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Connectivity, or the lack thereof, is crucial for the function of many man-made systems, from financial and
economic networks over epidemic spreading in social networks to technical infrastructure. Often, connections
are deliberately established or removed to induce, maintain, or destroy global connectivity. Thus, there has been a
great interest in understanding how to control percolation, the transition to large-scale connectivity. Previous work,
however, studied control strategies assuming unlimited resources. Here, we depart from this unrealistic assumption
and consider the effect of limited resources on the effectiveness of control. We show that, even for scarce resources,
percolation can be controlled with an efficient intervention strategy. We derive such an efficient strategy and study
its implications, revealing a discontinuous transition as an unintended side effect of optimal control.
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We are living in a globalized world. Large-scale connec-
tivity, in particular, is essential for the proper functioning
of many socioeconomic and technical systems. Examples
include technical networks like the internet [1–3] or the world
aviation network [4] and a wide range of socioeconomic
and financial systems [5–7]. In other cases connectivity may
be a liability, allowing the spreading of diseases and other
contagion processes [8–10]. Ideally, control of connectivity
has the goal to prevent widespread failure, for example, by
immunizing a subset of the population to prevent an epidemic.
Identifying efficient strategies that use minimal resources is
an ongoing problem [11–13]. In many cases, however, one
cannot completely prevent an undesirable transition, such as
a recession or financial crisis, and tries to delay it as long as
possible, often resulting in more severe consequences when
the transition inevitably occurs [6,14,15]. Thus, it is essential
to understand how to control and delay the emergence of
connectivity under the constraint of limited resources and what
such unintended consequences may be.

Percolation theory describes the emergence or breakdown
of global connectivity depending on the structure of the
underlying network with stochastic link addition processes
[16–20]. A large body of work has studied the impact of an
unlimited number of small interventions in modified models
of network growth with the goal to delay the percolation
transition. Most of these processes are based on a specific
link addition rule. Typically, two (or more) possible candidate
links are evaluated at each step and the link is added that
delays (or enhances) the percolation transition the most [21].
This “competitive” percolation [22] leads to an extremely
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sudden, but still continuous transition, sometimes referred to as
“explosive” [22–24]. Other models introduce explicit control
over the largest cluster, which further delays the transition and
can result in a genuine discontinuous percolation transition
[25–28]. Many more models with similar motivation have
been studied, leading to a surprising diversity of phenomena
[18,21–24,29–37].

In all these examples control is inherent to the link addition
process, implicitly assuming unlimited resources and allowing
indefinite control. Control in realistic settings, however, will
be restricted by limited resources. Here, we derive an efficient
resource limited control strategy to delay percolation and dis-
cuss the consequences for the resulting percolation transition.
In particular, while the delayed transition remains smooth for
suboptimal interventions, optimizing the control parameters to
maximize the delay results in a discontinuous transition.

I. RESULTS

A. Model

We develop our framework to efficiently delay the perco-
lation transition based on the prototypical model of classical
network formation, percolation of a random graph: new links
eij between nodes i and j are chosen uniformly at random and
sequentially added to a set of N initially unconnected nodes
[38]. We implement control of link addition by preventing the
chosen link from being added (see Fig. 1). This control is costly
and preventing a link incurs a cost c[S(i),S(j )], where S(i)
and S(j ) are the sizes of the respective connected components
(clusters) that include the nodes i and j . Once a total budget B

is spent, we can no longer control the link addition process. We
track the evolution of the relative size of the largest connected
component S1/N as a function of the link density p = L/N ,
where L is the number of links added to the network. For
the results presented here, the cost of an intervention is kept
constant c[S(i),S(j )] = 1 and we assume a budget that scales
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FIG. 1. Controlling the percolation transition. (a) Random percolation: in each step a link is selected uniformly at random and added
to the network. (b) Controlled percolation: In each step, we can prevent the chosen link from being added to the network, paying a cost
c[S(i),S(j )] from a limited budget B. The constraint of a limited budget requires an efficient control strategy. As described in the text, we only
prevent links when the probability that the intervention is successful is sufficiently large, Prob(success) �1 − ε. We consider an intervention
unsuccessful if a similarly large cluster is likely to appear again with the next link ekl . Consequently, we intervene when the probability of
such a failure Prob(failure) ≈Prob[S(k) + S(l) � Sij ] < ε is small (the expected time until a similarly large cluster appears is large). When this
failure probability is too large or the budget is exhausted, we do not intervene. As illustrated, this control delays the creation of large clusters
and the onset of percolation.

