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A metapopulation structure in landscape ecology comprises a group of interacting spatially separated
subpopulations or patches of the same species that may experience several local extinctions. This makes the
investigation of survivability (in the form of global oscillation) of a metapopulation on top of diverse dispersal
topologies extremely crucial. However, among various dispersal topologies in ecological networks, which one
can provide higher metapopulation survivability under local extinction is still not well explored. In this article,
we scrutinize the robustness of an ecological network consisting of prey-predator patches having Holling type I
functional response, against progressively extinct population patches. We present a comprehensive study on this
while considering global, small-world, and scale-free dispersal of the subpopulations. Furthermore, we extend
our work in enhancing survivability in the form of sustained global oscillation by introducing asymmetries in
the dispersal rates of the considered species. Our findings affirm that the asynchrony among the patches plays an
important role in the survivability of a metapopulation. In order to demonstrate the model independence of the
observed phenomenon, we perform a similar analysis for patches exhibiting Holling type II functional response.
On the grounds of the obtained results, our work is expected to provide a better perception of the influence of
dispersal arrangements on the global survivability of ecological networks.
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I. INTRODUCTION

Collective behavior in a large ensemble of coupled os-
cillators has been given great importance in recent times
due to its applicability in modeling various self-organized
complex systems [1,2]. The emergent dynamics of such
complex systems depends both on coupling topology as well
as individual elements. In recent times, much attention has
been given to understanding the dynamical robustness in a
mixed population [3–11]. Such study of dynamical robustness
is very much relevant in various biological as well as ecological
systems. It is quite natural that degradation may happen due
to aging in some living systems. If this degradation reaches
a certain critical level, the proper functioning of a large
system may hamper and face severe disruption. Therefore, it
is necessary to examine up to which level such a large system
can survive against such deteriorations.

In ecology, prey-predator systems have attracted great
interest due to a variety of complex biological processes.
In spatial ecology, the movement of spatially separated
populations of the same species is described by metapopulation
dynamics [12]. Research on the long-term dynamics of
spatially structured populations has revealed that population
densities of a given species tend to fluctuate in synchrony over
vast geographical areas [13]. In metapopulation dynamics, a
patch is generally modeled as a system of differential equations
which exhibits an oscillating solution [14]. Therefore it is
quite natural to suggest that spatially structured biological
populations can be viewed as a network of coupled oscillators.
In this representation, nodes represent suitable habitat patches
and links between such nodes indicate proper pathways. It

*biswambhar.rakshit@gmail.com

may happen that because of climate variations, environmental
heterogeneity, and many other reasons, habitats in a particular
patch may go for extinction.

Network science has witnessed many developments in the
last decade due to a variety of topological structures found
in many real-world networks [15]. Like physicists, ecologists
are also placing more importance on the study of networks
of coupled oscillators. The rationale behind studying complex
networks lies in the fact that the network topology highly
affects its dynamics and some recent papers have explicitly
investigated the dynamical consequences of network patterns
[16–18].

Most of the theoretical studies on patchy environments
[12,19,20] have concentrated on negative density dependent
local dynamics (i.e., population fitness will be maximum at
low density) and density independent dispersal. But in reality,
the reverse holds true: individuals of many species cooperate,
when the population density is low. Individuals use cooperative
strategies to hunt, they forage together, they fight together
to survive under unfavorable conditions, or they seek sexual
reproduction at the same moment. It may be that they will
benefit from more resources but in many cases, they will also
suffer from a lack of conspecifics, at low density. If this is
stronger than the benefits, then individuals may be less likely
to survive. Experimental observation on the flour beetle, Tri-
bolium confusum, shows that per capita growth rate (pgr) was
highest at their intermediate densities (unlike logistic growth).
Thus, in this paper, we consider a Rosenzweig-MacArthur
prey-predator model with positive density dependent growth
of prey, i.e., subject to the Allee effect, which refers to the
positive correlation between population size/density and its
pgr at low population density [21,22].

The Allee effects are mostly classified into two categories:
strong and weak Allee effects. In strong Allee effects, there
is a threshold density (Allee threshold), below which the pgr
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becomes negative and extinction becomes certain. On the other
hand, the Allee effect without this threshold density is known
as the weak Allee effect and in this case the population always
exhibits a positive pgr. Thus the strong Allee growth function
increases the chance of extinction of prey and thus of predators
in some patches. Here we focus on ecological robustness of
networks of coupled patches, which is defined as the ability
of the whole network to support metapopulation persistence
when in a fraction of habitat patches both prey and predators
become extinct. But still, which dispersal topology supports
more metapopulation persistence is not well investigated, to
the best of our knowledge. For this we consider three different
network structures, namely two homogeneous (global and
small-world network) and one heterogeneous network (scale
free). We comparatively study the ecological robustness using
these three networks. First, we consider a global (all-to-all)
network where species dispersal is happening from each
patch to every other patch. Next we consider a small-world
network which is a homogeneous network with random
interaction among the patches. Regular networks consist of
interactions among neighboring oscillators, which are then
rewired with probability q between randomly selected nodes
in the network. If q = 0, it represents a completely regular
network, while q = 1 gives a random network. The small-
world network is somewhere 0 < q < 1, q being sufficiently
small maintaining a high clustering coefficient and low average
path length of the network. Both the global network as
well as small-world networks are highly homogeneous as
far as the degree distributions of the nodes are concerned.
Finally we consider a scale-free network which is extremely
heterogeneous where a majority of nodes have one or a few
links, but a few nodes are extremely well connected. We
consider all these networks one-by-one and investigate how
the ecological robustness varies depending on the network
dispersal structure. For all types of dispersal configurations, we
observe that revival of species takes place in inactive patches
due to dispersal until the number of inactive patches reaches
a critical value. We also notice that in the case of small-
world networks, the chances of metapopulation persistence
are much higher compared to global as well as scale-free
networks.

The rest of the paper is organized as follows: The general
mathematical description of the network is provided in Sec. II.
In Sec. III, we first briefly describe the Rosenzweig-MacArthur
prey-predator model with a Holling type I functional response
and discuss the ecological significance of the parameters.
Then, we present our results on global, small-world, and
scale-free ecological networks. In Sec. IV, we validate the
observed results through the analysis on the metapopulation
of patches having a Holling type II functional response. We
summarize our results with a discussion in Sec. V.

