βμ

∂E
∂β�

)
. (B4)

Set �F (�v + δ�v) to zero and solve for δ�v, giving a first correction
to the initial guess for �v of

δ�v = −M−1 · �F (�v). (B5)

Iterate by evaluating M at �v + δ�v and getting a further
correction until the corrections are sufficiently small and the
components of �F are sufficiently close to zero. The inverse

M−1 of the matrix M is evaluated as

M−1 =
(

h − 2g + f g − f

g − f −f

)
×

(
1

g2 − hf

)
(B6)

in which, with xl = −(l − 1)β� − μβ,

f =
lmax∑
l=0

(2l − 1)/4 sinh2(xl/2), (B7)

g =
lmax∑
l=0

l(2l − 1)/4 sinh2(xl/2), (B8)

h =
lmax∑
l=0

l2(2l − 1)/4 sinh2(xl/2). (B9)

APPENDIX C: COLLECTIVE DYNAMICS
AND DYNAMICS CUT

To characterize the collective dynamics of states in the
model, we used, as in Ref. [5], the correlation function C(τ )
defined as

C(τ ) = [1/(Nst−τ )]
Nst−τ∑
t=1

∑
m

[nm(t) − nm][nm(t + τ ) − nm].

(C1)

Here τ and t are integers numbering successive reactions,
Nst is the number of time (event) steps used to characterize
the dynamics, and nm is the time average of nm over the Nst

reaction steps.
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FIG. 16. Fourier transforms and the power spectrum of a run at fixed ambient temperature β� = 1. Panels are defined as in Fig. 15. This
system is classified as LATA based on the R values. Its population grew rapidly and its dynamic spectrum is qualitatively similar to the previous,
equilibrium example. Here p = 0.002 26 and lmax = 6. The same network that was used to generate the data in Fig. 15 was used here.

The time Fourier transform, with ωl = 2πl/Nst, is (with
i = √−1)

S(ωl) =
Nst∑
τ=1

exp(−2πilτ/Nst)C(τ )F (τ ), (C2)

in which F (τ ) = (Nst − τ )/Nst is a weighting function which
takes approximate account [11] of the fact there are fewer data
points in the sum for C(τ ) leading to larger uncertainties in
C(τ ) as τ increases. The power spectrum is

P (ωl) = |Re[S(ωl)]|2 + |ImS(ωl)|2. (C3)

We characterize the scale ωm of the frequencies in the power
spectrum by approximately solving the implicit equation∑l=m−1

l=−m P (ωl)∑Nst/2−1
l=−Nst/2 P (ωl)

= 1/2. (C4)

Over the relatively short steady-state period of 10 000
reactions steps we showed in Ref. [5] that the shape of the
Fourier transform is not sensitive to choice of event time or
Gillespie time. The Fourier transforms are numerically much
quicker to evaluate using event time, so we have chosen to
use event time in the computation of the Fourier transform
and correct the values of ωm to Gillespie time after ωm is
determined by dividing by the average Gillespie time δtGillespie

between reactions during the steady-state interval. We then
choose a cutoff frequency ωc and deem states with ωm > ωc to
have passed the dynamics cut and to be considered dynamically
alive.

We show some examples of the correlation functions and
power spectra in Figs. 15–17 (in units of inverse reaction
time). With our parametrization, the results fall into two, fairly
distinct, dynamic classes. In one class, the power spectrum is
dominated by a very strong peak around the highest possible
frequency, obtained by setting l = Nst/2 so that ωl = π (the
zone boundary). These states easily pass any dynamics test of
the sort described, but it is not clear that they are intuitively
very lifelike. The other states have quite symmetrical peaks
of various shapes around the origin in the power spectrum.
Many of these Fourier transforms have a shape reminiscent
of a Drude or Debye spectrum characterized by one or a few
dissipatively damped modes, while some others show evidence
of underdamped modes as well. The time scale of this second
class of dynamic states is much longer, usually roughly 104

event time steps. We do not have a detailed theory to account
for this time scale, but find that it is of the order of the number
of reactions in the networks (about 2500 for typical values of
lmax = 8 and p = 0.005).