linearly with the number of nodes, B = bN , where b is a
(finite) constant. Corresponding results are obtained for other
cost functions that scale with the size of the clusters, such as
c[S(i),S(j )] = S(i) + S(j ) (see Supplemental Material [39]).
In this case, avoiding the transition completely would clearly
require preventing most of the links, which is impossible with
limited resources.

In order to efficiently utilize the available resources and de-
cide which links to prevent, we derive a control protocol based
on the effect of a single intervention. Consider preventing a
link eij that, when added to the network, would create a cluster
of size Sij = S(i) + S(j ). If the next link ekl creates a cluster
of size Skl = S(k) + S(l) � Sij , we spent some of our budget
in vain, since we did not delay the emergence of a large cluster.
Conversely, we can consider the intervention effective, when
the next links ekl only create smaller clusters Skl < Sij and
the emergence of a large cluster was delayed. Based on this
idea we propose a control protocol where we prevent a link eij

only if the expected impact is sufficiently large. We measure
this impact by the (expected) number of links �LSij

until a
cluster of size at least Sij appears again. Clearly, if �LSij

is large, the intervention is more likely to delay the growth
of a large cluster. If this delay is larger than some threshold
�Lthres, we consider the intervention effective and prevent the
link, otherwise we do not intervene. In practice, we estimate
the expected �LSij

from the current cluster-size distribution
nS as the inverse of the probability that a new link ekl creates

a cluster Skl � Sij ,

1〈
�LSij

〉 ≈ Prob[Skl = S(k) + S(l) � Sij ]

=
∑

S(l)�=S(k)
S(k)+S(l)�Sij

S(k)nS(k)

N

S(l)nS(l)

N − 1

+
∑

2S(k)�Sij

S(k)nS(k)

N

S(k)(nS(k) − 1)

N − 1
, (1)

where the first sum describes the probability of a merger
of clusters of different size resulting in a cluster at least as
large as Sij and the second sum describes similar mergers
between clusters with equal size. For simplicity, we ignore
that a link already present cannot be added again. Hence, we
prevent a link from being added if Prob[S(k) + S(l) � Sij ] <

1/�Lthres := ε, where ε denotes the “intervention intensity,”
which is the expected link rejection rate. This protocol is
equivalent to stopping the ε-fraction most extreme events
during the percolation process given sufficient budget. Other
control strategies based, for example, on constraining the vari-
ance of the cluster size distribution are less efficient but give
qualitatively similar results (see Supplemental Material [39]).
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FIG. 2. Effects of resource limited control of percolation. (a)
Single realization of the evolution of the relative size of the largest
cluster for N = 225 (red solid line) and remaining fraction of the
budget (red dashed line) for budget parameter b = 0.05 and inter-
vention intensity ε = 0.1. Compared to zero budget, the percolation
threshold is shifted from pc = 0.5 (gray line, showing random
percolation without control) to pc ≈ 0.67. Interestingly, the transition
remains continuous and in the same universality class. (b) Single
realizations of the evolution of the relative size of the largest cluster
for N = 225, ε = 0.1, and different values of b. Surprisingly, when b

becomes large enough, the transition becomes discontinuous. Inset:
the largest gap max(�S1/N ), averaged over 210 to 26 realizations;
error bars indicate the standard deviation. For small b, the scaling
is the same as expected for random percolation, max(�S1/N ) ∼
N−1/3. However, for a sufficiently large budget, the largest gap is
independent of the network size and the transition is discontinuous.