II. NETWORK OF COUPLED PATCHES

We consider a network of N patches with dispersal in
terms of diffusive coupling. This means that populations,
which are spatially isolated, are linked by dispersal using
diffusive coupling. Thus the prey-predator model of N patches

is represented by the following equation,

Ẋi = F(Xi) + M
N∑

j=1

Aij (Xj − Xi), (1)

where Xi = (xi,yi)T denotes the state vector, F(Xi) =
(f (xi,yi),g(xi,yi))T describes the inherent dynamics of the
ith patch for i = 1,2, . . . ,N , and T denotes the transpose
of a matrix. The second term is the diffusive coupling that
denotes interaction among the species of different patches.
Here M = ( αm

deg(i) ,
βm

deg(i) )
T denotes the dispersal matrix where

m is the dispersal rate between the patches; α, β are the
asymmetry constants induced in the dispersal; and deg(i) is
the number of patches (i.e., degree) connected with the ith
patch. Aij represents the adjacency matrix where Aij = 1
if dispersal is happening between the ith and j th patches;
otherwise Aij = 0. In our network model, we assume that
the dispersal is instantaneous (i.e., no time delay during
dispersal) and there is no birth or death during dispersal.
Here we consider that in a fraction p of patches, species are
extinct when there is no dispersal among the patches. That
means that out of N patches, in a pN number of patches,
species are in the extinct state (we call them inactive or
unfit patches), whereas in a (1 − p)N number of patches they
are in the oscillatory state (active or fit patches). Whenever
a fraction p of the patches become extinct due to some
degradations, the amplitude of the global oscillation decreases.
As p increases beyond a certain threshold pc (say), the
oscillatory behavior of the metapopulation suddenly vanishes
to a global extinction. This critical pc value is used as a
measure of metapopulation survivability. In order to study
the metapopulation survivability, we consider three different
dispersal topologies, namely, global, small-world, and scale-
free networks, and examine the ecological robustness of the
whole network as we increase the fraction p of extinct species
patches from 0 to 1. For this purpose, we define an order
parameter to measure the dynamical activities in the network.
The order parameter R is defined as

R = 1
2 (Rx + Ry), (2)

where Rx = 1
N

∑N
i=1(〈xi, max〉t − 〈xi, min〉t ), Ry =

1
N

∑N
i=1(〈yi, max〉t − 〈yi, min〉t ), and 〈...〉 defines a long

time average. This order parameter R = 0 signifies the
existence of stable steady states which may be trivial (zero
equilibrium) or nontrivial. To distinguish between trivial
(extinction state) and nontrivial steady states, we introduce
� = �(Xi − δ) where δ is a predefined threshold and �(x)
is the Heaviside step function. We choose δ = 10−6 so that
for the extinction state, � gives a value zero and for the
nontrivial steady state, � = 1. This R identifies the average
amplitude of the networked system. Nonzero values of the
order parameter R imply persistence of a metapopulation in
the whole network while R = 0 signifies extinction of species
(as the global oscillation vanishes) from all the patches in the
network with � = 0.

In the following, we explore the survivability of a metapop-
ulation while estimating the critical inactivation ratio pc for
global, small-world, and scale-free dispersal networks. Our
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motivation is to explain how this critical threshold pc varies
with dispersal rate m over these dispersal networks.

III. ROSENZWEIG-MACARTHUR PREY-PREDATOR
MODEL WITH HOLLING TYPE I FUNCTIONAL

RESPONSE

We consider the Rosenzweig-MacArthur prey-predator
model in the presence of the strong Allee effect. The
mathematical form of single-patch dynamics [23] is given by

dx

dt
= f (x,y) = 1

ε
[x(1 − x)(x − θ ) − xy],

dy

dt
= g(x,y) = xy − dy, (3)

where x and y are the normalized prey and predator population
density, respectively. Here ε ∈ (0,1] denotes the time scale
difference between prey and predator populations, θ ∈ (0,1)
denotes the Allee threshold that corresponds to a critical
population size or density below which the population will
be settled for extinction without any further abatement, and d

is the natural mortality rate of the predator population.
For the single-patch model (3), the interior equilibrium

(d,(1 − d)(d − θ )), which exists if θ < d < 1, is stable if
d > 1+θ

2 and there is a supercritical Hopf bifurcation at
d = 1+θ

2 . For θ < d � 1+θ
2 , coexistence of oscillation and

the stable extinction state (0,0) in both populations occurs
depending on the initial population density. For d � θ , the
system converges to (0,0) for any initial conditions in R2

+. This
phenomenon is known as overexploitation or predator-driven
extinction. In the presence of strong Allee effects, due to large
predator invasion, predator growth is fast enough to drive the
prey below the Allee threshold and leads to the extinction of
both populations [24]. Thus a higher value of d shows the stable
coexistence of all the populations, and as we decrease the value
of d, the system behavior changes from stable coexistence to
extinction (via the oscillatory state) for all the populations. For
these reasons we considered the parameter d as a measure of
the patch quality. In our present study, an active patch means
both populations are in stable limit cycle oscillations. The basin
of attraction for d = 0.5,θ = 0.1, and ε = 1 in the single-patch
model (3) is shown in Fig. 1(a). Initial conditions leading to
extinction state (0,0) and responsible for the oscillatory state
are plotted in cyan and black, respectively. The stable time
series of prey x(t) and predator y(t) and the corresponding
phase plane plot depicting the fluctuation in prey and predator
populations for an isolated Rosenzweig MacArthur model are
shown in Figs. 1(b) and 1(c), respectively.

1. Global dispersal

First we consider global (all-to-all) dispersal and investigate
the survivability of a metapopulation when in a fraction of
patches species become extinct. This means that in the case
of a global network, dispersal takes place uniformly in all the
selected patches; i.e., prey and predators are moving from each
patch to all other patches equally. Without loss of generality,
we can set the group of extinct patches for j = 1,2, . . . ,Np

and the rest of the patches as active for j = Np + 1, . . . ,N .
For our numerical simulations [25], we set N = 200 as the total
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FIG. 1. Dynamics of the single Rosenzweig-MacArthur model
Eq. (1). (a) Basin of attraction for d = 0.5,θ = 0.1, and ε = 1. Color
cyan represents initial conditions corresponding to extinction (zero
equilibrium) state and initial conditions from the black region lead
to oscillatory state. (b) Time series of prey (blue line) and predator
(red line) populations and (c) corresponding phase space shows limit
cycle attractor.

number of patches in the network. Throughout the paper, we
set the natural mortality rate d = 0.2 for inactive patches and
d = 0.5 for active patches. We take random initial conditions
for active patches in the interval (0.2,1.0) and (0.0,0.3) for prey
and predator populations respectively. For inactive patches at
d = 0.2, random initial conditions from the interval [0,1] are
chosen for both prey and predator populations. With these
system parameters and initial conditions, an isolated patch
exhibits either a stable steady state at the origin (inactive patch)
or a stable limit cycle around the coexistence equilibrium
(active patch).

