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Crucial events, randomness, and multifractality in heartbeats
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We study the connection between multifractality and crucial events. Multifractality is frequently used as a
measure of physiological variability, where crucial events are known to play a fundamental role in the transport
of information between complex networks. To establish the connection of interest we focus on the special case of
heartbeat time series and on the search for a diagnostic prescription to distinguish healthy from pathologic subjects.
Over the past 20 years two apparently different diagnostic techniques have been established: the first is based
on the observation that the multifractal spectrum of healthy patients is broader than the multifractal spectrum of
pathologic subjects; the second is based on the observation that heartbeat dynamics are a superposition of crucial
and uncorrelated Poisson-like events, with pathologic patients hosting uncorrelated Poisson-like events with
larger probability than the healthy patients. In this paper, we prove that increasing the percentage of uncorrelated
Poisson-like events hosted by heartbeats has the effect of making their multifractal spectrum narrower, thereby
establishing that the two different diagnostic techniques are compatible with one another and, at the same time,
establishing a dynamic interpretation of multifractal processes that had been previously overlooked.
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I. INTRODUCTION

The hypothesis that multifractality is a significant property
of physiological processes gained attention in the literature
over the past 20 years. Ivanov et al. [1] initiated this interest
using wavelets to analyze the heartbeat data of several patients,
some healthy and some affected by congestive heart failure.
They determined that the main difference between the healthy
and nonhealthy is that the healthy subjects have a significantly
broader multifractal spectrum. The multifractal approach [1]
is an efficient way to measure cardiovascular variability [2],
referred to as heart rate variability (HRV), the proper treatment
of which is still the object of intense discussions [3].

The statistical analysis of heartbeat sequences, as well
as that of other physiological processes, is carried out by
properly processing suitable time series. Each time series
corresponds to a single individual who is unique, thereby
raising the challenging problem of determining how to
establish a connection with the Gibbs ensemble perspective,
which requires averages to be taken over identical copies of
the same system. This dilemma is settled by assuming that
different portions of the single time series can be interpreted
as identical copies of the same process, corresponding to
different initial conditions. A well-known analysis technique
of this kind is detrended fluctuation analysis (DFA) [4,5].
Due, in part, to the growing interest in multifractality [6],
Kantelhardt et al. [7] extended DFA so as to make it possible
to extract from it multifractal information, through the spectral
density f (α), which often has the form of a broad inverted
parabola that is expected to become very narrow and centered
on the scaling index α = 0.5 in the ordinary Poisson case. We
refer to the algorithm developed in Ref. [7] as multifractal
detrended fluctuation analysis (MFDFA). MFDFA is adopted
to discuss the transmission of multifractality from a complex
network stimulus to another complex network [8], both being
characterized by a broad f (α) spectrum.

The main purpose of the present article is to uncover
the dynamical origin of a broad f (α) spectrum by moving

from the specific case of HRV to the general properties of
non-Poisson time series. To achieve this, we follow the search
for a diagnostic distinction between healthy and pathological
subjects. The goal, however, is to obtain a better understanding
of the dynamical origin of multifractal variability. Significant
insights about this dynamic origin would attract general
interest to the improvement of diagnostic techniques. One
possible road to the solution of this problem can be found
by noticing that in 2002 Allegrini et al. [9] used the detection
of crucial events as the main criterion to distinguish healthy
[with a broad f (α) spectrum] from unhealthy [with narrow
f (α) spectrum] patients. For a proper definition of crucial
events we adopt the theoretical perspective established in
earlier work, see, for example, Ref. [10], defining the crucial
events on the basis of the time interval between the occurrence
of two consecutive events. The time interval between two
consecutive events is described by a waiting time probability
density function (PDF) ψ(τ ). In the case of crucial events ψ(τ )
has the asymptotic inverse power-law (IPL) structure:

ψ(τ ) ∝ 1

τμ
, (1)

with μ < 3. The time intervals between two different pairs of
consecutive events are not correlated:

〈τiτj 〉 ∝ δij . (2)

The occurrence of crucial events plays an important role in
the transport of information from one complex network to
another [11].