B. Efficient control of percolation

How much and how efficiently can the percolation transition
be delayed with limited resources? As shown in Fig. 2, even
with a small budget B = bN = 0.05N , meaning less than one
intervention in ten link additions until pc � 1/2, we can sig-
nificantly delay the percolation transition compared to random
percolation. Compared to the sudden transitions in the models
of explosive percolation [21–24,31,37], our control protocol
is more effective in delaying the transition (see Appendix A).
Interestingly, the transition remains smooth and still belongs
to the same universality class as random percolation when
the budget is exhausted before the transition (see Table I and
Appendix B for results of a finite-size scaling analysis).

Note that in Fig. 2(a) the budget runs out at p=:plast<pc,
before the percolation threshold pc, and the transition itself

TABLE I. Finite-size scaling. Exponents −β/ν (top) and γ /ν

(bottom) found by finite-size scaling analysis. The corresponding
fits are shown in Fig. 7 in Appendix B. The values agree with
the exponents expected for random percolation −β/ν = −1/3 and
γ /ν = 1/3 when the interventions end before the transition. For
ε = 0.1 and b = 0.1 the result is consistent with the expected β = 0
of a discontinuous transition.

−β/ν

b\ε 0.1 0.2 0.5

0.01 −0.325(3) −0.338(8) −0.337(9)
0.05 −0.35(1) −0.336(3) −0.333(8)
0.10 −0.03(5) −0.338(6) −0.337(5)

γ /ν

0.01 0.331(3) 0.338(5) 0.331(2)
0.05 0.347(5) 0.343(7) 0.333(7)
0.10 0.40(5) 0.334(7) 0.339(5)

is uncontrolled. We can estimate how long the budget
lasts: With a constant intervention rate ε we would expect
�Lint = ε�Ltotal interventions to occur during the sampling
of �Ltotal links. During this period, we add only N�p =
�L = (1 − ε)�Ltotal links. Taking �Lint = �B = N�b, we
find the budget used in this interval �b = ε

1−ε
�p.

However, the budget decays nonlinearly, as seen in Fig. 2(a),
which means the true intervention rate also varies with p.
This nonlinear dependency results from the behavior of the
intervention rate oscillating around an effective linear increase
εeff(p) = ε(1 + p/pmax

c )/2 for p � pc, where pmax
c is the

position of the critical point of controlled percolation with
intervention intensity ε and infinite budget (see Appendix C
for details). This observation, together with integration over
p, then yields the closed expression defining plast

b =
∫ plast

0

εeff(p)

1 − εeff(p)
dp. (2)

As expected, a larger (effective) intervention rate requires
a larger budget. Consequently, for a small budget, (i) the
budget runs out before the onset of percolation at plast < pc

(interventions stop), (ii) the process is uncontrolled in a short
but extensive window prior to the transition point, and (iii) one
observes a continuous transition in the same universality class
as random percolation. In contrast to previous percolation rules
where delaying the transition changes its universality class,
the limited resources in our model are exhausted before the
transition. At this point the largest cluster has a fixed finite
size and uncontrolled random percolation takes over, resulting
in a continuous transition similar to random percolation for
different initial cluster-size distributions [40].

C. Optimal control leads to discontinuity

Increasing the budget also increases the delay of the
transition. Interestingly, too large a budget also leads to a
discontinuous transition [see Fig. 2(b)]. At the same time,
increasing the budget further no longer increases the delay
of the transition and pc becomes constant. Clearly, when
the budget survives the percolation threshold, additional
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FIG. 3. Discontinuous transition above a critical budget. Perco-
lation threshold pc measured by the position of the largest gap of
S1 for different values of b. Results are averaged over 1024 and
256 realizations for networks of size N = 220 and 225, respectively.
Error bars indicate the standard deviation. The delay increases with
an increasing budget until it becomes constant above a critical
budget bc ≈ 0.058. At the same time, the transition changes from
continuous to discontinuous at b = bc. Inset: The size of the largest
gap max(�S1/N ) for different b.

interventions have no effect on the transition. This suggests
that the optimal delay is achieved for an optimal budget lasting
exactly until the percolation threshold, plast = pc. At this point
no uncontrolled window exists before the transition and the
transition becomes discontinuous.