We fix the value of the dispersal rate for the global network
at m = 0.07 (for the identical dispersal case α = β = 1.0) and
vary the inactivation parameter p. In Fig. 2, the time series
of (1 − p)N active and pN inactive patches are shown for
six different p values p = 0,0.15,0.50,0.60,0.70,0.725. For
p = 0.0, i.e., all the patches are in active states, the time series
of the globally synchronized (1 cluster) prey and predator
populations are depicted in Fig. 2(a). Now, if we set the
inactivation ratio p = 0.15, i.e., 15% of the total patches are
in inactive mode, then the amplitude of the prey and predator
oscillations is increased and the 2-cluster solution occurs in
active and inactive patches in Fig. 2(b). Thus the oscillation
can be observed in the inactive patches as well. Therefore
the dispersal can save the populations from local extinctions.
Similarly for two coupled patches with one in active mode
and another in inactive mode, the survivability of the inactive
patch under dispersal is observed. The results are discussed
extensively in the Appendix. If we increase the number of
inactive patches by p = 0.5, the behavior of active and inactive
patches is shown in Fig. 2(c). Here the time series of the prey
and predator populations in both patches are in the chaotic state
(which is verified by the maximum Lyapunov exponent later).
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FIG. 2. Time series for different values of the inactivation ratio:
(a) periodic p = 0.0, (b) periodic with highest amplitude p = 0.15,
(c) chaotic p = 0.50, (d) period 2 (active) and period 1 (inactive)
p = 0.6, (e) period 4 (active) and period 2 (inactive) p = 0.7, and (f)
extinction state p = 0.725. Blue and black lines represent the prey
and predator population in active patches and for inactive patches
they are shown by red and green lines, respectively. Here N = 200,
m = 0.07, and α = β = 1 are fixed.

An interesting phenomenon is observed for a further increased
value at p = 0.6: the prey and predator populations in active
patches are in a periodic state with period-2 orbit whereas
in inactive patches the behavior is in period 1 [Fig. 2(d)].
But if we consider 70% of patches of the whole network
as the inactive state, the prey and predator populations in
active and inactive patches are in period-4 and period-2 states,
respectively [Fig. 2(e)]. With further increase in the value of
p to 0.725, the whole network collapses and thus the dispersal
cannot save the metapopulation from extinction anymore. The
time series of the extinct state is shown in Fig. 2(f).

As can be seen from Fig. 2, inactive patches manage to
sustain oscillatory behavior because of the diffusive interac-
tions with all the active patches as long as p < 0.725. So
due to species dispersal, revival of oscillation takes place in
extinct patches before a certain critical threshold of p, albeit
the types and amplitudes of oscillations for different values of
p are not the same. Actually, the patchy environment provided
more areas for the prey to seek temporary protection. When
the prey become extinct locally at one patch, they were able
to reestablish themselves by migrating to new patches before
being attacked by predators. This habitat spatial structure of
patches allowed for coexistence between the predator and prey
species and promoted a stable population oscillation model.

To study the macroscopic oscillation level of the entire
network, we plot the order parameter D = R(p)

R(0) against the
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FIG. 3. The order parameter D is plotted against the inactivation
ratio p for dispersal rate m = 0.07 with α = β = 1.0. Time series
corresponding to the points p0,p1,p2,p3,p4, and p5 are shown in
Fig. 2, panels (a), (b), (c), (d), (e), and (f), respectively.

inactivation ratio p in Fig. 3. From this figure, we can observe
that after an initial advancement to the value corresponding
to label p1, D decreases up to when p = 0.50 labeled as p2.
After that, D again increases marginally till p = 0.70 with
label p4 and finally drops to zero at a critical value pc = 0.725
where the entire network stops oscillating. The meager rise
and falls in the values of D have already been described by
showing the time series above in Fig. 2 corresponding to all the
labeled values of p. This basically means that if the inactivation
ratio p crosses a critical stage, species dispersal would not be
able to revive the population in the inactive patches and the
metapopulation goes for extinction. In this case the whole
network system collapses resulting in extinction of both
the prey and predator populations in all the patches.

Next, we study the variation of the critical value of the
inactivation ratio pc by varying the dispersal rate m. In Fig. 4,
order parameter D is plotted with respect to the inactivation
ratio p for various dispersal rates m taking α = β = 1.0;
i.e., prey and predator populations both are having the same
dispersal rates. For instance, m = 0.08,0.07,0.06,0.05,0.03
are considered for figuring out the variations in D. Our
numerical results show that for m = 0.08, the critical in-
activation ratio for which D turns into zero is pc = 0.525.
But as m is lowered to m = 0.07, pc becomes 0.725 while
m = 0.06,0.05 lead to pc = 0.8,0.975, respectively. Finally
change in D is shown taking m = 0.03 that gives pc ≈ 1.
Thus for decreasing m, pc increases until it reaches unity at
a threshold value of m = 0.03, below which pc remains at
unity. This proves that if the dispersal rate is small enough
then even if in 99% of the patches species become extinct the
remaining 1% of patches are enough to sustain oscillation in
the whole network through dispersal. Due to small dispersal
of species, the active patches act like refugia [26] that protect
the entire species from disturbance. Because of these refugia,
a fraction of the population survives and small dispersal
promotes population persistence over large spatial scales.
Currently, some examples of refuge species are the mountain
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FIG. 4. The order parameter D versus the inactivation ratio p in
the globally coupled network for different dispersal values of m with
α = β = 1.0. The critical ratio pc at which D becomes zero increases
with descending values of the dispersal rate.

gorilla (isolated to specific mountains in central Africa) and the
Australian sea lion. On the other hand, the high dispersal may
increase the chance of global extinction in network dynamics.
This may be due to the fact that high dispersal leads to fast
synchrony of the populations in different patches, which is
against the species persistence. The species-area relationship
and dispersal between distinct patches are most important laws
in ecology. They can be used to predict species loss under
disturbances and are a central tool in conservation biology.
Level of clustering has a major role in species survivability.
High dispersal leads to a more compact landscape, which is
more sensitive to the effect of habitat loss [27].