A. Updating the definition of crucial events

It is important to discuss the dynamical origin of events
of this kind. Crucial events are a manifestation of cooperative
interactions between the units of a complex network that is
expected to lead to a spontaneous organization process, usually
called self-organized criticality (SOC). Significant progress
has been made in understanding SOC since the original work
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of Bak et al. [12]. The emergence of SOC is signaled by
the births of anomalous avalanches; see Refs. [13,14] for
recent work along these lines. There exists a new approach
to SOC emphasizing temporal rather than intensity anomalous
distributions [15,16]. The authors of Ref. [16] defined their
approach to self-organization as self-organized temporal crit-
icality (SOTC). According to SOTC the crucial events defined
earlier with the help of Eqs. (1) and (2), namely the events that
the authors of Ref. [9] were able to find in heartbeats, occur on
an intermediate time scale, after an initial transient regime to
the condition of intermediate asymptotics. The IPL nature of
crucial events is tempered by an exponential relaxation in the
long-time limit. This interpretation allows us to facilitate our
approach to the connection between the diagnostic techniques
of Refs. [1] and [9]. In fact, the three time regimes of SOTC
are a form of variability that we subsequently connect to the
physiological variability that led the authors of Ref. [1] to their
diagnostic insight.

In summary, the crucial events are responsible for the
complexity of the intermediate asymptotics regime, as it will
be more extensively pointed out in Sec. III. Furthermore,
we have to take into account that according to Ref. [9] the
definition of crucial events must be extended to consider
the case where the time interval between the occurrence of the
crucial events defined by Eqs. (1) and (2) is filled with events
with memory. The first crucial event activates the generation
of the filling events and the occurrence of the next crucial
time event ends this sequence and activates a new sequence of
strongly correlated filling events. The events filling the time
interval between two crucial events must not be confused with
the Poisson-like events disturbing the healthy physiological
function of the heartbeats. In Ref. [9] the events filling the
time distance between two consecutive crucial events were
responsible for a phenomenon called memory beyond memory
effect. The intuitive interpretation of this effect is that the
crucial events with μ < 3 are responsible for slowly decaying
correlation functions, thereby implying a form of memory. The
filling events have an additional memory preventing them from
disturbing the healthy physiological function signaled by the
crucial events. The real heartbeat process is a superposition
of two time series, the former corresponding to the healthy
function and the later being given by a sequence of totally
uncorrelated events.

In this paper the surrogate time sequences are generated
adopting for the healthy time series two different prescriptions.
The first prescription fits the direction of Ref. [9]. For
simplicity’s sake, we establish the highly correlated nature of
the filling events by making the assumption that time distance
τ between two consecutive pseudo events is constant. The
distribution of τ is an inverse power law with μ significantly
larger than 3, including μ = ∞, namely an ordinary Poisson
process. Of course, in this case the crucial renewal condition
of Eq. (2) is violated. The later time series, of perturbing
Poisson-like events, is generated by deriving the time distance
between two consecutive events from a distribution density
with μ > 3 identical to that of the filling events of the former.
As we shall see, these perturbing Poisson-like events reproduce
very well the disturbing process responsible for heart failure.
We adopt also the second prescription, where the healthy time
series hosts only crucial events and the wide laminar region

between two consecutive crucial events is left empty. This
simple prescription makes it possible for us to illustrate the
efficiency of the method of diffusion entropy analysis (DEA)
[17] to determine the scaling generated by the crucial events,
but it cannot be used to explain how to establish the percentage
of disturbing Poisson-like events. The simple prescription,
however, is convenient to show that crucial events alone can
generate the multifractal distribution. We shall refer to the first
prescription as generating dressed crucial events and to the
second as generating bare crucial events.

B. Outline of the paper

The outline of this paper is as follows. We devote Sec. II to
a short review of the earlier attempts at finding a connection
between multifractality and crucial events. Section III affords
intuitive arguments on the importance of intermediate asymp-
totics for the analysis of heartbeats illustrated in this paper.
Section IV shows why DEA works without being limited to
the Gaussian condition. In Sec. V, we show that the use of DEA
adopted in earlier work [9] corresponds to the observation of
the intermediate asymptotic region. Section VI reviews the
procedure adopted in Ref. [9] to process the heartbeat data for
the purpose of revealing, with the help of surrogate data, to
what extent this is a genuine way of disclosing the contribution
of uncorrelated Poisson-like events to the reduction of HRV.
Section VII illustrates the joint use of DEA and the evaluation
of the percentage of uncorrelated Poisson-like events. Finally,
Sec. VIII is devoted to concluding remarks.

II. SCALING AND MULTIFRACTALITY

The search for crucial events is made difficult by the
fact that crucial events are often imbedded in clouds of
uncorrelated and irrelevant events. The authors of Ref. [9]
used a technique of statistical analysis, called DEA [17], to
detect the anomalous scaling index δ, which these crucial
events would generate were they not imbedded in a cloud
of noncrucial events, namely, when they are visible. However,
to establish a connection with the results of Ivanov et al. [1] it
is necessary to address a problem that goes beyond the merely
diagnostic goal of both Refs. [1] and [9]. The problem is to
uncover the physical mechanism producing the multifractality
revealed by MFDFA. This problem has been the subject of
many research papers and we devote this Section to a short
review of the results of that research.