APPENDIX D: FOOD SET INSTABILITY IN ISOLATED
DYNAMICS

We hold the total food set population of dimers and
monomers at a fixed value Nf (=500 in the simulations
reported here). The simulations start with finite populations
only in the food set. Here Nf = N1 + N2 and from (7) the rate
of dimer scission to monomer monomer ligation is

2 → 1 + 1

1 + 1 → 2
= n1

2/n2 (D1)
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FIG. 17. Fourier transforms and the power spectrum of a run at fixed ambient �β = 1 but exhibiting a sharp peak in its the power spectrum
of C(τ ) around the maximum frequency ω = π . Panels as defined as in Figs. 15 and 16 except that (d)–(f) have been centered around ω = π .
This system would qualify as LDTA on the basis of the R values but its population is not growing and its dynamic spectra are very different
from the previous two examples. For this run p = 0.002 26, lmax = 6, and the network is different from that used to generate Figs. 15 and 16.

for any pair of monomers. At the beginning of the simulation,
there are only dimers and monomers and the instantaneous
equilibrium values of the populations are, using the relations
N = 2n1 + 4n2 and n2 = −E/4�,

n1 = (N + E/�)/2, n2 = (−E/4�). (D2)
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FIG. 18. Scatter plot of values of the nonfood mean polymer
length and its standard deviation produced by 41 667 simulations
driven toward equilibrium at fixed positive temperature with β� =
10, p = 0.012 80, and lmax = 6. The dashed curves show the results
of Eq. (E3) for the cases l1 = 6 and l2 = {3,4,5} with no adjustable
parameters.

Express this in terms of f = N1/N = (1 + E/�N ), giving

2 → 1 + 1

1 + 1 → 2
= Nf 2/(1 − f ). (D3)

The forward and reverse rates are equal when this is 1, giving
a quadratic equation for f with a positive root

fc = (1/2N )(−1 + √
1 + 4N ) ≈ 1/

√
N (D4)

because Nf = 500 � 1. The critical value of N1/N is thus
about 0.05 and if we populate the food set with a 1/6
probability for each species, 95% of the time we will drive
all the dimers to monomers.

This accounts for the observation that in the simulation,
uncontrolled equilibration of the food set to the instantaneous
values of E and N drives the dissolution of dimers into
monomers. However, then the evolution cannot start, because
in order to get a nonfood polymer (of length 3 or larger) from
a collection of only monomers one must first make a dimer
and, by the previous argument, the dimer will immediately be
dissociated back to monomers.

APPENDIX E: SCARS IN MEAN LENGTH VERSUS
LENGTH VARIANCE SCATTER PLOTS

We consider the case in which there are nonzero populations
of nonfood polymers of just two types with lengths l1 and l1 and
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TABLE I. Numbers of networks generated to produce the results
shown in Figs. 2 and 3. For each viable network, 50 dynamics
simulations were produced.

p No. of networks

0.00226 10 000
0.00320 10 000
0.00452 10 000
0.00640 5000
0.00761 1000
0.00905 1000
0.01280 1000

populations n1 and n2 and a constant total nonfood population
N = n1 + n2. The mean length is then

x = l = (l1n1 + l2n2)/N (E1)

and the variance in the length is

y2 = l2 − l
2 = (

l2
1n1 + l2

2n2
)/

N − [(l1n1 + l2n2)/N]2.

(E2)

Rearranging these relations, we obtain

y2 = (l1 − x)(x − l2), (E3)

which describes the loci of the scars in Figs. 4 and 6 very well.
We show an example of the result of Eq. (E3) compared with
scatter plot data from a thermal run in Fig. 18.

TABLE II. Numbers of networks generated and numbers of
dynamics runs per viable network used to produce the results shown
in Figs. 7 and 8.

p No. of networks Dynamics runs per viable network

0.00226 10 000 50
0.00320 10 000 50
0.00452 5000 25
0.00640 2000 25
0.00761 1500 25
0.00905 1250 25
0.01076 1000 25
0.01280 1000 25

APPENDIX F: SIMULATION DETAILS

For the data in Figs. 2 and 3, the number of generated
networks (including those discarded as not viable) was as
shown in Table I. For each viable network, 50 dynamic
simulations with different random number seeds for initiation
were generated. For the data in Figs. 7 and 8, the number
of networks and the number of simulations per network are
shown in Table II.

For larger p, a larger number of generated networks is
viable, so a smaller number of starting networks is required
to generate statistically significant data. Also, at larger p it
takes more reactions to reach steady state, so longer runs
are required and fewer dynamics runs per viable network are
computationally affordable.
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