As illustrated through the basin of attraction of a single-
patch model [cf. Fig. 1(a)], the activity of the patches in terms
of oscillatory behavior depends on the choice of initial condi-
tions, for the particular model we have chosen. Because of this,
analytical treatment of the work is cumbersome throughout,
but still we elucidate our observation while following a useful
approach. Through this, based upon the assumption of xi =
Ax,yi = Ay for the active patches and xi = Ix,yi = Iy for
the inactive group of patches (basically, synchronized activity
among the patches allows one to reformulate the system in
such a way), Eq. (1) with Eq. (3) reduces to the following
coupled system:

Ȧx = 1

ε
[Ax(1 − Ax)(Ax − θ ) − AxAy] + αmp(Ix − Ax),

İx = 1

ε
[Ix(1 − Ix)(Ix − θ ) − IxIy] + αm(1 − p)(Ax − Ix),

Ȧy = AxAy − d1Ay + βmp(Iy − Ay),

İy = IxIy − d2Iy + βm(1 − p)(Ay − Iy). (4)

Figure 5(a) shows the bifurcation diagrams of the variables
Ax,Ix that respectively correspond to the active and inactive
prey patches in the reduced model (4), where the inactivation
ratio p has been considered as the bifurcation parameter with

FIG. 5. Bifurcation diagrams of the variables Ax (in blue) and Ix

(in red) with respect to the inactivation ratio p for (a) m = 0.07 and
(b) m = 0.08. The corresponding MLEs against p are plotted in (c)
and (d), respectively. The other parameters are the same as in Fig. 2.

m = 0.07. Here we would like to note that while discussing
Fig. 2, we went through qualitative analysis of the time
series evolutions of prey and predator patches and the present
bifurcation diagrams confirm all the previous observations. For
instance, whenever p = 0.5, the populations exhibit chaotic
dynamics whereas for p = 0.6 and p = 0.7 active (inactive)
patches respectively possess period-2 (period-1) and period-4
(period-2) oscillations, which is quite clear from this bifurca-
tion diagram. Finally, the bifurcation diagram confirms that
for p � pc = 0.725, all the patches go for global extinction.
This scenario is further validated by plotting the corresponding
maximum Lyapunov exponent (MLE) in Fig. 5(c), where the
MLE becomes negative for p � pc = 0.725. In addition to
this, we have also shown the bifurcation diagrams and the
associated MLE for a different dispersal strength m = 0.08
in Figs. 5(b) and 5(d), respectively. As explained in Fig. 4,
with m = 0.08 the metapopulation goes for extinction at
pc = 0.525 and here again the bifurcation and MLE diagrams
ensure this circumstance.

Now, in Fig. 6, we consider a situation when there is a
mismatch in the dispersal rates of prey and predator patches
by taking β �= α. First we consider α < β with β = 1 (which
implies that the dispersal rate for prey is much lower than
that of the predators) while keeping fixed the value of the
dispersal rate m = 0.08. For α = 0.8, that is, the dispersal
rate of the predator is larger than the dispersal rate of the prey,
the critical value of the inactivation ratio is pc = 0.775. This
critical value is larger than that for the identical dispersal rate,
i.e., α = β = 1.0 (red dotted line). Again with a lower value
of α at 0.6, the critical value pc = 0.875 (cyan dotted line);
i.e., enhancement of the survivability of the metapopulation
occurs. So if the dispersal rate of the prey is decreased
compared to the dispersal rate of the predator, survivability
of the metapopulation increases. On the contrary, whenever
α > β = 1, i.e., the dispersal rate of the prey population is
higher than that of the predator, the pc value gets reduced
quite remarkably implying significant de-enhancement in the
survivability of the metapopulation. With α = 2.0, pc = 0.325
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FIG. 6. The order parameter D is plotted against p for different
α values in a global network with fixed m = 0.08 and β = 1. The
black dotted line corresponds to the pc value for α = 1. For gradually
decreasing value of α(< 1), pc tends towards 1 and for gradually
increasing value of α(> 1), pc tends towards 0.

which was 0.525 earlier for α = 1 and an even higher value of
α = 4.0 drives the metapopulation to achieve pc = 0.25.

In fact, for a particular value of m, if we take α < β, β = 1
or β < α, α = 1, i.e., if any one of the asymmetry constants
(α or β) is 1 and the other (β or α) is less than 1, then the pc

value increases which effectively makes the metapopulation
more persistent. Therefore, mismatch in the dispersal rates
of prey and predator helps in species persistence, as long as
the values are less (α,β � 1). If we increase the mismatch by
taking α (or β) greater than 1, keeping the other equal to 1,
then due to fast synchronization the robustness decreases. Also
here we mention that as long as α < 1, the change in the order
parameter D is continuous whereas a sort of discontinuous
variation is realized in cases of α > 1 particularly for this
model.

Next, we will consider another significant parameter in the
model, the Allee threshold θ . This Allee threshold is very
important because it increases the chance of extinction and a
minimum population size is needed for species persistence.
The effect of the Allee threshold θ on the persistence of the
metapopulation is shown in Fig. 7. Our study reveals that
increasing θ has negative effects on the order parameter D. As
discussed above, with θ = 0.10, the order parameter D drops
to zero at pc = 0.525 (in Fig. 4). However, as we increase
the value of θ to θ = 0.11, D declines to zero at pc = 0.425
and for further increment in θ , pc deteriorates to pc = 0.25.
This basically implies that a strong Allee effect hinders the
metapopulation persistence.

In Fig. 8, we have shown how the critical value pc varies
with dispersal rate m by increasing the dispersal mismatch
between prey and predator populations. Keeping α = 1 fixed,
pc against m is plotted for three different values of β = 1.0,0.5,
and 0.2. As stated earlier, smaller β with α = 1 can be utterly
efficient in enhancing metapopulation robustness; here this
fact has been shown to be authentic for almost all the values
of m.
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FIG. 7. Variation of order parameter D by changing the inactiva-
tion ratio p for three different values of θ showing de-enhancement
of the pc value for small increment in the θ value. Other parameters
are m = 0.08 and α = β = 1.0.