A similar logic defines the optimal parameters for speeding
up the percolation transition (see Appendix D): interventions
taken after the transition have no effect, while intervention-free
uncontrolled link addition will reduce the effect of previous
interventions. Optimal interventions necessarily end exactly at
the percolation threshold, regardless of the intended result of
the control.

Substituting plast = pmax
c ≈ 0.72 in Eq. (2) as the largest

observed value of the critical point, we predict the critical
budget required for a discontinuous transition for ε = 0.1 to be
best

c ≈ 0.058. Indeed, this is confirmed by the numerical results
shown in Fig. 3: the transition is continuous for b � 0.05, while
the transition for b � 0.06 is already discontinuous.

But how can the transition become discontinuous for
b > bc? Stopping the ε-fraction most extreme events prevents
any cluster above a certain size Cthresh to appear in the network.
As more links are added, this threshold slowly increases. This
is similar to the dynamics of the Bohman-Frieze-Wormald
(BFW) model [41]. In fact, we observe comparable behavior in
the subcritical regime: there is a hierarchy of thresholds pk >

0, k = 3,4, . . . where a new largest cluster of size S1 = k first
appears. As in the BFW model, these pk converge to constant,
finite values 0 < pk < pc for large systems and announce the
critical transition as pk → pc for k → ∞ (see Appendix C).
Thus, the same mechanism that leads to a discontinuous
transition in the BFW model causes a discontinuous transition
for optimal resource limited control of percolation [27,41,42].

We have studied other control strategies and cost func-
tions, for example, cost proportional to the size of the
clusters involved in the link, c[S(i),S(j )] = S(i) + S(j ) (see
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FIG. 4. “Phase diagram” and discontinuous transition as a result
of optimal control. Position of the transition pc for budget parameter
b = 0.05 as a function of intervention intensity ε and intervention
start pstart. Results for system size N = 220, averaged over R = 128
realizations. The largest delay with pc ≈ 0.72 is achieved for a set
of optimal intervention parameters (bright yellow) that separate the
continuous from the discontinuous transition regime. The transition
becomes discontinuous as a result of the optimal resource limited
control. The black dashed line represents our estimate for this optimal
parameter set in (ε,pstart) space (see text). The thin lines indicate lines
of constant pc.

Supplemental Material [39]). We find for all of the studied cost
functions that a small budget leads to a continuous transition,
whereas a larger budget further delays the transition and
eventually leads to a discontinuous transition. However, when
the cost scales with the size of the clusters, the transition only
becomes discontinuous when the budget scales superlinearly
B ∼ O(Na) with a > 1.

D. Limited observability

One realistic limitation to the control of connectivity is
observability. In particular, we might not be aware of problems,
such as emerging large clusters, early on in the process and only
begin interventions after some time pstart. Under these condi-
tions, how do we best utilize a limited budget? Adapting Eq. (2)
to include pstart leads to the relation b = ∫ pmax

c

pstart

εeff (p)
1−εeff (p)dp

describing the optimal intervention parameters (see also
Appendix C). Calculating the optimal start and intensity of the
interventions with b = 0.05 and the observed pmax

c = 0.72, we
obtain good agreement with the numerical results in Fig. 4. As
explained above, the line of optimal control parameters sepa-
rates the regimes of continuous and discontinuous transitions.
As required by the constraint of limited resources, our control
scheme is much more efficient than explosive percolation
models at controlling percolation: We achieve pc = 0.72 with
only about one intervention per 15 added links; much less than
comparable competitive percolation models, which reject one
link for each link added (see Appendix A).