A key element of this debate is the DEA, which was shown
to be the correct way to determine the scaling generated by
crucial events while DFA is not [18–20]. This is a consequence
of the fact that DFA determines the scaling of the second
moment of a distribution that can be divergent for non-
Gaussian distribution densities. For this reason many attempts
have been made to combine the correct scaling evaluation
with the evaluation of multifractality [19–24]. However, these
interesting papers leave unanswered the central question of the
multifractal significance of crucial events, since these authors
applied the new technique of analysis to real data with no
discussion of surrogate data hosting only crucial events.

It is convenient, for the sake of clarity, to mention some
papers from the field of experimental psychology [25–28].
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For our purposes, the merit of these publications is that they
establish, through their analysis of real data, a connection
between multifractality and the transport of information. In
this way they imply a connection between multifractality
and the crucial events revealed by the proper use of DEA,
in accordance with the observation that crucial events play
an important role in the transport of information from one
complex network to another [11].

Finally, it is important to mention that Refs. [29] and
[30] examine a nonstationary human network by means of
DEA that enables them to reveal the existence of periodicity
and complexity simultaneously. Sarkar and Barat [30] adopt
DEA to examine heartbeats before and after meditation, with
the surprising discovery of a distinct oscillatory behavior
of diffusion entropy. We shall come back to discuss the
results of Ref. [30] in Sec. VIII. Here we limit ourselves to
properly addressing the connection between crucial events and
multifractality by adopting surrogate sequences with a mixture
of Poisson-like and crucial events, including the case where
only crucial events are hosted in the sequence. Such surrogate
sequences enable us to assess how crucial events are perceived
by MFDFA. This is the case where it is useful to use the
prescription for bare crucial events.

According to the statistical analysis of Ref. [9] the distinc-
tion between healthy and pathologic subjects is established
by noting that the heartbeat dynamics of pathologic subjects
host a critically large number of uncorrelated Poisson-like
events. An important result of this paper is the observation that
uncorrelated Poisson-like events have the effect of reducing
HRV. The largest HRV is realized in the ideal case of cardiac
dynamics uniquely determined by the SOTC process, with
its complete time evolution including the transient regime,
intermediate asymptotics with its crucial events of Eqs. (1)
and (2), and the final tempered asymptotic regime. The dressed
crucial events are a form of randomness signaling the healthy
physiological function of heartbeats, while the uncorrelated
Poisson-like events represent a disturbance of this healthy
physiological function and for this reason we refer to them
either as randomness or strong randomness, when they reach
the high concentration revealed by our analysis in the case of
heart failure. In addition to results of diagnostic interest, this
paper starts down the road to a deeper understanding of the
dynamical origin of multifractality.

III. INTERMEDIATE ASYMPTOTICS

In his book on intermediate asymptotics [31], Barenblatt
adopts a visual art metaphor to illustrate the concept of
intermediate asymptotics: “We have to look at paintings at
a distance great enough not to see the brush-strokes, but at the
same time small enough to enjoy not only the painting as a
whole but also its important details: think of van Gogh’s work,
for example....” Goldenfeld [32] illustrates the renormalization
group rules that we have to adopt to eliminate the divergences
created by the perturbation approach. This illustration is based
on the assumption that the physical condition of intermediate
asymptotics is a form of perennial transition to equilibrium.

There is a wide conviction that this is a simplifying but
useful idealization of reality. A remarkable example is afforded
by the work of Mantegna and Stanley [33]. These authors

noticed that although a finite size-induced truncation is an
unavoidable consequence of the dynamics of real physical
processes, the time duration of the transition to the Gaussian
statistics prescribed by the central limit theorem may become
extremely extended, in line with the idealized condition of
perennial intermediate asymptotics of Goldenfeld. However,
for practical purposes a complex system can also be observed
on so large a time scale as to see dynamical effects that for
simplicity may be interpreted as forms of ordinary fluctuation-
dissipation processes. Important work has been done to obtain
analytical results for both short- and long-time regimes; see, for
instance, Ref. [34], which triggered significant interest in the
appropriate mathematical formalism of transient anomalous
diffusion [35], including the exponential form of tempering
[36,37]. It is convenient to notice that tempering may be an
effect of representing real physical processes by means of finite
length time series, an unavoidable consequence of observation.
We believe [16] that tempering is a genuine property of the
process of self-organization itself, since it emerges from the
interaction of a finite number of units and that the heartbeat
process belongs to this class of self-organizing processes,
thereby involving tempering.