Further we explore the influence of uniformly distributed
mortality rate d of the predators in both active and inactive
patches, instead of keeping them fixed in those patches. As seen
from Fig. 9, whenever the values of d are taken uniformly from
the intervals [0.1, 0.2] and [0.45, 0.54] for inactive and active
patches respectively, pc increases to 0.625, which was earlier
0.525 for the fixed identical value of d. Due to the parameter
mismatch, the population remains in an asynchronous state
and metapopulation survivability increases [28].

2. Complex dispersal networks

Next we consider complex dispersal topologies (namely,
small world [15] and scale free [29]) among patches and
investigate the revival of the population in inactive patches
through dispersal. In this context, it is noted that the dispersal
structures can have substantial influence as far as the metapop-
ulation’s persistence is concerned [30–32]. First we consider
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FIG. 8. Variation of critical inactivation ratio pc by changing the
dispersal rate m for three different values of β in a global network
showing enhancement of the pc value as β gradually decreases.
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FIG. 9. Variation of the order parameter D with respect to
inactivation ratio p in a globally coupled network of identical (black)
and nonidentical (red) patches. Here m = 0.08 and α = β = 1.0.

a small-world dispersal network. Indeed, earlier studies on
plant and animal dispersal structures attest to the fact that
most migrating individuals move to shorter distances and
some of them travel over longer distances [16,33,34]. This
implies that the majority of the dispersing individuals move
to neighboring patches, but there is a probability q that some
may arrive at any patch within the network selected at random.
Thus in our small-world dispersal, we hold that the species
dispersal is not distance dependent between the patches. This
fact readily indicates the immense significance of the study
of metapopulation survivability under small-world dispersal
of the species. We investigate the ecological robustness of
patches on small-world dispersal architecture where a fraction
of patches initially becomes extinct.

For the small-world model, we consider a network of
N = 200 patches and dispersal matrix M = ( αm

deg(i) ,
βm

deg(i) )
T , as

before. First we consider symmetric dispersal rates between
prey and predator populations. In Fig. 10, the order parameter
D is plotted against the inactivation ratio p. To find the
order parameter D for each p, we average over twenty
different realizations (even though the results are more or less
similar for individual realizations, owing to the randomness
in the network architecture, we go for averaging over some
realizations). Like with the global network here also we
observe that if the inactivation ratio p crosses a critical
stage pc, species dispersal would not be able to resurrect the
population in the inactive patches and it goes for extinction
in all the patches. Figure 10(a) shows the variation of D

with respect to p for different values of the dispersal rate
m = 0.6,0.5,0.3, and 0.1. As long as the dispersal rate is
comparatively high and fixed at m = 0.6, after a slight initial
accession, D starts decreasing monotonically with increasing
p and eventually drops to zero for pc = 0.475 indicating global
extinction of the metapopulation. A similar changeover in D

has been witnessed whenever m = 0.5 is considered, except
the fact that the diminution in the value of D is not that
hefty this time within 0.525 � p � 0.725. Nevertheless, the
transition possesses a significant difference in the value of
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FIG. 10. The order parameter D is plotted against the inactivation
ratio p for a small-world network with average degree 〈k〉 = 30,
rewiring probability q = 0.05: (a) various dispersal rates m with
α = β = 1.0, and (b) the effect of the asymmetry parameter β where
m = 0.6 and α = 1.0.

pc, which is 0.75 now. For a lower m = 0.3, the previously
discussed initial hike in the value of D is not there any more
and it starts decreasing right from the beginning that becomes
zero at pc = 0.825. Finally we take m = 0.1 for which the
critical inactivation ratio pc = 0.90 which implies that the
metapopulation survivability is higher than the previous cases.
However, we also note that within the initiatory range of
p satisfying p � 0.15, the value of D is lower than that
obtained in the earlier cases. In fact, lower dispersal rates allow
metapopulation survivability for higher inactivation ratio p,
but for lower p, metapopulation abundance is lower compared
to higher dispersal rates.

Next we move on to examine the influence of the parameter
β that basically controls the asymmetry between the dispersal
rates of prey and predators. In order to do this, we figure out
the change in D against increasing p for different values of β

using the fixed value of dispersal rate m = 0.6 in Fig. 10(b).
As described above, for β = 1.0 (i.e., when the dispersal
rates of both species are the same), the critical inactivation
ratio is pc = 0.475, but with a decrement in β to β = 0.8,
the value of D remains nonzero even for all p < 0.60.
This immediately implies that this smaller β enhances the
survivability of the metapopulation and hence allows more
extinct patches to contribute in the metapopulation. For an
even smaller β = 0.6, the critical value of the inactivation ratio
pc increases further to 0.7 indicating more metapopulation
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FIG. 11. Variation of the pc values with respect to small-world
rewiring probability q for m = 0.6 showing deterioration of the
critical fraction pc with increasing randomness in the network.

persistence. Finally, pc develops to 0.75 with β = 0.4. Thus,
interestingly enough, the asymmetric dispersal rate achieved
in terms of smaller β has been investigated to enhance the
metapopulation survivability quite comprehensively even for
small-world dispersal topology.

Figure 11 shows how this critical value pc of the inactivation
ratio is correlated with the rewiring probability q. When q = 0,
the dispersal network is fully regular; for 0.001 < q < 0.1, it
is a small-world network possessing low diameter and high
clustering. As we increase the value of q further it becomes
a more and more random network and at q = 1 it becomes
fully random. For α = β = 1.0, our study affirms that as q

increases (implying the presence of many more long range
dispersals), initially pc remains the same for a while but
as q crosses a certain value 0.005, the value of pc starts
decreasing significantly and reaches 0.15 finally for fully
random dispersals. As we consider a lower value of β = 0.4,
more or less a similar qualitative scenario is realized, but with
higher pc values throughout. In this case, pc remains almost
the same unless q > 0.05 and starts decreasing afterwards.
This figure firmly points out the efficiency of the asymmetry
parameter β in augmenting the metapopulation survivability
regardless of the rewiring probability (associated with long
range dispersals) in the network.