Interestingly, we find that for fixed intervention cost
interventions close to the percolation threshold are slightly
more effective than early interventions (pc slowly increases
as a function of pstart along the critical line). This result,
however, is specific to constant intervention costs as other
cost functions can lead to a different behavior: interventions
as early as possible, pstart = 0, are optimal for intervention
costs that grow with the size of the connected clusters (see
Supplemental Material [39]).
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II. DISCUSSION

We have derived a control strategy to efficiently delay
percolation with limited resources. In contrast to previ-
ous models constructed to delay the percolation transition
[18,21–24,29–37], we find that the transition remains smooth
and in the same universality class as random percolation for
nonoptimal control when the resources are exhausted before
the transition. Given a fixed budget, maximal delay of the
percolation transition is achieved by optimizing the control
protocol such that the budget is exhausted exactly at the
percolation threshold. While the percolation transition can be
delayed by control interventions, this resource optimal delay
inevitably results in a discontinuous percolation transition that
becomes effectively uncontrollable, since the addition of a
single link induces a macroscopic change in the connectivity.

It is commonly believed that interventions taken as early
as possible can have the biggest impact to avoid large-scale
connectivity [6]. We have shown that this is not always
the case: a strong effort to intervene right at the beginning
can diminish the budget to such an extent that more timely
interventions become impossible in crucial stages.

The framework we developed on the basis of random net-
work growth highlights the unintended consequences of trying
to control the percolation transition by delaying it [6,14,15].
Likely, similar effects will occur for other control schemes as
well. This work may thus help to design control schemes in
other networks, specific to the underlying network dynamics
and its constraints, in particular when resources are scarce.
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APPENDIX A: COMPARISON TO THE PRODUCT RULE

To illustrate the effectiveness of the proposed control
protocol, we explicitly compare it to the product rule of
explosive percolation [21]. The product rule is defined as
follows: in each step choose two links uniformly at random

FIG. 6. Controlled percolation. Single realizations of the largest cluster size (red solid lines) and the remaining fraction of the budget (green
dashed lines) for various parameter combinations and N = 225. Depending on the parameters the delay between the last interventions (budget
reaching 0) and the percolation transition changes. The transition is smoothest when this gap is large. When the budget lasts until after the
percolation transition, the transition becomes discontinuous.
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FIG. 7. Finite-size scaling for controlled percolation. Results for finite-size scaling for the estimated critical point and two values of p

slightly below and above. The error bars indicate the standard deviation; lines are guides to the eye. Averages are taken over 1024 to 64
realizations for system sizes from N = 220 to N = 230. The black dashed lines indicate the best fits; the resulting exponents are listed in
Table I above. (a) Results for the exponent −β/ν ≈ −1/3, showing the same behavior as expected for random percolation for all continuous
transitions. For b = 0.1, ε = 0.1 we find β ≈ 0, corresponding to a discontinuous transition. (b) Results for the exponent γ /ν ≈ 1/3, showing
the same behavior as expected for random percolation for all continuous transitions.

and add the link that minimizes the product S(i)S(j ). This
significantly delays the percolation transition, but results in a
very abrupt, explosive transition that is continuous but almost
indistinguishable from a discontinuous transition even in very
large systems. To compare the models, consider the “budget”
required for the product rule: in each step one link is rejected,
thus for constant cost, c[S(i),S(j )] = 1, the product rule
requires a budget B(p) = pN up until p. Therefore, until the
phase transition at pPR

c ≈ 0.889 it uses a budget B = 0.88N .

We use the same budget, b = 0.88, for our intervention rule and
choose a good (although not optimal) intervention intensity
ε = 0.62. As shown in Fig. 5 our intervention rule delays the
percolation transition more efficiently while also keeping the
transition in the same universality class as random percolation.