IV. DIFFUSION ENTROPY

DEA makes it possible to evaluate the correct scaling of a
diffusion process, regardless of whether the Gauss condition
applies or not [17]. The scaling index δ of a diffusing variable
x is defined by

p(x,t) = 1

t δ
F

(
x

tδ

)
, (3)

where p(x,t) is the PDF of the variable x at time t and F (y)
is a function that for crucial events does not have the ordinary
Gaussian form. DEA measures the Shannon entropy of the
diffusion process:

S(t) = −
∫ +∞

−∞
dxp(x,t) ln[p(x,t)]. (4)

By substituting Eq. (3) into Eq. (4), after some algebra
and replacing the integration variable x with the integration
variable y = x/tδ , we obtain [17]

S(t) = A + δ ln(t), (5)

where the constant reference entropy is

A ≡ −
∫ +∞

−∞
dyF (y) ln[F (y)]. (6)

Equation (5) shows that the entropy S(t) increases linearly
with ln(t) and the slope of the resulting straight line is the
scaling coefficient δ. The numerical search for the scaling
coefficient is done with this property in mind. Changing the
unit adopted to measure time changes the value of t , but
does not affect the scaling parameter δ [17]. DFA is based
on evaluating scaling through the second moment of p(x,t)
and this has the effect of providing misleading information on
δ when p(x,t) has an IPL tail so slow as to generate divergence.
For this reason, Yazawa in his recent work on the effects of
emotions on HRV adopted a modified version of DFA [38].
However, the MFDFA used herein is based on the adoption
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of fractional moments 〈|x|q〉, thereby bypassing the problems
created by slow diffusion IPL tails with a conveniently small
value of q.

V. DEA AS A TECHNIQUE TO REVEAL CRUCIAL EVENTS

The DEA method [17] was originally introduced to properly
analyze time series assumed to be driven by crucial renewal
events. It is important to stress that the renewal events
hypothesized [9] for the analysis of heartbeats are the subject of
an extended literature focusing on the phenomenon of renewal
aging [39]. For a friendly illustration of the main results of
this paper, we remind the readers about an algorithm used to
generate non-Poisson renewal events. It is given by [11,40]

τ = T

(
1

y
1

μ−1

− 1

)
, (7)

where y is a real number selected with uniform probability on
the interval (0,1). The times τ generated by this algorithm are
totally uncorrelated and obey the waiting time PDF

ψ(τ ) = (μ − 1)
T μ−1

(τ + T )μ
. (8)

Note that to be as close as possible to the tempering prescrip-
tions of SOTC [16], we should adopt a survival probability
�(t) with the structure

�(t) =
(

T

t + T

)μ−1

exp(−λt), (9)

with the transient regime to intermediate asymptotics being
determined by the parameter T and defined by the time
region 0 < t < T . The time region of intermediate asymptotics
corresponds to T < t < 1

λ
and the tempered region is given by

t > 1
λ

. For simplicity’s sake the surrogate sequences hereby
used are established using Eq. (7), which would correspond to
λ → 0, the tempered action being exerted by the finite size of
the time series, L. We make the assumption that λ ∝ 1/L.

In this paper, following the results of earlier work [9], we
limit our analysis to the IPL index range:

2 < μ < 3. (10)

It is important to stress that the Poisson events correspond to
μ = ∞, but events drawn from μ = 5 are sufficiently far from
the crucial condition to be used as generators of noncrucial
events. The algorithm of Eq. (7) can be used to explain in an
intuitive way the different nature of the randomness of μ < 3
as compared to that of μ � 3. The time interval between two
consecutive choices of the random number y in Eq. (7) has the
mean value

〈τ 〉 = T

(μ − 2)
, (11)

as can be easily established using the waiting time PDF ψ(t)
of Eq. (8) to perform the average. If 〈τ 〉 < �t , where �t is
the integration time step, we observe a process that is totally
random. In the limiting case of μ < 2, 〈τ 〉 � �t , since in
this case 〈τ 〉 is divergent; the randomness is sporadic. In the
region 2 < μ < 3 randomness is not as sporadic as for μ < 2.
However, 〈τ 2〉 is divergent and as a consequence randomness

remains distinctly intermittent. We make the assumption that
the sporadic randomness of crucial events is good for the
healthy function of cardiac dynamics and that an excess of
randomness is risky.

To discuss the joint action of frequent and sporadic
randomness let us create suitable surrogate time series, namely
an appropriate sequence of times τ1,τ2,....τi ,τi+1,..... This
sequence is generated by a repeated random selection of y

in Eq. (7) so as to create either a sequence of crucial events,
with μ < 3, or a sequence of noncrucial events, with μ > 3.
More precisely, in the applications of the present paper we
adopt 3 > μ > 2 for crucial events and μ = 5 for noncrucial
events.