Finally, we consider the scale-free dispersal network in
which the degree distribution of the network nodes follows the
power law [29] P (k) ∝ k−γ , where P (k) is the probability of
finding a node of degree k and γ is the power-law exponent
(in our case, γ = 3). This basically implies that in most of
the patches, species dispersal takes place from a very few
patches of the network, but in a few patches dispersal takes
place from a large number of patches. To study the robustness
of the prey-predator metapopulation in the scale-free network,
we consider three different processes of inactivation in the
patches, namely (i) random, (ii) targeted hub (highest degree
node), and (iii) targeted low-degree nodes. In the following,
we will explore the persistence of the metapopulation in
the scale-free network under these three different processes
of inactivation. Our main emphasis will be to compare the
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FIG. 12. Scale-free network: D is plotted against the inactivation
ratio p. Here inactivation of nodes are random and m = 0.1, α =
β = 1.0.

critical value pc of the inactivation ratio using these different
inactivation processes.

In Fig. 12, the order parameter D is plotted against the
inactivation ratio p when the inactivation process is random.
For this heterogeneous network, the critical value of p for
which the metapopulation goes for extinction remains very
high whenever m = 0.1. It is also notable that the order
parameter D remains very high before it becomes zero. This
implies a high abundance of the metapopulation just before the
extinction and sudden extinction of the metapopulation when
90% of the patches are in the inactive state.

In a heterogeneous network, we have very few high-degree
nodes and many low-degree nodes. To understand the effects
of inactivation of high-degree as well as low-degree nodes
on the order parameter D, we make a targeted inactivation
of nodes. For this, we inactivate the high (low) degree
nodes at first and then inactivate the low (high) degree
nodes accordingly. This process is repeated until the number
of inactive nodes reach Np. The variation of the order
parameter D is plotted against inactivation ratio p for targeted
inactivation in Fig. 13. From this figure one can observe that
the critical value pc is much lower in the case of targeted
inactivation of high-degree nodes. It is to be noted that
a patch benefits from its nearest neighbor’s degree. Thus
a patch will benefit more if it is connected to a higher
degree patch, and the effect may be larger than the patch’s
own degree. Therefore, if we target to inactivate the hubs,
the metapopulation persistence decreases [17]. In all the cases,
the abundance of the metapopulation is very high until the
inactivation ratio p reaches a critical value pc, but in the case of
random inactivation the chances of metapopulation persistence
are higher compared to targeted inactivations.

IV. HOLLING TYPE II FUNCTIONAL RESPONSE

As a confirmation of the fact that the obtained results are
not model specific, in this section we go through a study of
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FIG. 13. Scale-free network: D is plotted against the inactivation
ratio p with targeted high-degree and low-degree nodes sequentially.
Here m = 0.1, α = β = 1.0.

the damaged metapopulation of fit and unfit patches while
considering the Rosenzweig-MacArthur prey-predator model
possessing the Holling type II functional response as follows:

dx

dt
= 1

ε

[
x(1 − x)(x − θ ) − axy

b + x

]
,

dy

dt
= axy

b + x
− dy, (5)

where x is the prey population density, y is the predator
population density, and ε is the time scale difference between
prey and predator population. Here θ ∈ (0,1) denotes the
Allee threshold, d is the natural mortality rate of the predator
population as before, a is the rate of predation, and b is
the half-saturation constant. Here the following parameter
values have been considered: ε = 1,θ = 0.1,a = 1,b = 1, and
d = 0.28 (for inactive patches), d = 0.36 (for active patches).

Figure 14(a) depicts the variation in the order parameter D

with respect to increasing values of the inactivation (non-self-
oscillatory) ratio p for different values of the dispersal rate m

whenever α = β = 1 in the case of global dispersal topology.
With small dispersal strength m = 0.04, global oscillation in
the network disappears for p � pc = 0.85 and consequently
the metapopulation passes through complete extinction. As
illustrated above for the Holling type I functional response,
here also with higher m = 0.05,0.06, and 0.07, this phase
transition in the metapopulation occurs much earlier at
pc = 0.625,0.55, and 0.5, respectively. Next we introduce
asymmetry in terms of nonunit α in the dispersal process while
keeping m = 0.05 and β = 1 fixed, as shown in Fig. 14(b). Due
to α = 1.2, the value of pc gets lowered to pc = 0.575 from
pc = 0.625 implying faster metapopulation extinction. Higher
α = 1.4 leads to pc = 0.5 meaning even when 50% patches are
unfit, the metapopulation would eventually collapse. But much
more importantly, decreasing α < 1 may cause significant
improvement in the metapopulation survivability. For instance,
with α = 0.8 the metapopulation persists up to p � pc = 0.7
and even lower α = 0.6 remarkably helps the metapopulation
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FIG. 14. Variation of the order parameter D with respect to p:
globally coupled patches (N = 200) (a) for different dispersal rates
m = 0.04 (blue), 0.05 (red), 0.06 (green), 0.07 (black) with α,β = 1;
(b) taking m fixed at m = 0.05 and β = 1, the effect of asymmetry
parameter α has been shown here, for α = 1.0 (red), 0.8 (cyan),
0.6 (brown), 1.2 (green), 1.4 (violet). Small-world dispersal network
(N = 200): p vs order parameter D with average degree 〈k〉 = 40,
rewiring probability q = 0.05 (c) for different dispersal rates m = 0.3
(blue), 0.5 (red), 0.7 (green), 0.8 (black) with α,β = 1; (d) taking m

fixed at m = 0.8 and β = 1, the effect of asymmetry parameter α has
been shown here, for α = 1.0 (black), 0.8 (brown), 0.6 (violet), 0.4
(cyan). Scale-free dispersal network (N = 500): Order parameter D

(e) with random inactivation procedure and (f) targeted inactivation of
hubs (blue) and low-degree nodes (red) for m = 0.10 with α = β = 1.

to withstand local patch extinctions unless p reaches pc =
0.875.

As far as the complex dispersal topologies are concerned,
we analyze both small-world and scale-free dispersal struc-
tures one-by-one for the patches described by Eq. (5). With
an average degree of 〈k〉 = 40 and rewiring probability
q = 0.05, the order parameter D is plotted against p for
small-world dispersal in Fig. 14(c). With dispersal rate m =
0.3, D vanishes for p � pc = 1.0 and as can be expected
higher m = 0.5,0.7,0.8 cause relatively rapid extinction of
the metapopulation at pc = 0.925,0.875,0.825, respectively,
while α = β = 1. Enhancement in the metapopulation re-
silience is further described by inducing α < 1 with m = 0.8
and β = 1. Deviation of α from 1 to 0.8 and 0.6 generates
improved pc = 0.875 and pc = 0.95, respectively. Lowering
the value of α to 0.4, one may have the most robust
metapopulation as it exhibits pc = 1.0 [cf. Fig. 14(d)].