APPENDIX B: FINITE-SIZE SCALING ANALYSIS

Compared to explosive percolation our control scheme does
not change the universality class of the transition when the
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FIG. 8. Critical cluster size distribution. Cluster size distribution nS for various system sizes N [N = 220, 225, and 230 averaged over 1024,
256, and 64 realizations, respectively (N = 220, 222, and 225 for b = 0.1, ε = 0.1)]. Here, nS describes the relative frequency of clusters of size
S. The results are aggregated into logarithmic bins for clusters with size S > N1/3 up to S = 16N1/2. The scaling is expected to follow a power
law nS ∼ S−τ for large S; the dashed black lines show the scaling expected for random percolation with exponent τ = 5/2 (not normalized).
The peak in the cluster size distribution for small S is a signature of the finite size of clusters in the system when the interventions stop. Larger
budgets allow for more interventions shifting the peak to larger S and making it more pronounced. Higher intervention intensities use the
budget earlier, shifting the peak to lower S.

budget is exhausted before the transition. To demonstrate this,
we conduct a finite-size scaling analysis for various values
of the parameters b and ε. Figure 6 shows single realizations
for these parameters. The transition is continuous in all cases
where the budget is exhausted early. Only for b = 0.1 and
ε = 0.1 does the budget last until after the transition and the
transition becomes discontinuous.

With the standard assumption of the critical scaling S1(p) ∼
|p − pc|β and 〈S〉(p) ∼ |p − pc|−γ for the size of the largest
cluster and the mean cluster size, respectively, as well as for the
correlation length ξ (p) ∼ |p − pc|−ν , we find the exponents
−β/ν and γ /ν from the finite-size scaling fits shown in Fig. 7.
The results for the exponents are shown in Table I above. All
exponents of the continuous transitions agree well with those
expected for random percolation. For b = 0.1 and ε = 0.1
we obtain exponents expected for a discontinuous transition,
−β/ν = 0. In particular, the transition never becomes weakly
discontinuous or explosive. Similarly, we find the exponent
τ = 5/2 for the cluster size distribution at the critical point
in all cases, the same as for random percolation. The
corresponding results are shown in Fig. 8.

APPENDIX C: OPTIMAL CONTROL PARAMETERS

In order to estimate optimal intervention parameters, we
need to predict the point plast when the budget is exhausted.

We first illustrate that the intervention rate is not constant
as one might have expected from the definition of the
intervention rule. Instead it fluctuates, dropping to small values
immediately after the largest cluster size in the system grew
(see Fig. 9). This is easiest to understand by considering the
first link: we never prevent the first link since the probability
to create a cluster of size 2 is Prob[S(k) + S(l) � 2] = 1 > ε.
Thus the probability of an intervention ε(p = 0) = 0. Simi-
larly, the first few links are unlikely to be prevented, since a link
creating a cluster of size 3 or larger is chosen with vanishing
probability.

We can think about the intervention rule in the following
way: We always prevent the most extreme links. This is
equivalent to preventing all clusters above a certain size (until
these links become too likely). This means, when the size
of the largest cluster just changed to S1, the probability to
create a larger cluster is usually smaller than ε. However,
the links creating a cluster of size S1 are not prevented as
the probability to create a cluster larger or equal to S1 is
larger than ε. Thus, after these microtransitions of the largest
cluster size, the intervention probability drops. In fact, we find
that these transitions to a new largest cluster size happen at
well defined times, constant across different system sizes (see
Fig. 9). This behavior is similar to the subcritical evolution of
the BFW model [41,42]. This observation also supports the
discontinuity of the transition.
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FIG. 9. Distribution of interventions. (a) Single realization of
the largest cluster size in the subcritical regime for N = 225 with
unlimited budget and ε = 0.1. (b), (c) Probability of an intervention
for a single link chosen at p for two different system sizes averaged
over 100 realizations each. When a new cluster size appears in
the network the intervention probability “resets.” This causes the
transitions to S1 = 3 at p3, S1 = 4 at p4, and so on to occur at fixed
positions. This behavior is similar to the subcritical evolution of the
largest cluster in the BFW model, leading to a discontinuous transition
at pk → pc for k → ∞.