Each of these two time sequences has to be turned into a
corresponding suitable fluctuation ξ (t). To do that we adopt
the Asymmetric Jump Model (AJM) [9]. The reason for this
choice is that this random walk rule makes it possible for DEA
to reveal the correct scaling established by the generalized
central limit theorem (GCLT) [41] in the whole crucial event
region μ < 3, including the region μ < 2. This random walk
rule is established by setting ξ = 0 when there are no events,
and ξ = 1 when either a crucial or uncorrelated Poisson event
occurs.

Thus we create two time series, one corresponding to
μ < 3 and one corresponding to μ > 3. The surrogate time
series used here for the statistical analysis corresponds to the
superposition of both time series,

ξ (t) = (1− ∈)ξμ>3(t) + ∈ ξμ<3(t). (12)

The parameter ∈< 1 is the probability that the observed
heartbeat signal, detected according to the prescription of the
next section is generated by a genuine SOTC process. The
prescription adopted to generate the complex time series is
the prescription earlier mentioned as generating bare crucial
events. In Sec. VI we explain how to derive ∈ from the analysis
of real heartbeat data, with the help of surrogate time series
when we adopt the prescription to generate dressed crucial
events.

In the case where SOTC events are visible, namely ∈= 1,
the method of DEA leads to the detection of the proper scaling,

δ = 1

μ − 1
, (13)

after an initial transient corresponding to the microtime regime,
where the complexity of the process is not yet perceived.
Notice that the transition from the Lévy to the Gauss regime
occurs at μ = 3. However, as stated earlier, the surrogate time
series of this paper rest on μ = 5, namely a condition well
imbedded in the Gaussian basin of attraction.

Figures 1–3 show the results of applying DEA to a variety
of data sets through the linear-log representation, which is
used, according to Sec. IV, to detect the scaling δ, the slope of
the linear portion of S(t) in this representation.

Figure 1 illustrates the case where ∈= 1, namely the
condition where the bare crucial events are fully visible,
with μ = 2.2. The corresponding crucial scaling should be
δ = 0.83. However, in the short time regime the scaling has
the larger value δ = 1.5 and the scaling δ = 0.83 of crucial
events appears in the intermediate time regime. For this reason,
the proper scaling, as shown in this figure, is optimal in the
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FIG. 1. Entropy of the time series versus the logarithm of time
from the microtime to the asymptotic time scale with ∈ = 1. The solid
line (green) is numerical. Numerical constants are T = 0.5 and length
of time series L = 1.5(105). We use the prescription generating bare
crucial events.

intermediate time regime. Actually, we see that in the region
around t ∝ 105 a tempering deviation from the crucial scaling
of Eq. (13) occurs. Note that this is not the tempering of
the SOTC defined in Ref. [16]. The theoretical study of that
physical tempering of the process is outside the scope of the
present paper, but we make the plausible assumption that
heartbeat dynamics fit it as a consequence of being itself a
self-organized process.

Figure 2 illustrates the more important case where the
crucial events are hidden by a cloud of noncrucial events.
In this case, too, according to earlier analysis [9], the correct
scaling generated by the bare crucial events appears in the
intermediate time regime. However, in this case the reason
for the initial transient is quite different from the SOTC

FIG. 2. Entropy of the time series versus the logarithm of time
from the microtime Gaussian basin of attraction to the asymptotic time
scale with ∈= 0.1. The solid line (green) is numerical. Numerical
constants are T = 0.5 and length of time series L = 1.5(105). We
use the prescription generating bare crucial events.

FIG. 3. DEA detects the scaling of invisible crucial events in the
intermediate asymptotic time. The solid line (green) is obtained from
real heartbeat data of healthy individual. The scaling δ is the slope of
the straight line between the two vertical arrows.

initial transient. In this case, the initial short-time regime
characterized by the conventional scaling δ = 0.5 corresponds
to the scaling of uncorrelated Poisson-like events. In the
long-time regime, when the SOTC intermediate asymptotic
emerges, the faster scaling of the crucial events with μ < 2
leads them to crossover to ordinary diffusion. The overlap
of the Poisson-induced transient regime and transient SOTC
make the derivative of the diffusion entropy nonmonotonic. For
simplicity’s sake we do not show this complicated behavior,
instead we focus on the complexity of the intermediate
asymptotics. Notice that, although the extended transient to
the intermediate asymptotic regime induced by a large percent-
age of uncorrelated Poisson-like events can be confused with
the transient SOTC regime, the corresponding physical effects
are the opposite of one another. The SOTC transient generates
a broad multifractal spectrum, while the long transient induced
by a large percentage of uncorrelated Poisson-like events has
the effect of making the multifractal spectrum narrower.