Finally, we consider a metapopulation model possessing
the scale-free dispersal mechanism with a power-law degree
(patch dispersal connectivity) distribution having power-law
exponent γ = 3. As in the previous case, owing to the hetero-
geneity in the network structure, here again we follow three
different inactivation procedures: (i) random inactivation, (ii)
targeted hub, and (iii) targeted low-degree nodes inactivation.
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FIG. 15. Comparison of the pc values with respect to the dispersal
rate m for three different network topologies, i.e., global, small world,
and scale free. Here the number of patches in the metapopulation is
N = 500 and there is a symmetric dispersal rate, i.e., α = β = 1.0.
For small-world network, the average degree 〈k〉 = 80 and rewiring
probability q = 0.05 are taken. Random inactivation procedure has
been applied in the case of the scale-free network.

Figure 14(e) describes the change in D for increasing p in
which inactivation of the patches is done randomly for m =
0.10 and pc becomes 0.74. But whenever inactivations are done
while targeting the hubs and low-degree nodes, D turns into
zero and hence the metapopulation collapses at pc = 0.285
and pc = 0.65, respectively, as in Fig. 14(f). The random
inactivation mechanism is again realized to yield much higher
metapopulation survivability compared to targeted attacks.

V. DISCUSSION AND CONCLUSIONS

Characteristically metapopulations are viewed as persis-
tence of sets of populations under the balance between
colonization and local extinction [35]. Though the metapop-
ulation theory is developed in many areas of ecological and
evolutionary biology, many empirical and theoretical questions
remain to be answered about how a metapopulation survives.
The extinction of a local population is one of the main
characteristics of metapopulation theory [36]. In the early
stage, some field experiments in plant and insect populations
observed local extinctions, which are the basis of current
metapopulation theory. From the earlier observations, it was
argued that populations may persist through dispersal and
recolonization in vacant habitats.

To study the survivability of a metapopulation under
local extinctions, we have considered three different types of
dispersal networks, i.e., global, small world, and scale free.
Figure 15 shows the variation of the critical inactivation ratio
pc with the dispersal rate m. Our investigation reveals that
the small-world network is most robust ecologically while in
the case of global dispersal, the possibility of metapopulation
extinction is much higher than that of the complex dispersal
networks. For the small-world dispersal topology, the pc

value decreases gradually with increasing m. For the other
two cases, the fall in pc values is quite abrupt; however

these values remain almost the same for a long range of m

beyond 0.4 in each case. From the perspective of persistence
of the metapopulation, the small-world dispersal network is
more robust compared to global and scale-free dispersals.
This is because of the asynchrony maintained among the
patches in the case of small-world dispersal for the whole
range of dispersal rate m in [0,1]. Moreover, our work also
shows that in the case of scale-free dispersal, metapopulation
abundance is comparatively higher than that of global and
small-world dispersals before the complete extinction of the
metapopulation.

To conclude, through this article we have scrutinized one
of the most important issues in the ecology of survivability
of a metapopulation. We have made an attempt to explain up
to which level such a metapopulation can persist that passes
through several patch extinctions, while considering global,
small-world, and scale-free dispersals. In the case of global and
small-world topology, we have explored the effect of dispersal
rate on the persistence of a metapopulation for both symmetric
and asymmetric dispersals. For identical dispersal of prey and
predator populations, the ecological patches are more robust
for smaller values of the dispersal rate. When asymmetry is
introduced in the dispersal rate, enhancement of ecological
robustness is observed if the dispersal rate of the predator (or
prey) is lower than that of the prey (or predator) population.
The effect of the Allee threshold on the robustness of a
metapopulation is also discussed in the case of global dispersal
and it is noted that the survivability increases for smaller
values of that threshold. Regarding all-to-all dispersals we have
also shown that the metapopulation persistence is higher for
nonidentical patches than for identical patches. In the instance
of the small-world network we have shown that the critical
inactivation ratio decreases gradually with increasing rewiring
probability. While considering scale-free dispersal, we have
thoroughly investigated how different types of inactivation
processes affect the survivability of a metapopulation. Our
results state that the survivability is maximum in the case
of a random inactivation procedure compared to the targeted
inactivation of hubs and low-degree nodes. The survivability is
found to be minimum for the targeted inactivation of hubs. To
elucidate that the observed scenarios are not model specific, we
have performed the investigation of the local dynamical units
(prey-predator patches) exhibiting both Holling type I and
type II functional responses. This sort of study on dynamical
robustness of systems based on naturally possible occurrences
is highly relevant as it mimics other realistic scenarios as
well. For instance, in the cases of communication in neuronal
systems [37], proper functioning in cardiac and respiratory
systems [38], and specific physiological processes [39] such
as cell necrosis within organs [40], stable and robust global
oscillation is quite essential. Even from the perspective of
power grids [41] and the El Nino - Southern Oscillation
(ENSO) in Earth’s ocean and atmosphere [42], the study of
dynamical rhythmicity is very important.

Our results indicate a type of behavior in a metapopulation
with various dispersal topologies that experiences local ex-
tinctions, but the generality of the conclusions is subjected to
further studies. We believe that our results will particularly
improve the theoretical understanding of metapopulation
persistence of interacting ecological species.
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APPENDIX: TWO-COUPLED MODEL: ONE ACTIVE AND
ANOTHER IN INACTIVE MODE

We consider two distinct and spatially separated predator-
prey patches where both predators and prey disperse between
patches with a constant dispersing rate m. Thus our predator-
prey model in two patches with diffusive coupling is given by
the following equations:

dxi

dt
= 1

ε
[xi(1 − xi)(xi − θ ) − xiyi] + αm(xj − xi),

dyi

dt
= xiyi − diyi + βm(yj − yi), (A1)

where i,j = 1,2 and i �= j .
The model equation (A1) without the spatial parameter

(i.e., m = 0) gives the local dynamics of each patch. Here we
have taken parameter values in such a manner that one patch
(patch 1) gives limit-cycle behavior (active patch, d1 = 0.5)
and the other one (patch 2, d2 = 0.2) remains in extinction
equilibrium (inactive patch). We are interested in seeing
whether as a result of species dispersal we can revive the
population in patch 2. Before going to numerical simulation,
let us discuss the possible equilibrium points of the coupled
patches. The two coupled patches [Eq. (A1)] provide five
possible equilibrium points and we discuss here the linear
stability analysis near these equilibrium points. The existence
conditions for the equilibrium points and their local stability
are discussed below.