FIG. 10. Estimating the intervention rate. Probability of an
intervention for a single link chosen at p for system size N = 220

averaged over 100 realizations. The red and green lines illustrate
the approximation used to define the effective intervention rate εeff

(green), describing a local average of the true intervention rate (here
for pstart = 0).

We can use the observed intervention rate to derive an
estimate for the budget used for interventions up to p. Since
we do not know the exact form of ε(p), we use an empirically
determined “effective intervention rate” εeff(p), describing a
local average of ε(p) (illustrated in Fig. 10 for pstart = 0).
This intervention rate depends on the intervention parameter ε

and the position pmax
c of the critical point of the process with

unlimited budget. When pstart > 0, the uncontrolled evolution
before the control starts will cause the intervention rate to be
larger than in the fully controlled process. We assume that the
effective intervention rate at pstart is εeff(pstart) = pstartε + ε/2
(the value obtained by setting pmax

c = 1/2). Directly at and
after pc the effective intervention rate is εeff(p � pc) = ε.
Together this gives

εeff(p) = p − pstart

pmax
c − pstart

(ε/2 − pstartε) + ε/2 + pstartε, (C1)

for pstart � p � pc. Obviously, before pstart the interven-
tion rate is εeff = 0 and above pc the intervention rate
is εeff = ε.

We can now use the argument we gave above and integrate
Eq. (C1) over all interventions to find the total budget used.
We arrive at the approximate relation

b =
∫ plast

pstart

εeff(p)

1 − εeff(p)
dp

= pstart − plast −
2
(
pmax

c − pstart
)
log

(−2(pmax
c −pstart)+ε[plast+pmax

c −2pstart(1+plast−pmax
c )]

(pmax
c −pstart)(ε+2pstartε−2)

)

(1 − 2pstart)ε
, (C2)

assuming again pmax
c � plast is the critical point of the process

with parameters ε and pstart given unlimited budget.
Substituting plast = pmax

c gives the condition for optimal
intervention parameters, which can be solved numerically to
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FIG. 11. Enhancing percolation. Single realizations of the largest cluster size (red solid lines) and the remaining fraction of the total budget
(green dashed lines) for various parameter combinations for interventions enhancing percolation (N = 225). Depending on the parameters the
transition is enhanced more or less strongly. As for delaying the transition, interventions are most efficient when the interventions last exactly
until the transition.

find the optimal budget or intervention rate (see Fig. 4). The
estimate becomes worse for large values of ε and pstart and very
small values of b, where interventions occur only in a small
interval and averaging to εeff becomes inaccurate. For the same
reason, the effective intervention rate is a good approximation
when estimating the optimal intervention parameters, where
interventions last until pc and the error from averaging is small.

APPENDIX D: ENHANCING PERCOLATION

We have illustrated our results for interventions that are
designed to delay the percolation transition. Interestingly,
the same logic describing the optimal intervention strategy
also applies to enhance percolation. Instead of stopping
the ε-fraction most extreme events, we simply reverse the
protocol, Prob[S(k) + S(l) � Sij ] < 1/�Lthres := ε, and stop

the ε-fraction least extreme events, where we specifically
include links connecting nodes in the same cluster as creating
a new cluster of size 0. Additionally, we always prevent
such intracluster links as there are no less extreme events.
However, this is only relevant for nonoptimal interventions
after the transition.

Also in this case optimal interventions necessarily end
at the percolation threshold. Interventions lasting longer
have no additional effect on the threshold and interventions
ending earlier create an extensive interval of uncontrolled
percolation before the transition, partially negating the effect
of the interventions. In Fig. 11 we show examples for single
realizations of percolation enhancing interventions. The results
confirm that the effect is largest (pc is smallest) when the
budget runs out exactly at plast = pc. The budget used also
shows that it is much more difficult to enhance the percolation
than to delay it.
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