To complete the discussion of this section we make some
comments concerning Fig. 3. In Sec. VI we explain how
to derive this figure from real data on heartbeats. Here we
limit our observation to the scaling index δ, representing
the indicator of the occurrence of crucial events. The IPL
index is evaluated by monitoring the intermediate asymptotics
region, the short- and long-time limit of which are denoted by
vertical arrows. In this case, the deviation from Eq. (13) of the
tempering region is probably due the properties of heartbeats,
rather than to the finite-size L of the sequence under study.

In summary, it is important to reiterate that on the basis of
recent advances made concerning SOTC [16], the time series
generated by complex processes are characterized by three
regimes: the short-time regime, where the true complexity of
the process is not yet perceived; an intermediate-time regime
driven by the crucial events; and a long-time regime where
the process can be mistaken for an ordinary statistical process.
The long-time regime is, on the contrary, a tempering effect
generated by self-organization.
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FIG. 4. Rule adopted to define events. An event is defined as the
experimental curve, thick black line, crossing the border between two
consecutive strips. The symbols τk indicate the time distance, in terms
of number of beats, between two consecutive events, defined as the
black line crossing from one strip to one of the neighbor strips. The
size of the strips is �T = 1/30 s.

VI. HOW TO PROCESS EXPERIMENTAL DATA TO
REVEAL THE EXISTENCE OF CRUCIAL EVENTS

Following Refs. [42] and [9], we use the ECG records of the
MIT-BIH Normal Sinus Rhythm Database and of the BIDMC
Congestive Heart Failure Database, for healthy and congestive
heart failure patients, respectively.

The main problems encountered in proving that SOTC is the
process driving the phenomenon under study has to do with the
detection of the crucial events, namely, events with a waiting
time PDF yielding a diverging second moment. Figure 4 shows
the approach we adopt, following that used earlier in Ref. [9].
The experimental signal is obtained by assigning to each beat
a value corresponding to the time interval between one and the
next.

We divide the interbeat time axis into small strips of size
�T . We follow the results of the analysis done in Ref. [43]
to define �T . These authors suggest �T ∼= 30 ms and we set
�T = 33 ms. We define the occurrence of an event as the
experimental signal crossing from one strip to one of the two
nearest neighbor strips. We see that the heartbeat trajectory
may remain in a given strip for an extended time, suggesting
the typical intermittent behavior that led to the discovery of
crucial events. However, the experimental signal crossing the
border between two contiguous strips is not necessarily a
crucial event. The crucial events are renewal and consequently
the times τi should not be correlated. To assess the breakdown
of the renewal condition we evaluate the time-average cor-
relation function, where the time average is indicated by an
overbar:

C(t) =

∑
|i−j |=t

(τi − τ )(τj − τ )

∑
i

(τi − τ )2
. (14)

This correlation function is properly normalized, thereby
yielding C(0) = 1, and in the case of genuine renewal events

FIG. 5. Correlation function C(t) for two typical patients, one
healthy and one pathological.

should satisfy the condition C(t) = 0 for t > 0. On the
contrary we find

C(1) ≈∈ 2, (15)

where ∈ is the probability of selecting ξ ; see Eq. (12). This
result is theoretically explained by noticing that according to
Ref. [43] the correlation function C(t) should read

C(t) = (1− ∈2)δt,0+ ∈2 
(t), (16)

where δt,0 denotes the Kronecker unit step function, namely
a function equal to 1 for t = 0 and equal to 0 other-
wise, and 
(t) is a slowly decaying smooth function with
the property 
(0) = 1. This theoretical prediction yields
Eq. (15).

In summary, we should use C(1) to define ∈. The analysis
of real data as depicted in Fig. 5 leads to conclusions that
qualitatively agree with this theoretical prediction, with some
warming, however. Figure 5 shows that the correlation function
C(t) makes an abrupt jump from 1 to a very small, but
nonvanishing value of ∈2, confirming that the analysis we
adopt to reveal events actually does not detect only genuine
renewal events, but a mixture of renewal and nonrenewal
events. Furthermore, as shown from Fig. 5, in the case of
pathological individuals, C(t), after the fall undergoes fast
intense fluctuations that may prevent us from defining ∈2

through C(1). In this case, and in the case where C(1) < 0
as well, we alternatively define C(1) through the mean value
over the first 100 events. In the case of fluctuations of moderate
intensity, we use C(1) to define ∈2. We also use Fig. 5 to define
the border between strong and weak randomness. Values of ∈2

larger than 0.05, ∈> 0.22, are referred to as weak randomness
and values of ∈2 smaller than 0.05, ∈< 0.22, are referred
to as strong randomness. This definition is suggested by the
observation of the healthy and pathological individual of Fig. 5,
but this definition must be used with caution because the
distinction between healthy and pathological individuals, as
shall see with Fig. 8, requires the knowledge of the scaling
index δ as well as that of ∈2.
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FIG. 6. Correlation function C(t) for the surrogate data in the case
of strong randomness. We use the prescription generating dressed
crucial events.