(1) For any parameter values, the model (A1) always has
one trivial equilibrium point:

E0000 =

∣∣∣∣∣∣∣
0
0
0
0

(A2)

where all the active and inactive populations go extinct and
is always locally asymptotically stable as the eigenvalues
corresponding to this equilibrium point are


0000 =

∣∣∣∣∣∣∣
− θ

ε
(< 0),

− θ+2αmε
ε

(< 0),
−(d1+d2+2βm)±

√
(d2−d1)2+4β2m2

2 (< 0).

(A3)

(2) The equilibrium point

Eθ0θ0 =

∣∣∣∣∣∣∣
θ

0
θ

0

(A4)

where only the prey populations in both active and inactive
patches exist and is always unstable as the associated eigen-

values with this equilibrium are


θ0θ0 =
∣∣∣∣
θ(1−θ)

ε
(> 0),

θ(1−θ)
ε

− 2αm,
(A5)

and the other two eigenvalues are the roots of the quadratic
equation λ2 + Aλ + B = 0, where A = d1 + d2 + 2(βm − θ )
and B = (θ − d1)(θ − d2) − βm(2θ − d1 − d2). The roots of
this quadratic equation are real negative or complex conjugate
with negative real parts if A > 0 and B > 0.

(3) The equilibrium point

E1010 =

∣∣∣∣∣∣∣
1
0
1
0

(A6)

where prey in both active and inactive patches persist at
their highest density. The eigenvalues associated with this
equilibrium are


1010 =
∣∣∣∣∣
− (1−θ)

ε
(< 0),

− (1−θ)
ε

− 2αm(< 0),
(A7)

and other two eigenvalues are the roots of the quadratic
equation λ2 + A1λ + A2 = 0, where A1= d1+ d2+ 2(βm −1)

FIG. 16. Two-coupled model. (a) Period-2, (b) period-1 limit
cycle together with the equilibrium points Ej (j = 0,1,2,3,4,5)
corresponding to m = 0.02 respectively for active and
inactive patches. Here E0 = (0,0,0,0), E1 = (0.025,0,0.118,0),
E2 = (0.1,0,0.1,0), E3 = (0.118,0,0.025,0), E4 = (1,0,1,0),
and E5 = (0.509,0.188,0.183,0.104). (c), (d) Chaotic orbits
along with the equilibrium points Ēk(k = 0,1,2,3,4,5)
corresponding to m = 0.029 respectively for active and
inactive patches. Here Ē0 = (0,0,0,0), Ē1 = (0.041,0,0.122,0),
Ē2 = (0.1,0,0.1,0), Ē3 = (0.122,0,0.041,0), Ē4 = (1,0,1,0), and
Ē5 = (0.509,0.182,0.185,0.120). (e) Bifurcation diagram by
changing the dispersal rate m, (f) corresponding maximum Lyapunov
exponent with respect to m. Blue and red color in (e) corresponds
to the active and inactive patch, respectively. Other parameters are
ε = 1.0,θ = 0.1,α = β = 1.0.
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and A2 = (1 − d1)(1 − d2) − βm(2 − d1 − d2). The equilib-
rium is locally asymptotically stable if both the roots of the
above equation are real negative or complex conjugate with
negative real parts, i.e., if A1 > 0 and A2 > 0.

(4) The equilibrium point Ex0x0 = (x10,0,x20,0), where
x20 = x10[αmε−(1−x10)(x10−θ)]

αmε
and x10 is the positive real root

of the equation [ρ2 − ρ(1 + θ ) + (αmε + θ )](−ρ2 + ρθ +
αmε)(ρ2 − ρ + αmε) + α3m3ε3 = 0. The eigenvalues
corresponding to this equilibrium are given by the roots of the
biquadratic equation (λ2 + B1λ + B2)(λ2 + B3λ + B4) = 0,
where B1 = 1

ε
[(2x10 − 1)(x10 − θ ) + x10(x10 − 1) + (2x20 −

1)(x20 − θ ) + x20(x20 − 1) + 2αmε], B2 = 1
ε2 [(x10 − θ )(1 −

2x10) + x10(1 − x10)][(x20 − θ )(1 − 2x20) + x20(1 − x20)] −
αm
ε

[(x10 − θ )(1 − 2x10) + x10(1 − x10) + (x20 − θ )(1 −
2x20) + x20(1 − x20)], B3 = (d1 + d2 − x10 − x20 + 2βm),
and B4 = (x10 − d1)(x20 − d2) − βm(x10 + x20 − d1 − d2).
Therefore, the equilibrium exists if αmε > (1 − x10)(x10 − θ )
and is locally asymptotically stable if all the roots of the above
equation are real negative or complex conjugate with negative
real parts, i.e., if B1,B2,B3,B4 > 0.

(5) The coexistence equilibrium Exyxy =
(x10,y10,x20,y20), where all four populations survive. As
the expression of the coexistence equilibrium point is quite
difficult, here we set aside detailed discussion on its stability.

Our numerical experiment shows that due to species disper-
sal revival of oscillation can take place in inactive patches to
a great extent. Depending on the dispersal rate this oscillation
can be both regular (limit cycle) and irregular (chaotic) as
shown in Fig. 16. Figures 16(a) and 16(b) respectively depict
the period-2 and period-1 limit cycle orbits for active and
inactive patches along with the equilibrium points Ej (j =
0,1,2,3,4,5) whenever m = 0.02. On the other hand, the
presence of chaotic orbits and the equilibrium points Ēk(k =
0,1,2,3,4,5) are given in Figs. 16(c) and 16(d) with m = 0.029
for active and inactive patches, respectively. Finally, Fig. 16(e)
shows the bifurcation diagram with respect to the dispersal rate
m with α = β = 1.0 from which periodic and chaotic windows
are clearly visible. For better perception, we have plotted
the corresponding maximum Lyapunov exponent against the
dispersal rate m in Fig. 16(f).
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