To get a better understanding of the meaning of ∈2, and
to explain the theoretical reason why we can use Eq. (15),
we interrogate the surrogate sequences defined by Eq. (12), in
the case when the sequel of crucial events is created by the
prescription to generate dressed crucial events. With the help
of Figs. 6 and 7, we establish that the intensity ∈2 is the square
of the probability that an event is a crucial event. This is the
reason why we adopt the symbol ∈2 to denote the value of the
correlation C(t) immediately after the abrupt jump down from
C(0) = 1. Figure 6 shows a theoretical correlation function
using a surrogate sequence for strong randomness. Figure 7
shows a theoretical correlation function using a surrogate
sequence for weak randomness.

It is worth stressing that the choice of �T = 1/30 s is not
arbitrary. In fact, investigators [43] establish that the value of
�T leads to the maximal value of ∈2 for all patients, both
healthy and pathological patients, except for the transplanted
hearts. This universal property seems to imply the action of
the autonomic system [43].

FIG. 7. Correlation function C(t) for the surrogate data in the
case of weak randomness. We use the prescription generating dressed
crucial events.

FIG. 8. Distinguishing subjects with healthy from those with
pathological HRV.

VII. JOINT USE OF DEA AND C(t)

In this section, we recover the central result of Ref. [9],
which was based on the joint use of DEA and the correlation
function C(t). For each subject we calculate both δ and ∈2.

In fact, Fig. 8 is virtually identical to the central result
found by the authors of Ref. [9], which establishes a criterion
to distinguish pathological patients from healthy patients
using HRV time series. We notice that the ideally healthy
condition corresponds to ∈= 1 and δ = 1. This means that the
crucial events should not host any uncorrelated Poisson-like
event and should have μ = 2, which is the border between
the region of perennial aging, μ < 2, and the region where
the rate of randomness production becomes constant in the
long-time limit, μ > 2 [11]. The patients’ HRVs move toward
the pathological condition as their scaling becomes closer to
the scaling of ordinary diffusion δ = 0.5, namely closer to the
border between the region of crucial events, μ < 3, and the
Gaussian basin of attraction, μ > 3.

Note that the work of Ref. [10] established that the brain,
generating ideal 1/f -noise, is located at the border between
the region of perennial aging and the region of crucial events
hosted by heartbeats, according to the analysis of this paper
and earlier work [9].

The research work done in the new field of network
medicine [44] focuses on the interaction between the different
organs of the human body, the brain and heart being a special
case of this intercommunication [45]. According to the princi-
ple of complexity matching [11], based on the assumption that
the synchronization of complex networks is facilitated by the
networks sharing the same complexity, μ = 2, in the case of
brain-heart communication, we make the plausible conjecture
that the right-top corner of Fig. 8 corresponds to a convenient
condition for brain-heart communication in the ideal case of
healthy patients. However, the current literature on complexity
matching emphasizes the communication between the two
complex networks through their multifractal spectra [8].
Therefore, establishing a connection between crucial events
and multifractal spectra is a goal of this paper. The most
important property of Fig. 8 is to contribute to the realization
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FIG. 9. Multifractal spectra of HRV as a function of ∈ (see Fig. 8)
keeping constant the crucial scaling δ = 0.79.

of that goal by establishing a connection between Refs. [9]
and [1,42].

We focus our attention on the individuals labeled A, B, C,
and D in Fig. 8. These patients have the same δ and according to
the earlier analysis [9] the distinction between sick and healthy
patients is due to the fact that the heartbeat of the sick patients
is affected by excessive randomness. Furthermore, according
to some investigators [1,42] the distinction is due to the fact
that healthy patients have broader multifractal spectra.

The central result of the present paper is obtained by
applying the MFDFA to the individuals A, B, C, and D for
the purpose of proving the connection between the diagnostic
recipe of Ref. [9] and that of Refs. [1,42].

Figure 9 fully confirms this connection. We see, in fact, that
moving from the sick (A) to the healthy patients (B,C,D) has
the effect of increasing the width of the multifractal spectrum.
Note that Fig. 10 provides additional confirmation of this
connection through the use of surrogate sequences.

VIII. CONCLUDING REMARKS

The diagnostic method generated by following earlier work
[9] yields additional benefits compared to the technique of

FIG. 10. Multifractal spectra of surrogate data, based on the
prescription generating bare crucial events, as a function of ∈ keeping
constant the crucial scaling δ = 0.83.

FIG. 11. Extreme cases of most narrow, ∈ = 0, and most broad,
∈= 1, multifractal spectra. The top panel is based on the prescription
generating bare crucial events and the bottom panel is based on the
prescription generating dressed crucial events. Numerical constants
used in the calculation are T = 0.5, L = 1.5(105), window sizes
(500 : 500 : 30000). Other parameters are moments range q = −0.4 :
0.001 : 0.4 for μ = 2.2 and q = −0.02 : 0.001 : 0.02 for μ = 5.

Ref. [1]. One of these benefits is that the distinction between
healthy and pathologic patients is established through the
two-dimensional representation of Fig. 8 rather than the three-
dimensional representation of Ref. [1]. Another important
result of the present paper is its contribution to an improved
vision of variability and multifractality. To appreciate this
significant improvement let us focus our attention on the results
obtained by applying the MFDFA to the surrogate series in
the limiting case of a SOTC [16] process, unperturbed by
uncorrelated Poisson-like fluctuations ∈= 1, and of a mere
sequence of uncorrelated fluctuations, ∈= 0.

The result of this analysis is shown in Fig. 11. In the top
panel of this figure we adopt the prescription to generate bare
crucial events and in the bottom we adopt the prescription
to generate dressed crucial events. Of course, in the case
∈= 0 both prescriptions generate a very sharp multifractal
distribution centered on α = 0.5.

The narrowest multifractal spectrum is realized by setting
∈= 0. The broadest multifractal spectrum is realized in the
absence of Poisson-like random events, ∈= 1, with a slight
difference between mere crucial events(top panel of Fig. 11)
and dressed crucial events (bottom panel of Fig. 11). The
dressed crucial events are shown to yield a broader multifractal
spectrum.

We reiterate that, according to SOTC [16], crucial events
are characterized by three distinct time regimes, a transient
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initial regime, the intermediate asymptotics time regime, and
a final tempered time regime with exponential truncation.
The transient time regime becomes more and more extended
with decreasing ∈. However, the extended transient regime
generated by a very small value of ∈ must not be confused with
a wide transient regime corresponding to the occurrence of a
sufficient number of crucial events to realize the prescription
δ = 1/(μ − 1) of the GCLT [17,41]. The GCLT transient
regime is the micro-evolution towards the IPL regime pre-
dicted by SOTC [16]. This transient regime, the intermediate
asymptotic time regime and the final tempering time regime
are the generators of the wide variability that the multifractal
DFA efficiently detects. The uncorrelated Poisson-like events
with μ > 3 generate an extended transient regime that has
the opposite effect of yielding an extremely narrow spectrum
around the ordinary scaling value α = 0.5.

In conclusion, the results of the present paper establish
a connection between the multifractal spectrum and SOTC
fluctuations, thereby affording a promising tool to make further
progress in the field of network medicine [44], where broad
multifractal spectra are transferred, according to Ref. [11],
from one network to another via crucial events.

The research program laid out in this paper is not com-
plete, since we have not, as yet, addressed the brain-heart
communication and the influence of periodicity [45]. It is
important to notice that SOTC [16] can be used to produce
a self-organization phenomenon combining crucial events and
periodicity, so as to convert the black line of Fig. 4 into
fluctuations that under the influence of either therapeutic
action [46] or meditation [30] may become almost coherent

oscillations. In the recent literature there are conflicting
statements about the analysis of the same data, under the
influence of meditation, leading some authors [47] to claim that
the f (α) spectrum broadens and the others [48] to claim that
it becomes narrower. We believe that these oscillations, even
if distinctly coherent, host crucial events and that the transport
of information from one coherentlike network to another, for
instance, the α waves of the brain and the heartbeats, depends
on crucial events, with μ slightly larger than 2, for both
networks [9,10]. Meditation favors coherence [30] and the
brain-heart communication if the unhealthy randomness of
uncorrelated Poisson-like events is kept under control. The
research work of Correll [49] showed that addressing difficult
tasks has the effect of turning the time series generated by
the brain, which would yield 1/f noise, into a generator of
white noise, thereby implying the increase of the probability
of uncorrelated Poisson-like events. This leads us to the
conjecture to test with future research work that stress has
the effect of increasing the concentration of uncorrelated
Poisson-like events thereby contributing to the incidents of
heart failure. On the other hand meditation [30] and therapeutic
action [46] may have the opposite effect of reducing the
unhealthy randomness of uncorrelated Poisson-like events and
of increasing the healthy randomness of SOTC crucial events.
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